Download This Article in PDF Format
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Correction: Corrigendum: the Superluminous Transient ASASSN
LETTERS PUBLISHED: 12 DECEMBER 2016 | VOLUME: 1 | ARTICLE NUMBER: 0002 The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole G. Leloudas1,2*, M. Fraser3, N. C. Stone4, S. van Velzen5, P. G. Jonker6,7, I. Arcavi8,9, C. Fremling10, J. R. Maund11, S. J. Smartt12, T. Krühler13, J. C. A. Miller-Jones14, P. M. Vreeswijk1, A. Gal-Yam1, P. A. Mazzali15,16, A. De Cia17, D. A. Howell8,18, C. Inserra12, F. Patat17, A. de Ugarte Postigo2,19, O. Yaron1, C. Ashall15, I. Bar1, H. Campbell3,20, T.-W. Chen13, M. Childress21, N. Elias-Rosa22, J. Harmanen23, G. Hosseinzadeh8,18, J. Johansson1, T. Kangas23, E. Kankare12, S. Kim24, H. Kuncarayakti25,26, J. Lyman27, M. R. Magee12, K. Maguire12, D. Malesani2, S. Mattila3,23,28, C. V. McCully8,18, M. Nicholl29, S. Prentice15, C. Romero-Cañizales24,25, S. Schulze24,25, K. W. Smith12, J. Sollerman10, M. Sullivan21, B. E. Tucker30,31, S. Valenti32, J. C. Wheeler33 and D. R. Young12 8 12,13 When a star passes within the tidal radius of a supermassive has a mass >10 M⊙ , a star with the same mass as the Sun black hole, it will be torn apart1. For a star with the mass of the could be disrupted outside the event horizon if the black hole 8 14 Sun (M⊙) and a non-spinning black hole with a mass <10 M⊙, were spinning rapidly . The rapid spin and high black hole the tidal radius lies outside the black hole event horizon2 and mass can explain the high luminosity of this event. -
College of San Mateo Observatory Stellar Spectra Catalog ______
College of San Mateo Observatory Stellar Spectra Catalog SGS Spectrograph Spectra taken from CSM observatory using SBIG Self Guiding Spectrograph (SGS) ___________________________________________________ A work in progress compiled by faculty, staff, and students. Stellar Spectroscopy Stars are divided into different spectral types, which result from varying atomic-level activity on the star, due to its surface temperature. In spectroscopy, we measure this activity via a spectrograph/CCD combination, attached to a moderately sized telescope. The resultant data are converted to graphical format for further analysis. The main spectral types are characterized by the letters O,B,A,F,G,K, & M. Stars of O type are the hottest, as well as the rarest. Stars of M type are the coolest, and by far, the most abundant. Each spectral type is also divided into ten subtypes, ranging from 0 to 9, further delineating temperature differences. Type Temperature Color O 30,000 - 60,000 K Blue B 10,000 - 30,000 K Blue-white A 7,500 - 10,000 K White F 6,000 - 7,500 K Yellow-white G 5,000 - 6,000 K Yellow K 3,500 - 5,000 K Yellow-orange M >3,500 K Red Class Spectral Lines O -Weak neutral and ionized Helium, weak Hydrogen, a relatively smooth continuum with very few absorption lines B -Weak neutral Helium, stronger Hydrogen, an otherwise relatively smooth continuum A -No Helium, very strong Hydrogen, weak CaII, the continuum is less smooth because of weak ionized metal lines F -Strong Hydrogen, strong CaII, weak NaI, G-band, the continuum is rougher because of many ionized metal lines G -Weaker Hydrogen, strong CaII, stronger NaI, many ionized and neutral metals, G-band is present K -Very weak Hydrogen, strong CaII, strong NaI and many metals G- band is present M -Strong TiO molecular bands, strongest NaI, weak CaII very weak Hydrogen absorption. -
Luminous Blue Variables
Review Luminous Blue Variables Kerstin Weis 1* and Dominik J. Bomans 1,2,3 1 Astronomical Institute, Faculty for Physics and Astronomy, Ruhr University Bochum, 44801 Bochum, Germany 2 Department Plasmas with Complex Interactions, Ruhr University Bochum, 44801 Bochum, Germany 3 Ruhr Astroparticle and Plasma Physics (RAPP) Center, 44801 Bochum, Germany Received: 29 October 2019; Accepted: 18 February 2020; Published: 29 February 2020 Abstract: Luminous Blue Variables are massive evolved stars, here we introduce this outstanding class of objects. Described are the specific characteristics, the evolutionary state and what they are connected to other phases and types of massive stars. Our current knowledge of LBVs is limited by the fact that in comparison to other stellar classes and phases only a few “true” LBVs are known. This results from the lack of a unique, fast and always reliable identification scheme for LBVs. It literally takes time to get a true classification of a LBV. In addition the short duration of the LBV phase makes it even harder to catch and identify a star as LBV. We summarize here what is known so far, give an overview of the LBV population and the list of LBV host galaxies. LBV are clearly an important and still not fully understood phase in the live of (very) massive stars, especially due to the large and time variable mass loss during the LBV phase. We like to emphasize again the problem how to clearly identify LBV and that there are more than just one type of LBVs: The giant eruption LBVs or h Car analogs and the S Dor cycle LBVs. -
The Impact of the Astro2010 Recommendations on Variable Star Science
The Impact of the Astro2010 Recommendations on Variable Star Science Corresponding Authors Lucianne M. Walkowicz Department of Astronomy, University of California Berkeley [email protected] phone: (510) 642–6931 Andrew C. Becker Department of Astronomy, University of Washington [email protected] phone: (206) 685–0542 Authors Scott F. Anderson, Department of Astronomy, University of Washington Joshua S. Bloom, Department of Astronomy, University of California Berkeley Leonid Georgiev, Universidad Autonoma de Mexico Josh Grindlay, Harvard–Smithsonian Center for Astrophysics Steve Howell, National Optical Astronomy Observatory Knox Long, Space Telescope Science Institute Anjum Mukadam, Department of Astronomy, University of Washington Andrej Prsa,ˇ Villanova University Joshua Pepper, Villanova University Arne Rau, California Institute of Technology Branimir Sesar, Department of Astronomy, University of Washington Nicole Silvestri, Department of Astronomy, University of Washington Nathan Smith, Department of Astronomy, University of California Berkeley Keivan Stassun, Vanderbilt University Paula Szkody, Department of Astronomy, University of Washington Science Frontier Panels: Stars and Stellar Evolution (SSE) February 16, 2009 Abstract The next decade of survey astronomy has the potential to transform our knowledge of variable stars. Stellar variability underpins our knowledge of the cosmological distance ladder, and provides direct tests of stellar formation and evolution theory. Variable stars can also be used to probe the fundamental physics of gravity and degenerate material in ways that are otherwise impossible in the laboratory. The computational and engineering advances of the past decade have made large–scale, time–domain surveys an immediate reality. Some surveys proposed for the next decade promise to gather more data than in the prior cumulative history of astronomy. -
PSR J1740-3052: a Pulsar with a Massive Companion
Haverford College Haverford Scholarship Faculty Publications Physics 2001 PSR J1740-3052: a Pulsar with a Massive Companion I. H. Stairs R. N. Manchester A. G. Lyne V. M. Kaspi Fronefield Crawford Haverford College, [email protected] Follow this and additional works at: https://scholarship.haverford.edu/physics_facpubs Repository Citation "PSR J1740-3052: a Pulsar with a Massive Companion" I. H. Stairs, R. N. Manchester, A. G. Lyne, V. M. Kaspi, F. Camilo, J. F. Bell, N. D'Amico, M. Kramer, F. Crawford, D. J. Morris, A. Possenti, N. P. F. McKay, S. L. Lumsden, L. E. Tacconi-Garman, R. D. Cannon, N. C. Hambly, & P. R. Wood, Monthly Notices of the Royal Astronomical Society, 325, 979 (2001). This Journal Article is brought to you for free and open access by the Physics at Haverford Scholarship. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Haverford Scholarship. For more information, please contact [email protected]. Mon. Not. R. Astron. Soc. 325, 979–988 (2001) PSR J174023052: a pulsar with a massive companion I. H. Stairs,1,2P R. N. Manchester,3 A. G. Lyne,1 V. M. Kaspi,4† F. Camilo,5 J. F. Bell,3 N. D’Amico,6,7 M. Kramer,1 F. Crawford,8‡ D. J. Morris,1 A. Possenti,6 N. P. F. McKay,1 S. L. Lumsden,9 L. E. Tacconi-Garman,10 R. D. Cannon,11 N. C. Hambly12 and P. R. Wood13 1University of Manchester, Jodrell Bank Observatory, Macclesfield, Cheshire SK11 9DL 2National Radio Astronomy Observatory, PO Box 2, Green Bank, WV 24944, USA 3Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 1710, Australia 4Physics Department, McGill University, 3600 University Street, Montreal, Quebec, H3A 2T8, Canada 5Columbia Astrophysics Laboratory, Columbia University, 550 W. -
Rare Superluminous Supernova Shining with Borrowed Energy Source Spotted with the 3.6M DOT Facility an Extremely Bright, Hydrog
Rare superluminous supernova shining with borrowed energy source spotted with the 3.6m DOT facility An extremely bright, hydrogen deficient, fast-evolving supernovae that shines with the energy borrowed from an exotic type of neutron star with an ultra-powerful magnetic field has been spotted by Indian researchers. Deep study of such ancient spatial objects can help probe the mysteries of the early universe. Such type of supernovae called SuperLuminous Supernova (SLSNe) is very rare. This is because they are generally originated from very massive stars (minimum mass limit is more than 25 times to that of the Sun), and the number distribution of such massive stars in our galaxy or in nearby galaxies is sparse. Among them, SLSNe-I has been counted to about 150 entities spectroscopically confirmed so far. These ancient objects are among the least understood SNe because their underlying sources are unclear, and their extremely high peak luminosity is unexplained using the conventional SN power-source model involving Ni56 - Co56 - Fe56 decay. SN 2020ank, which was first discovered by the Zwicky Transient Facility on 2020 January 19, was studied by scientists from Aryabhatta Research Institute of Observational Sciences (ARIES) Nainital, an autonomous research institute under the Department of Science and Technology (DST) Govt. of India from February 2020 and then through the lockdown phase of March and April. The apparent look of the SN was very similar to other objects in the field. However, once the brightness was estimated, it turned out as a very blue object reflecting its brighter character. The team observed it using special arrangements at India’s recently commissioned Devasthal Optical Telescope (DOT-3.6m) along with two other Indian telescopes: Sampurnanand Telescope-1.04m and Himalayan Chandra Telescope-2.0m. -
Binary Star Modeling: a Computational Approach
TCNJ JOURNAL OF STUDENT SCHOLARSHIP VOLUME XIV APRIL 2012 BINARY STAR MODELING: A COMPUTATIONAL APPROACH Author: Daniel Silano Faculty Sponsor: R. J. Pfeiffer, Department of Physics ABSTRACT This paper illustrates the equations and computational logic involved in writing BinaryFactory, a program I developed in Spring 2011 in collaboration with Dr. R. J. Pfeiffer, professor of physics at The College of New Jersey. This paper outlines computational methods required to design a computer model which can show an animation and generate an accurate light curve of an eclipsing binary star system. The final result is a light curve fit to any star system using BinaryFactory. An example is given for the eclipsing binary star system TU Muscae. Good agreement with observational data was obtained using parameters obtained from literature published by others. INTRODUCTION This project started as a proposal for a simple animation of two stars orbiting one another in C++. I found that although there was software that generated simple animations of binary star orbits and generated light curves, the commercial software was prohibitively expensive or not very user friendly. As I progressed from solving the orbits to generating the Roche surface to generating a light curve, I learned much about computational physics. There were many trials along the way; this paper aims to explain to the reader how a computational model of binary stars is made, as well as how to avoid pitfalls I encountered while writing BinaryFactory. Binary Factory was written in C++ using the free C++ libraries, OpenGL, GLUT, and GLUI. A basis for writing a model similar to BinaryFactory in any language will be presented, with a light curve fit for the eclipsing binary star system TU Muscae in the final secion. -
De-Coding Starlight (Grades 5-8)
Teacher's Guide to Chandra X-ray Observatory From Pixels to Images: De-Coding Starlight (Grades 5-8) Background and Purpose In an effort to learn more about black holes, pulsars, supernovas, and other high-energy astronomical events, NASA launched the Chandra X-ray Observatory in 1999. Chandra is the largest space telescope ever launched and detects "invisible" X-ray radiation, which is often the only way that scientists can pinpoint and understand high-energy events in our universe. Computer aided data collection and processing is an essential facet to astronomical research using space- and ground-based telescopes. Every 8 hours, Chandra downloads millions of pieces of information to Earth. To control, process, and analyze this flood of numbers, scientists rely on computers, not only to do calculations, but also to change numbers into pictures. The final results of these analyses are wonderful and exciting images that expand understanding of the universe for not only scientists, but also decision-makers and the general public. Although computers are used extensively, scientists and programmers go through painstaking calibration and validation processes to ensure that computers produce technically correct images. As Dr. Neil Comins so eloquently states1, “These images create an impression of the glamour of science in the public mind that is not entirely realistic. The process of transforming [i.e., by using computers] most telescope data into accurate and meaningful images is long, involved, unglamorous, and exacting. Make a mistake in one of dozens of parameters or steps in the analysis and you will get inaccurate results.” The process of making the computer-generated images from X-ray data collected by Chandra involves the use of "false color." X-rays cannot be seen by human eyes, and therefore, have no "color." Visual representation of X-ray data, as well as radio, infrared, ultraviolet, and gamma, involves the use of "false color" techniques, where colors in the image represent intensity, energy, temperature, or another property of the radiation. -
Ucalgary 2017 Welbankscamar
University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2017 Photometric and Spectroscopic Signatures of Superluminous Supernova Events The puzzling case of ASASSN-15lh Welbanks Camarena, Luis Carlos Welbanks Camarena, L. C. (2017). Photometric and Spectroscopic Signatures of Superluminous Supernova Events The puzzling case of ASASSN-15lh (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/27339 http://hdl.handle.net/11023/3972 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Photometric and Spectroscopic Signatures of Superluminous Supernova Events The puzzling case of ASASSN-15lh by Luis Carlos Welbanks Camarena A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN PHYSICS AND ASTRONOMY CALGARY, ALBERTA JULY, 2017 c Luis Carlos Welbanks Camarena 2017 Abstract Superluminous supernovae are explosions in the sky that far exceed the luminosity of standard supernova events. Their discovery shattered our understanding of stellar evolution and death. Par- ticularly, the discovery of ASASSN-15lh a monstrous event that pushed some of the astrophysical models to the limit and discarded others. In this thesis, I recount the photometric and spectroscopic signatures of superluminous super- novae, while discussing the limitations and advantages of the models brought forward to explain them. -
Central Engines and Environment of Superluminous Supernovae
Central Engines and Environment of Superluminous Supernovae Blinnikov S.I.1;2;3 1 NIC Kurchatov Inst. ITEP, Moscow 2 SAI, MSU, Moscow 3 Kavli IPMU, Kashiwa with E.Sorokina, K.Nomoto, P. Baklanov, A.Tolstov, E.Kozyreva, M.Potashov, et al. Schloss Ringberg, 26 July 2017 First Superluminous Supernova (SLSN) is discovered in 2006 -21 1994I 1997ef 1998bw -21 -20 56 2002ap Co to 2003jd 56 2007bg -19 Fe 2007bi -20 -18 -19 -17 -16 -18 Absolute magnitude -15 -17 -14 -13 -16 0 50 100 150 200 250 300 350 -20 0 20 40 60 Epoch (days) Superluminous SN of type II Superluminous SN of type I SN2006gy used to be the most luminous SN in 2006, but not now. Now many SNe are discovered even more luminous. The number of Superluminous Supernovae (SLSNe) discovered is growing. The models explaining those events with the minimum energy budget involve multiple ejections of mass in presupernova stars. Mass loss and build-up of envelopes around massive stars are generic features of stellar evolution. Normally, those envelopes are rather diluted, and they do not change significantly the light produced in the majority of supernovae. 2 SLSNe are not equal to Hypernovae Hypernovae are not extremely luminous, but they have high kinetic energy of explosion. Afterglow of GRB130702A with bumps interpreted as a hypernova. Alina Volnova, et al. 2017. Multicolour modelling of SN 2013dx associated with GRB130702A. MNRAS 467, 3500. 3 Our models of LC with STELLA E ≈ 35 foe. First year light ∼ 0:03 foe while for SLSNe it is an order of magnitude larger. -
Research on Eclipsing Binary Star in Constellation of Taurus “WY Tau” Avery Mcchristian Advisor: Dr Shaukat Goderya
Astronomy at Tarleton State University: A study of Eclipsing Binary Star (WY TAU) in the constellation of Taurus the Bull Avery McChristian Advisor: Dr Shaukat Goderya Types of Eclipsing Binary What is a Binary Star Stars Observation and Analysis A binary star is a stellar system consisting of two stars which The data on “WY TAU” was gathered in November and orbit around a common point, called the center of mass. The December of 2006 using Tarleton State’s observatory. two stars are gravitationally bound to each other. It has been Contact 1,008 images were collected over nine nights. The estimated that more than half of all stars in our galaxy are images were taken under two different filters; 507 were binary stars. Binary stars play a vital role in our taken using a Visual band pass filter and 501 were understanding of the evolution and physics of stars. When taken using a Blue band pass filter. Using “Astronomical studied they can provide important data on the mass of each Image Processing for Windows” software we were able individual star. It is possible to obtain this information only if Semi Detached to extract the Julian date and magnitude from the raw both spectroscopic and photometric study of the system is images. We then used excel to convert time, or Julian performed. Spectroscopic study enables the determination of date, into phase and magnitude into intensity. Using the absolute parameters of the binary system. phase and intensity figures we were able to construct the observed light curve. Upon inspection of the light curve we realized the period and epoch needed Detached corrections. -