SLSN Ptf12dam

Total Page:16

File Type:pdf, Size:1020Kb

SLSN Ptf12dam Hydrogenless Superluminous Supernova PTF12dam in the Model of an Explosion inside an Extended Envelope P. V. Baklanov1*, E. I. Sorokina1, 2**, and S. I. Blinnikov1, 2, 3*** 1Institute for Theoretical and Experimental Physics, ul. Bol’shaya Cheremushkinskaya 25, Moscow, 117218 Russia 2Sternberg Astronomical Institute, Moscow State University, Universitetskii pr. 13, Moscow, 119992 Russia 3Kavli IPMU (WPI), the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan Received November 24, 2014 Abstract—A model of a supernova explosion inside a dense extended hydrogenless envelope is proposed to explain the properties of the light curve for one of the superluminous supernovae PTF12dam. It is argued in the literature that the flux of this supernova rises too fast to be explained by the explosion model due to the instability associated with the electron–positron pair production (pair-instability supernova, PISNe), but it is well described by the models with energy input by a magnetar. We show that the PTF12dam-type supernovae can be explained without a magnetar in a model with a radiative shock in a dense circumstellar envelope that does not require an excessively large explosion energy. DOI: 10.1134/S1063773715040027 Keywords: superluminous supernova, circumstellar envelope. INTRODUCTION an enormous amount of radioactive nickel (several or even tens of solar masses) followed by the envelope’s Rare superluminous supernovae (SLSNe) whose heating from radioactive decays according to the 44 1 luminosity at maximum light can exceed 10 erg s− , 56 56 56 chain Ni ⇒ Co ⇒ Fe; the envelope’s heating which is greater than the typical values for core- through the reprocessing of the rotational energy 42 1 collapse supernovae (CCSNe), ∼10 erg s− , by two released by a spinning-down millisecond magnetar; orders of magnitude, are encountered among the su- and the reprocessing of the kinetic energy of the shock pernovae (SNe). Modern astronomy allows SLSNe into radiation produced when the SN ejecta interact to be observed at redshifts z > 1 (Cooke et al. 2012) with the surrounding extended dense envelope. So owing to their high luminosity, which makes them far there are no convincing arguments for a specific very valuable sources of information at cosmological model. distances. Some of the SLSNe Ic exhibit a slope on the According to the standard classification of SNe, decline of their light curves that is characteristic of SLSNe were divided into two subclasses: with hydrogen lines in the spectrum (SLSNe-II) and radioactive cobalt decay. Such tails of the light curves hydrogen-poor ones (SLSNe-I) (Gal-Yam 2012; can be observed for several hundred days. One of Quimby 2013). In addition, helium lines have never the first such SLSNe Ic was SN 2007bi. The nickel been observed in SLSNe-I; therefore, these SNe are mass capable of providing the observed flux on the more accurately classified as type Ic ones. In this decline of the light curve was determined by modeling paper, we will investigate the latter type of objects. its light curve and spectrum. In the PISN model, M = 3 7 M ; an enormous explosion energy, E = Ni − ? There is no universally accepted model for 53 (0.8−1.3) × 10 erg, must be produced in this case SLSNe-I. Several alternative scenarios are con- (Gal-Yam et al. 2009; Kozyreva et al. 2014). Be- sidered: the explosion of a star with an initial mass low, we will also use the energy unit foe: 1 foe greater than 140 M (PISN) with the production of ≡ ? 1051 erg. Thus, SLSNe Ic with the PISN mechanism *E-mail: [email protected],[email protected] must explode with an energy of ∼100 foe. Moriya **E-mail: [email protected] et al. (2010) showed that the observed light curves *** E-mail: [email protected] were reproduced both in the PISN model with Mej = 95 96 BAKLANOV et al. 121 M and in the CCSN model (core-collapse SNe) spectra of PTF12dam, which allowed it to be clas- ? with a synthesized 56Ni mass near M = 6.1 M , sified as SN Ic. The measured redshift to the host Ni ? but a very large explosion energy was also required, galaxy is z = 0.107. The discovery of this SN is valu- E = 3.6 1052 erg= 36 foe. able in that the fluxes were observed before maximum × light was reached. The fast rise of the light curves Another SLSN Ic, PTF12dam, whose light curve to the peak excludes the PISN models with a large after the peak is very similar to the light curve of amount of 56Ni, which have a long radiative diffusion SN 2007bi, was discovered not so long ago. In con- time scale in the envelope and whose light curves trast to the latter, PTF12dam was discovered at the slowly rise to the peak (Nicholl 2013). Observations rise phase of the light curve; therefore, it is well known reveal a considerable broadening of spectral lines cor- how its flux rose to the peak. This imposes additional 4 1 constraints on the possible explosion models. Nicholl responding to characteristic velocities ≈10 km s− et al. (2013) showed that the PISN mechanism led during the entire period of observations of this SLSN. to an excessively long rise time of the light curve for High velocities at the peak luminosity are generally a characteristic feature of all SLSNe Ic, but they are PTF12dam and proposed instead a model with energy 3 1 input by a magnetar that did not require extremely an order of magnitude lower, ∼10 km s− , in most high energies. It should be emphasized that Nicholl cases. et al. (2013) did not construct a self-consistent model with allowance made for the interaction of the magne- MODELING tar’s radiation with the ejecta and did not consider the transfer of photons in the inner and outer SN layers. General Properties of the Models The model proposed by them is basically a roughly The presupernova models were constructed by a evaluative one and shows that the rise time and the nonevolutionary method described previously (Bak- peak luminosity could be explained at a sufficiently lanov et al. 2005; Blinnikov and Sorokina 2010). A large initial angular momentum of a magnetar with quasi-polytrope in hydrostatic equilibrium was con- a high magnetic field. structed in the inner regions. The temperature in this 0.31 In this paper, we propose not an evaluative but region is related to the density as T ∝ ρ . After an a detailed radiation-hydrodynamics model of this artificial explosion at the center, we call this region interesting object without invoking the energetics of “ejecta.” Its mass and radius are Mej and Rej, respec- a magnetar. Based on our numerical calculations of tively. the radiative transfer in the entire SN volume, we We surround the ejecta by a dense expanding en- show that very powerful and long SLSNе Ic like velope whose origin is of no great importance for our PTF12dam can be explained in terms of the model modeling. The envelope could be formed, for example, of a supernova explosion inside an extended envelope by a previous explosion (or several explosions) in (Grasberg and Nadyozhin 1986; Chugai et al. 2004; the model with pulsational pair instability (Woosley Woosley et al. 2007; Moriya et al. 2013; Baklanov et al. 2007), an intense outflow of the presupernova et al. 2013). The possibility of the formation of within several months or years before its explosion, such envelopes is justified, for example, in Woosley single or multiple mergers of stars. The velocity et al. (2007) and Moriya and Langer (2014). An profile in the envelope is chosen to be similar to that extended envelope efficiently reprocesses the kinetic obtained in the evolution calculations by Woosley energy of the radiative shock propagating through et al. (2007); more specifically, the velocity in the it into radiation from several months to ∼1 year. bulk of the envelope is considerably lower than that of The rise time of the light curve to the peak depends the ejecta and can increase considerably in the outer on the chemical composition and structure of the layers (see the model profiles in Fig. 5). A shock envelope. We find a model for which the rise time is produced at the interface between the ejecta and and the decline rate of the light curve for PTF12dam the circumstellar envelope, where the kinetic energy correspond to the observations. In this case, we are of the ejecta is efficiently converted into the thermal able to reproduce not only the bolometric luminosity motion of particles and into radiation. but also the fluxes in the main filters and the behavior The density distribution in an extended envelope is of the color temperature. p specified by a power-law profile ρ ∝ r− . An example of the density profile is shown in Fig. 1. We chose p = OBSERVATIONS OF SN PTF12dam 1.8 for our model, following one of the most suitable models from Sorokina et al. (2015). The mass and ra- SN PTF12dam was discovered on May 23, 2012, dius of the envelope are designated as Menv and Renv. at the Palomar Transient Factory (Quimby 2012). The elemental abundances in the entire model were There were no signatures of H and He lines in the homogeneous. We used a carbon–oxygen model HYDROGENLESS SUPERLUMINOUS SUPERNOVA PTF12dam 97 0 M53He48e40 –5 ρ g o l –10 10 12 14 16 logR 0 M53He48e40 –5 ρ g o l –10 0 20 40 Mr/M? Fig. 1. Radial density profile. The upper panel: the logarithm of radius in centimeters is along the horizontal axis. The lower panel: density versus Mr, the mass within radius r, i.e., versus Lagrangian mass coordinate.
Recommended publications
  • Correction: Corrigendum: the Superluminous Transient ASASSN
    LETTERS PUBLISHED: 12 DECEMBER 2016 | VOLUME: 1 | ARTICLE NUMBER: 0002 The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole G. Leloudas1,​2*, M. Fraser3, N. C. Stone4, S. van Velzen5, P. G. Jonker6,​7, I. Arcavi8,​9, C. Fremling10, J. R. Maund11, S. J. Smartt12, T. Krühler13, J. C. A. Miller-Jones14, P. M. Vreeswijk1, A. Gal-Yam1, P. A. Mazzali15,​16, A. De Cia17, D. A. Howell8,​18, C. Inserra12, F. Patat17, A. de Ugarte Postigo2,​19, O. Yaron1, C. Ashall15, I. Bar1, H. Campbell3,​20, T.-W. Chen13, M. Childress21, N. Elias-Rosa22, J. Harmanen23, G. Hosseinzadeh8,​18, J. Johansson1, T. Kangas23, E. Kankare12, S. Kim24, H. Kuncarayakti25,​26, J. Lyman27, M. R. Magee12, K. Maguire12, D. Malesani2, S. Mattila3,​23,​28, C. V. McCully8,​18, M. Nicholl29, S. Prentice15, C. Romero-Cañizales24,​25, S. Schulze24,​25, K. W. Smith12, J. Sollerman10, M. Sullivan21, B. E. Tucker30,​31, S. Valenti32, J. C. Wheeler33 and D. R. Young12 8 12,13 When a star passes within the tidal radius of a supermassive has a mass >10 M⊙ , a star with the same mass as the Sun black hole, it will be torn apart1. For a star with the mass of the could be disrupted outside the event horizon if the black hole 8 14 Sun (M⊙) and a non-spinning black hole with a mass <10 M⊙, were spinning rapidly . The rapid spin and high black hole the tidal radius lies outside the black hole event horizon2 and mass can explain the high luminosity of this event.
    [Show full text]
  • Rare Superluminous Supernova Shining with Borrowed Energy Source Spotted with the 3.6M DOT Facility an Extremely Bright, Hydrog
    Rare superluminous supernova shining with borrowed energy source spotted with the 3.6m DOT facility An extremely bright, hydrogen deficient, fast-evolving supernovae that shines with the energy borrowed from an exotic type of neutron star with an ultra-powerful magnetic field has been spotted by Indian researchers. Deep study of such ancient spatial objects can help probe the mysteries of the early universe. Such type of supernovae called SuperLuminous Supernova (SLSNe) is very rare. This is because they are generally originated from very massive stars (minimum mass limit is more than 25 times to that of the Sun), and the number distribution of such massive stars in our galaxy or in nearby galaxies is sparse. Among them, SLSNe-I has been counted to about 150 entities spectroscopically confirmed so far. These ancient objects are among the least understood SNe because their underlying sources are unclear, and their extremely high peak luminosity is unexplained using the conventional SN power-source model involving Ni56 - Co56 - Fe56 decay. SN 2020ank, which was first discovered by the Zwicky Transient Facility on 2020 January 19, was studied by scientists from Aryabhatta Research Institute of Observational Sciences (ARIES) Nainital, an autonomous research institute under the Department of Science and Technology (DST) Govt. of India from February 2020 and then through the lockdown phase of March and April. The apparent look of the SN was very similar to other objects in the field. However, once the brightness was estimated, it turned out as a very blue object reflecting its brighter character. The team observed it using special arrangements at India’s recently commissioned Devasthal Optical Telescope (DOT-3.6m) along with two other Indian telescopes: Sampurnanand Telescope-1.04m and Himalayan Chandra Telescope-2.0m.
    [Show full text]
  • Ucalgary 2017 Welbankscamar
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2017 Photometric and Spectroscopic Signatures of Superluminous Supernova Events The puzzling case of ASASSN-15lh Welbanks Camarena, Luis Carlos Welbanks Camarena, L. C. (2017). Photometric and Spectroscopic Signatures of Superluminous Supernova Events The puzzling case of ASASSN-15lh (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/27339 http://hdl.handle.net/11023/3972 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Photometric and Spectroscopic Signatures of Superluminous Supernova Events The puzzling case of ASASSN-15lh by Luis Carlos Welbanks Camarena A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN PHYSICS AND ASTRONOMY CALGARY, ALBERTA JULY, 2017 c Luis Carlos Welbanks Camarena 2017 Abstract Superluminous supernovae are explosions in the sky that far exceed the luminosity of standard supernova events. Their discovery shattered our understanding of stellar evolution and death. Par- ticularly, the discovery of ASASSN-15lh a monstrous event that pushed some of the astrophysical models to the limit and discarded others. In this thesis, I recount the photometric and spectroscopic signatures of superluminous super- novae, while discussing the limitations and advantages of the models brought forward to explain them.
    [Show full text]
  • Central Engines and Environment of Superluminous Supernovae
    Central Engines and Environment of Superluminous Supernovae Blinnikov S.I.1;2;3 1 NIC Kurchatov Inst. ITEP, Moscow 2 SAI, MSU, Moscow 3 Kavli IPMU, Kashiwa with E.Sorokina, K.Nomoto, P. Baklanov, A.Tolstov, E.Kozyreva, M.Potashov, et al. Schloss Ringberg, 26 July 2017 First Superluminous Supernova (SLSN) is discovered in 2006 -21 1994I 1997ef 1998bw -21 -20 56 2002ap Co to 2003jd 56 2007bg -19 Fe 2007bi -20 -18 -19 -17 -16 -18 Absolute magnitude -15 -17 -14 -13 -16 0 50 100 150 200 250 300 350 -20 0 20 40 60 Epoch (days) Superluminous SN of type II Superluminous SN of type I SN2006gy used to be the most luminous SN in 2006, but not now. Now many SNe are discovered even more luminous. The number of Superluminous Supernovae (SLSNe) discovered is growing. The models explaining those events with the minimum energy budget involve multiple ejections of mass in presupernova stars. Mass loss and build-up of envelopes around massive stars are generic features of stellar evolution. Normally, those envelopes are rather diluted, and they do not change significantly the light produced in the majority of supernovae. 2 SLSNe are not equal to Hypernovae Hypernovae are not extremely luminous, but they have high kinetic energy of explosion. Afterglow of GRB130702A with bumps interpreted as a hypernova. Alina Volnova, et al. 2017. Multicolour modelling of SN 2013dx associated with GRB130702A. MNRAS 467, 3500. 3 Our models of LC with STELLA E ≈ 35 foe. First year light ∼ 0:03 foe while for SLSNe it is an order of magnitude larger.
    [Show full text]
  • Progenitors of Gamma-Ray Bursts and Supernovae
    Progenitors of Gamma-Ray Bursts and Supernovae Chris Fryer (LANL) Types of supernova and GRBs Engines and their progenitor requirements Massive star progenitors and the circumstellar medium (single vs. binary) Specific examples – What have we learned? Supernova Types • Supernovae are distinguished by spectra and light curves. • Unfortunately, in core- collapse, the dividing lines are more like guidelines. • There are many “stand- outs” among these supernovae (e.g. SN87A). SN types - Rates • Core-collapse (Ib/c, II) SNe make up 75% of all supernovae. • Most Ib/c are Ic supernovae. • Plateau SNe make up most of the type II class. • New classes include Broad Line (tied to GRBs?) and Superluminous Supernova GRB Types • GRBs have been roughly Levan et al. (2013) divided into short/hard and long/ soft bursts. • A new class of ultra-long bursts have been discovered. Core-collapse Supernovae (Type II, Ib/c): Powered by SN Engines the potential energy released in collapse Source of convection (advective acoustic vs. Rayleigh Taylor), energy transport (neutrinos, pressure waves), role of magnetic fields. Massive Star Progenitors (binaries vs. single stars) Thermonuclear Supernovae Ignition site/sites White dwarf (double Degenerate vs. single degenerate) Possible Fates under the Convective Paradigm • Explosion within first ~200 ms, normal supernovae • Explosion delayed, weak supernova, considerable fallback (BH formation – Collapsar type II for rotating systems) • No explosion (BH Formation – Collapsar type I for rotating systems) Supernovae/Hypernovae Nomoto et al. (2003) EK (Jets!) Failed SN? 13M~15M BHAD GRB and Magnetar Engines Massive star Collapse (LGRB, very long GRB), only a very small fraction of massive stars (0.01-0.1% the supernova rate).
    [Show full text]
  • Superluminous Supernovae 56 I H Neato Ewe Uenv Jcaaddense and Ejecta Supernova Between Interaction the Ni, ⋆ − ∼ · · Ln .Sorokina I
    SSRv manuscript No. (will be inserted by the editor) Superluminous supernovae Takashi J. Moriya⋆ · Elena I. Sorokina · Roger A. Chevalier Received: 25 December 2017 / Accepted: 5 March 2018 Abstract Superluminous supernovae are a new class of supernovae that were recognized about a decade ago. Both observational and theoretical progress has been significant in the last decade. In this review, we first briefly summarize the observational properties of superluminous super- novae. We then introduce the three major suggested luminosity sources to explain the huge luminosities of superluminous supernovae, i.e., the nu- clear decay of 56Ni, the interaction between supernova ejecta and dense circumstellar media, and the spin down of magnetars. We compare these models and discuss their strengths and weaknesses. Keywords supernovae · superluminous supernovae · massive stars 1 Introduction Superluminous supernovae (SLSNe) are supernovae (SNe) that become more luminous than ∼ −21 mag in optical. They are more than 1 mag more luminous than broad-line Type Ic SNe, or the so-called “hypernovae,” ⋆ NAOJ Fellow T. J. Moriya Division of Theoretical Astronomy, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan E-mail: [email protected] E. I. Sorokina Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, Uni- versitetski pr. 13, 119234 Moscow, Russia E-mail: [email protected] arXiv:1803.01875v2 [astro-ph.HE] 9 Mar 2018 R. A. Chevalier Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325, USA E-mail: [email protected] 2 which have kinetic energy of more than ∼ 1052 erg and are the most lumi- nous among the classical core-collapse SNe.
    [Show full text]
  • Des14x3taz: a Type I Superluminous Supernova Showing a Luminous, Rapidly Cooling Initial Pre­Peak Bump
    DES14X3taz: a type I superluminous supernova showing a luminous, rapidly cooling initial pre-peak bump Article (Published Version) Smith, M, Sullivan, M, D’Andrea, C B, Castander, F J, Casas, R, Prajs, S, Papadopoulos, A, Nichol, R C, Karpenka, N V, Bernard, S R, Brown, P, Cartier, R, Cooke, J, Curtin, C, Davis, T M et al. (2016) DES14X3taz: a type I superluminous supernova showing a luminous, rapidly cooling initial pre-peak bump. The Astrophysical Journal, 818 (1). L8. ISSN 2041-8213 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/61702/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
    [Show full text]
  • Arxiv:1707.05746V1 [Astro-Ph.HE] 18 Jul 2017 Kna Ta.21)T T1dm(Ihl Ta.2013), Al
    Accepted for publication in the Astrophysical Journal Letters A Preprint typeset using LTEX style emulateapj v. 12/16/11 ULTRAVIOLET LIGHT CURVES OF GAIA16APD IN SUPERLUMINOUS SUPERNOVA MODELS Alexey Tolstov1, Andrey Zhiglo1,2, Ken’ichi Nomoto1, Elena Sorokina3, Alexandra Kozyreva4, Sergei Blinnikov5,6,1 1 Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan 2 NSC Kharkov Institute of Physics and Technology, 61108 Kharkov, Ukraine 3 Sternberg Astronomical Institute, M.V.Lomonosov Moscow State University, 119234 Moscow, Russia 4 The Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel 5 Institute for Theoretical and Experimental Physics (ITEP), 117218 Moscow, Russia and 6 All-Russia Research Institute of Automatics (VNIIA), 127055 Moscow, Russia Accepted for publication in the Astrophysical Journal Letters on 18 Jul 2017 ABSTRACT Observations of Gaia16apd revealed extremely luminous ultraviolet emission among superluminous supernovae (SLSNe). Using radiation hydrodynamics simulations we perform a comparison of UV light curves, color temperatures and photospheric velocities between the most popular SLSN models: pair-instability supernova, magnetar and interaction with circumstellar medium. We find that the interaction model is the most promising to explain the extreme UV luminosity of Gaia16apd. The differences in late-time UV emission and in color evolution found between the models can be used to link an observed SLSN event to the most appropriate model. Observations at UV wavelengths can be used to clarify the nature of SLSNe and more attention should be paid to them in future follow-up observations.
    [Show full text]
  • PS1-10Afx at Z = 1.388: Pan- STARRS1 Discovery of a New Type of Superluminous Supernova
    PS1-10afx at z = 1.388: Pan- STARRS1 Discovery of a New Type of Superluminous Supernova The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Chornock, R., E. Berger, A. Rest, D. Milisavljevic, R. Lunnan, R. J. Foley, A. M. Soderberg, et al. 2013. “ PS1-10afx AT z = 1.388: Pan-STARRS1 Discovery of a New Type of Superluminous Supernova.” The Astrophysical Journal 767 (2) (April 20): 162. doi:10.1088/0004-637x/767/2/162. http:// dx.doi.org/10.1088/0004-637X/767/2/162. Published Version doi:10.1088/0004-637x/767/2/162 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11857774 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Draft version March 12, 2013 A Preprint typeset using LTEX style emulateapj v. 11/10/09 PS1-10afx at z =1.388: Pan-STARRS1 Discovery of a New Type of Superluminous Supernova R. Chornock1, E. Berger1, A. Rest2, D. Milisavljevic1, R. Lunnan1, R. J. Foley1,3, A. M. Soderberg1, S. J. Smartt4, A. J. Burgasser5, P. Challis1, L. Chomiuk6, I. Czekala1, M. Drout1, W. Fong1, M. E. Huber7, R. P. Kirshner1, C. Leibler8, B. McLeod1, G. H. Marion1, G. Narayan1, A. G. Riess2,9, K. C. Roth10, N. E. Sanders1, D. Scolnic9, K. Smith3, C.
    [Show full text]
  • Light Curve Powering Mechanisms of Superluminous Supernovae
    Light Curve Powering Mechanisms of Superluminous Supernovae A dissertation presented to the faculty of the College of Arts and Science of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Kornpob Bhirombhakdi May 2019 © 2019 Kornpob Bhirombhakdi. All Rights Reserved. 2 This dissertation titled Light Curve Powering Mechanisms of Superluminous Supernovae by KORNPOB BHIROMBHAKDI has been approved for the Department of Physics and Astronomy and the College of Arts and Science by Ryan Chornock Assistant Professor of Physics and Astronomy Joseph Shields Interim Dean, College of Arts and Science 3 Abstract BHIROMBHAKDI, KORNPOB, Ph.D., May 2019, Physics Light Curve Powering Mechanisms of Superluminous Supernovae (111 pp.) Director of Dissertation: Ryan Chornock The power sources of some superluminous supernovae (SLSNe), which are at peak 10{ 100 times brighter than typical SNe, are still unknown. While some hydrogen-rich SLSNe that show narrow Hα emission (SLSNe-IIn) might be explained by strong circumstellar interaction (CSI) similar to typical SNe IIn, there are some hydrogen-rich events without the narrow Hα features (SLSNe-II) and hydrogen-poor ones (SLSNe-I) that strong CSI has difficulties to explain. In this dissertation, I investigate the power sources of these two SLSN classes. SN 2015bn (SLSN-I) and SN 2008es (SLSN-II) are the targets in this study. I perform late-time multi-wavelength observations on these objects to determine their power sources. Evidence supports that SN 2008es was powered by strong CSI, while the late-time X-ray non-detection we observed neither supports nor denies magnetar spindown as the most preferred power origin of SN 2015bn.
    [Show full text]
  • Download This Article in PDF Format
    A&A 602, A9 (2017) Astronomy DOI: 10.1051/0004-6361/201630163 & c ESO 2017 Astrophysics The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system? T.-W. Chen1; 2, M. Nicholl3, S. J. Smartt4, P. A. Mazzali5; 6, R. M. Yates1, T. J. Moriya7, C. Inserra4, N. Langer2, T. Krühler1, Y.-C. Pan8, R. Kotak4, L. Galbany9; 10, P. Schady1, P. Wiseman1, J. Greiner1, S. Schulze11, A. W. S. Man12, A. Jerkstrand6, K. W. Smith4, M. Dennefeld13, C. Baltay14, J. Bolmer1; 15, E. Kankare4, F. Knust1, K. Maguire4, D. Rabinowitz14, S. Rostami14, M. Sullivan16, and D. R. Young4 1 Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstraße 1, 85748 Garching, Germany e-mail: [email protected] 2 Argelander Institute for Astronomy, University of Bonn, Auf dem Hügel 71, 53121 Bonn, Germany 3 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA 4 Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, UK 5 Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, UK 6 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching-bei-München, Germany 7 Division of Theoretical Astronomy, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, 181-8588 Tokyo, Japan 8 Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA 9 Pittsburgh Particle Physics, Astrophysics,
    [Show full text]
  • Looking for the High-Mass Progenitors of Stripped-Envelope Supernovae
    Stockholm University Department of Astronomy LICENTIATE THESIS Looking for the high-mass progenitors of stripped-envelope supernovae Author: Emir Karamehmetoglu Department of Astronomy, The Oskar Klein Center, Stockholm University, AlbaNova, 106 91 Stockholm, Sweden Supervisor: Jesper Sollerman Co-Supervisor: Francesco Taddia June 4, 2018 Abstract Stripped-envelope supernovae were thought to be the explosions of very massive stars (& 20 M ) that lost their outer layers of hydrogen and/or helium in strong stellar winds. However, recent studies have highlighted that most stripped-envelope supernovae seem to be arising from rela- tively lower-mass progenitor stars in the 12 20 M range, creating a mystery about the fate of − the higher-mass stars. In this licentiate thesis, we review our knowledge of stripped-envelope supernovae, and present the astrophysical problem of their missing high-mass progenitors. The thesis focuses on observations of unique and rare stripped-envelope supernovae classified with modern optical surveys such as the intermediate Palomar Transient Factory (iPTF) and the Public European Southern Observatory Spectroscopic Survey of Transient Objects (PESSTO). In these surveys we have discovered stripped-envelope supernovae with long-lasting broad lightcurves, which are thought to be a marker for highly massive (& 20 M ) progenitor stars. Despite this exciting association, there are only a handful of existing examples of stripped- envelope supernovae with broad lightcurves published in the literature, not numerous enough to account for the missing high-mass stars. During our e↵orts, the first object we focused on was OGLE-2014-SN-131, a long-lasting supernova in the southern sky initially classified by PESSTO.
    [Show full text]