Quality-Of-Service in Packet Networks: Basic Mechanisms and Directions R

Total Page:16

File Type:pdf, Size:1020Kb

Quality-Of-Service in Packet Networks: Basic Mechanisms and Directions R Computer Networks 31Ž. 1999 169±189 Quality-of-service in packet networks: basic mechanisms and directions R. Guerin ), V. Peris IBM, T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA Abstract In this paper, we review the basic mechanisms used in packet networks to support Quality-of-ServiceŽ. QoS guarantees. We outline the various approaches that have been proposed, and discuss some of the trade-offs they involve. Specifically, the paper starts by introducing the different scheduling and buffer management mechanisms that can be used to provide service differentiation in packet networks. The aim is not to provide an exhaustive review of existing mechanisms, but instead to give the reader a perspective on the range of options available and the associated trade-off between performance, functionality, and complexity. This is then followed by a discussion on the use of such mechanisms to provide specific end-to-end performance guarantees. The emphasis of this second part is on the need for adapting mechanisms to the different environments where they are to be deployed. In particular, fine grain buffer management and scheduling mechanisms may be neither necessary nor cost effective in high speed backbones, where ``aggregate'' solutions are more appropriate. The paper discusses issues and possible approaches to allow coexistence of different mechanisms in delivering end-to-end guarantees. q 1999 Elsevier Science B.V. All rights reserved. Keywords: QoS mechanisms; Real-time traffic; Scheduling; Buffer management; Aggregation 1. Introduction to a single, best-effort level of service which is the rule in today's Internet. The Internet is a continuously and rapidly evolv- Providing different levels of service in the net- ing entity, that is being used by an increasingly large work, however, introduces a number of new require- number of applications with diverse requirements. IP ments, that can be classified along two major axes: telephony is one of many new applications driving control path and data path. New data path mecha- the need for substantial changes in the current Inter- nisms are the means through which different services net infrastructure. Specifically, the emergence of ap- will be enforced. They are responsible for classifying plications with very different throughput, loss, or and mapping user packets to their intended service delay requirements is calling for a network capable class, and controlling the amount of network re- of supporting different levels of services, as opposed sources that each service class can consume. New control path mechanisms are needed to allow the users and the network to agree on service definitions, ) Corresponding author. Current address: Department of Elec- trical Engineering, Rm. 367 GRW, 200 South 33rd Street, identify which users are entitled to a given service, Philadelphia, PA 19104-6390, USA, E-mail: and let the network appropriately allocate resources [email protected]. to each service. 1389-1286r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved. PII: S0169-7552Ž. 98 00261-X 170 R. Guerin, V. PerisrComputer Networks 31() 1999 169±189 Data path mechanisms are the basic building gated service guarantees to the set of flows mapped blocks on which network QoS is built. They imple- into the same class. Here, the trade-off is again ment the actions that the network needs to be able to between fairness and efficiency, and complexity. take on user packets, in order to enforce different In Sections 2 and 3, we illustrate through a se- levels of service. As a result, the paper's first goal is lected set of scheduling and buffer management to provide a broad overview of the generic data path schemes, the many alternatives available to network approaches that have been developed to control ac- designers to control how user packets access network cess to resources in packet networks. resources. As mentioned above, the emphasis is just Resources that networks need to manage in order as much on reviewing the basic methods that have to support service differentiation primarily include been developed as on highlighting trade-offs. buffers and bandwidth. The corresponding mecha- Trade-offs are not the prerogative of data path nisms consist of buffer management schemes and mechanisms, and very similar issues exist on the scheduling algorithms, respectively. Buffer manage- control path. This applies to both the type of services ment schemes decide which packets can be stored as available and how they can be requested. For exam- they wait for transmission, while scheduling mecha- ple, services can vary greatly in the type of guaran- nisms control the actual transmissions of packets. tees they provide. Service guarantees can be quanti- The two are obviously related, e.g., scheduling fre- tative and range from simple throughput guarantees quent packet transmissions for a given flow, i.e., to hard bounds on end-to-end delay and lossless allocating it more bandwidth, can help reduce its transmissions. Alternatively, some proposed service need for buffers, and conversely limiting the amount guarantees are qualitative in nature, and only stipu- of buffer space a flow can use impacts the amount of late ``better'' treatment for some packets, e.g., they'll bandwidth it is able to consume. go through a higher priority queue and, therefore, This paper does not attempt an exhaustive review experience lower delay, or will be given a lower of all possible scheduling and buffer management discard threshold in case of congestion. Similarly, schemes. Instead, its aim is to identify the basic requests for service can be dynamic and extend all approaches that have been proposed and classify the way to applications, e.g., using the RSVP proto- them according to the design trade-off they repre- colwx 6 , or may be handled only through static config- sent. In particular, it is important to understand how uration information that defines bandwidth provi- different schemes fare in terms of fairnessŽ access to sioning between specific subnets. excess capacity.Ž , isolation protection from excess In general, control path trade-offs are along two traffic from other users.Ž , efficiency number of flows dimensions: the processing required to support the that can be accommodated for a given level of service, and the amount of information that needs to service.Ž , and complexity both in terms of implemen- be maintained. For example, the complexity of a call tation and control overhead. admission decision to determine if a new request can For example, certain buffer management schemes be accommodated, depends on both the service defi- maintain per flow buffer counts and use that infor- nition itself and how it maps onto the underlying mation to determine if a new packet should be scheduling and buffer management mechanisms. accommodated. Alternatively, other schemes base Similarly, a service such as the Guaranteed Service such decisions on more global information such as wx54 involves a number of parameters used to com- buffer content thresholds and service type indicators pute the end-to-end delay bound and buffer size that in packet headers. The finer granularity of per flow the service mandates. Examples illustrating some of information has benefits in terms of fairness and these issues and the associated trade-off are briefly efficiency, but comes at the cost of greater complex- reviewed in Section 4, that also describes and con- ity. Scheduling algorithms face similar trade-offs. trasts the two services currently being standardized For example, schedulers based on the weighted fair wx54,60 to provide QoS in IP networks. queueing algorithmwx 14,47 can be used to give rate In general, which trade-off is desirable or even and delay guarantees to individual flows, while class feasible is a function of the scalability requirements based mechanisms, e.g., CBQwx 19 , provide aggre- of each environment, i.e., the total amount of infor- R. Guerin, V. PerisrComputer Networks 31() 1999 169±189 171 mation and processing that can be accommodated. gram size Ž.M . The token bucket has a bucket depth, This is a decision that involves both the data path b, and a bucket rate, r. The token bucket, the peak and the control path. For example, per flow schedul- rate, and the maximum datagram size, together de- ing, buffer management, and state maintenance and fine the conformance test that identifies the user processing may be appropriate in a local campus, but packets eligible for service guarantees. The confor- can create scalability problems in the core of a mance test defines the maximum amount of traffic backbone where the number of individual flows will that the user can inject in the network, and for which be orders of magnitude larger. In such an environ- it can expect to receive the service guarantees it has ment, scalability is of prime concern and while per contracted. This maximum amount of traffic is ex- flow service mechanisms remain desirable, ap- pressed in terms of a traffic envelope AtŽ., that proaches that rely on service aggregation may be specifies an upper bound on the amount of traffic needed. We review such issues in Section 5, where generated in any time interval of duration t: we highlight some of the approaches that have been F q q proposed so far and point to some of the challenges AtŽ.min ŽM pt,b rt ..1 Ž. being faced. In particular, we discuss the need for Eq.Ž. 1 simply states that the user can send up to interoperability between fine grain and coarse grain b bytes of data at its full peak rate of p, but must solutions, and outline possible solutions. then lower its rate down to r. The presence of the factor M in the first term is because of the packet nature of transmissions, where up to one maximum 2.
Recommended publications
  • D4.2 – Report on Technical and Quality of Service Viability
    Ref. Ares(2019)1779406 - 18/03/2019 (H2020 730840) D4.2 – Report on Technical and Quality of Service Viability Version 1.2 Published by the MISTRAL Consortium Dissemination Level: Public This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730840 H2020-S2RJU-2015-01/H2020-S2RJU-OC-2015-01-2 Topic S2R-OC-IP2-03-2015: Technical specifications for a new Adaptable Communication system for all Railways Final Version Document version: 1.2 Submission date: 2019-03-12 MISTRAL D4.2 – Report on Technical and Quality of Service Viability Document control page Document file: D4.2 Report on Technical and Quality of Service Viability Document version: 1.2 Document owner: Alexander Wolf (TUD) Work package: WP4 – Technical Viability Analysis Task: T4.3, T4.4 Deliverable type: R Document status: approved by the document owner for internal review approved for submission to the EC Document history: Version Author(s) Date Summary of changes made 0.1 Alexander Wolf (TUD) 2017-12-27 TOCs and content description 0.4 Alexander Wolf (TUD) 2018-01-31 First draft version 0.5 Carles Artigas (ARD) 2018-02-02 Contribution on LTE Security, Chapter 5 0.8 Alexander Wolf (TUD) 2018-03-31 Second draft version 0.9 Alexander Wolf (TUD) 2018-04-27 Release candidate 1.0 Alexander Wolf (TUD) 2018-04-30 Final version 1.0.1 Alexander Wolf (TUD) 2018-05-02 Formatting corrections 1.0.2 Alexander Wolf (TUD) 2018-05-08 Minor additions on chapter 6 1.1 Alexander Wolf (TUD) 2018-10-29 Minor additions after 3GPP comments 1.2 Alexander Wolf (TUD) 2019-03-12 Revision after Shift2Rail JU comments Internal review history: Reviewed by Date Summary of comments Edoardo Bonetto (ISMB) 2018-04-19 Review, comments and remarks Laura Masullo (SIRTI) 2018-04-19 Review, comments and remarks Laura Masullo (SIRTI) 2018-04-29 Review Document version : 1.2 Page 2 of 88 Submission date: 2019-03-12 MISTRAL D4.2 – Report on Technical and Quality of Service Viability Legal Notice The information in this document is subject to change without notice.
    [Show full text]
  • (Qos) and Quality of Experience (Qoe) Issues in Video Service Provider Networks ––
    Troubleshooting Quality of Service (QoS) and Quality of Experience (QoE) issues in Video Service Provider Networks –– APPLICATION NOTE Application Note 2 www.tek.com/mpeg-video-test-solution-series/mpeg-analyzer Troubleshooting Quality of Service (QoS) and Quality of Experience (QoE) issues in Broadcast and Cable Networks Video Service Providers deliver TV programs using a variety is critical to have access or test points throughout the facility. of different network architectures. Most of these networks The minimum set of test points in any network should be at include satellite for distribution (ingest), ASI or IP throughout the point of ingest where the signal comes into the facility, the the facility, and often RF to the home or customer premise ASI or IP switch, and finally egress where the signal leaves as (egress). The quality of today’s digital video and audio is IP or RF. With a minimum of these three access points, it is usually quite good, but when audio or video issues appear at now possible to isolate the issue to have originated at either: random, it is usually quite difficult to pinpoint the root cause ingest, facility, or egress. of the problem. The issue might be as simple as an encoder To begin testing a signal that may contain the suspected over-compressing a few pictures during a scene with high issue, two related methods are often used, Quality of Service motion. Or, the problem might be from a random weather (QoS), and Quality of Experience (QoE). Both methods are event (e.g., heavy wind, rain, snow, etc.).
    [Show full text]
  • Diffserv -- the Scalable End-To-End Qos Model
    WHITE PAPER DIFFSERV—THE SCALABLE END-TO-END QUALITY OF SERVICE MODEL Last Updated: August 2005 The Internet is changing every aspect of our lives—business, entertainment, education, and more. Businesses use the Internet and Web-related technologies to establish Intranets and Extranets that help streamline business processes and develop new business models. Behind all this success is the underlying fabric of the Internet: the Internet Protocol (IP). IP was designed to provide best-effort service for delivery of data packets and to run across virtually any network transmission media and system platform. The increasing popularity of IP has shifted the paradigm from “IP over everything,” to “everything over IP.” In order to manage the multitude of applications such as streaming video, Voice over IP (VoIP), e-commerce, Enterprise Resource Planning (ERP), and others, a network requires Quality of Service (QoS) in addition to best-effort service. Different applications have varying needs for delay, delay variation (jitter), bandwidth, packet loss, and availability. These parameters form the basis of QoS. The IP network should be designed to provide the requisite QoS to applications. For example, VoIP requires very low jitter, a one-way delay in the order of 150 milliseconds and guaranteed bandwidth in the range of 8Kbps -> 64Kbps, dependent on the codec used. In another example, a file transfer application, based on ftp, does not suffer from jitter, while packet loss will be highly detrimental to the throughput. To facilitate true end-to-end QoS on an IP-network, the Internet Engineering Task Force (IETF) has defined two models: Integrated Services (IntServ) and Differentiated Services (DiffServ).
    [Show full text]
  • Autoqos for Voice Over IP (Voip)
    WHITE PAPER AUTOQoS FOR VOICE OVER IP Last Updated: September 2008 Customer networks exist to service application requirements and end users efficiently. The tremendous growth of the Internet and corporate intranets, the wide variety of new bandwidth-hungry applications, and convergence of data, voice, and video traffic over consolidated IP infrastructures has had a major impact on the ability of networks to provide predictable, measurable, and guaranteed services to these applications. Achieving the required Quality of Service (QoS) through the proper management of network delays, bandwidth requirements, and packet loss parameters, while maintaining simplicity, scalability, and manageability of the network is the fundamental solution to running an infrastructure that serves business applications end-to-end. Cisco IOS ® Software offers a portfolio of QoS features that enable customer networks to address voice, video, and data application requirements, and are extensively deployed by numerous Enterprises and Service Provider networks today. Cisco AutoQoS dramatically simplifies QoS deployment by automating Cisco IOS QoS features for voice traffic in a consistent manner and leveraging the advanced functionality and intelligence of Cisco IOS Software. Figure 1 illustrates how Cisco AutoQoS provides the user a simple, intelligent Command Line Interface (CLI) for enabling campus LAN and WAN QoS for Voice over IP (VoIP) on Cisco switches and routers. The network administrator does not need to possess extensive knowledge of the underlying network
    [Show full text]
  • Quality of Service Regulation Manual Quality of Service Regulation
    REGULATORY & MARKET ENVIRONMENT International Telecommunication Union Telecommunication Development Bureau Place des Nations CH-1211 Geneva 20 Quality of Service Switzerland REGULATION MANUAL www.itu.int Manual ISBN 978-92-61-25781-1 9 789261 257811 Printed in Switzerland Geneva, 2017 Telecommunication Development Sector QUALITY OF SERVICE REGULATION MANUAL QUALITY OF SERVICE REGULATION Quality of service regulation manual 2017 Acknowledgements The International Telecommunication Union (ITU) manual on quality of service regulation was prepared by ITU expert Dr Toni Janevski and supported by work carried out by Dr Milan Jankovic, building on ef- forts undertaken by them and Mr Scott Markus when developing the ITU Academy Regulatory Module for the Quality of Service Training Programme (QoSTP), as well as the work of ITU-T Study Group 12 on performance QoS and QoE. ITU would also like to thank the Chairman of ITU-T Study Group 12, Mr Kwame Baah-Acheamfour, Mr Joachim Pomy, SG12 Rapporteur, Mr Al Morton, SG12 Vice-Chairman, and Mr Martin Adolph, ITU-T SG12 Advisor. This work was carried out under the direction of the Telecommunication Development Bureau (BDT) Regulatory and Market Environment Division. ISBN 978-92-61-25781-1 (paper version) 978-92-61-25791-0 (electronic version) 978-92-61-25801-6 (EPUB version) 978-92-61-25811-5 (Mobi version) Please consider the environment before printing this report. © ITU 2017 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU. Foreword I am pleased to present the Manual on Quality of Service (QoS) Regulation pub- lished to serve as a reference and guiding tool for regulators and policy makers in dealing with QoS and Quality of Experience (QoE) matters in the ICT sector.
    [Show full text]
  • Quality of Services for ISP Networks
    Quality of Services for ISP Networks Qi Guan SIEMENSAG Austria Siemensstrasse 88-92 A-1210, Vienna, Austria Key words: Quality of Service, QoS, ISP Internet, Backbone, VoiP Abstract: Quality of Service (QoS) is a basic functionality that the Internet needs to be able to cope with when the applications increased in number and varied in use. Internet QoS issues concerning the Internet involves many different areas: end user QoS, ISP network QoS, backbone QoS. Backbone QoS is the problem concerning traffic engineering and bandwidth. ISP network QoS is one of the major problems in the Internet, In this paper, we would like to present an architecture model for QoS enabled ISP networks. This model is based on differentiated services and is connected to QoS or non-QoS enabled backbones for IP upstream and downstream QoS traffic. At the end of paper, an example of VoiP application is introduced. 1. INTRODUCTION Until now, two separate worlds have existed for telecommunication services and networks - one for voice and one for data. The voice world is that of switched PSTN I ISDN networks, which generally provide real-time services and features such as call diversions, conference and display services. Switched PSTN I ISDN networks guarantee quality and reliability in the form of constant availability of voice services for their customers. As a result thereof, this quality of service has made voice networks extremely profitable. The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35522-1_37 H.
    [Show full text]
  • SD-WAN QUALITY of SERVICE Supplemental Guide
    SD-WAN QUALITY OF SERVICE Supplemental Guide June 2019 Table of Contents Quality of Service ............................................................................................................................................................................... 1 Classification and Marking...............................................................................................................................................................................2 QoS for Aruba Gateways..................................................................................................................................................................................3 Deploying SD-WAN QoS .................................................................................................................................................................... 4 Appendix A: QoS Design ................................................................................................................................................................. 12 Comprehensive QoS Policy........................................................................................................................................................................... 12 Appendix B: QoS Deployment ........................................................................................................................................................ 17 Application Category Mapping ....................................................................................................................................................................
    [Show full text]
  • Qos Performance Study of Real-Time Transport Protocol Over Voip
    VOL. 11, NO. 9, MAY 2016 ISSN 1819-6608 ARPN Journal of Engineering and Applied Sciences ©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved. www.arpnjournals.com QOS PERFORMANCE STUDY OF REAL-TIME TRANSPORT PROTOCOL OVER VOIP Abdallah S. Abdelrahman1, Rashid A. Saeed1 and Raed A. Alsaqour2 1College of Engineering, Sudan University of Science and Technology (SUST), Khartoum, Sudan 2School of Computer Science, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia E-Mail: [email protected] ABSTRACT In recent years, Voice over IP (VoIP) has gained a lot of popularity and become an industry favorite over Public Switching Telephone Networks (PSTN) with regards to voice communication. This paper work consists of creating a VoIP network and testing for its known faults. Through this paper, we get a better understanding of the underlying layers of the network and see if and where improvements can be made. In implementation stage the Real-time Transport Protocol (RTP) packets for VoIP applications had been sent and compared with TCP/UDP packets to obtain results which are mainly related to Quality of Service (QoS) factors. The attained result approved that RTP consider to be better to reduce a packet loss than UDP and also approved that UDP/RTP are most reliable because they had a very small delay and jitter in contrast with TCP. Hence, we find that, UDP/RTP are more balance and prefer than TCP in real-time applications such as VoIP. Keywords: Transport Control Protocol (TCP), UDP, RTP, VoIP. INTRODUCTION RTP network with TCP and UDP.
    [Show full text]
  • Quality Parameters and Standards for Telecommunications and Broadcasting Networks (Study of Specifications and Recommendations)
    Quality parameters and standards for Telecommunications and Broadcasting networks (Study of Specifications and Recommendations) Executive summary This document is the study report for the ‘Quality parameters and standards for Telecommunication networks’ for the Bureau Telecommunications and Post St. Maarten. This study is to analyze and describe Quality of Service (QoS) and Quality of Experience (QoE) parameters that are relevant for the St. Maarten Telecommunication Industry. As part of the study existing standards and recommendation (such as ITU, GSMA etc.) have been inventoried. The parameters and standards will be consistent with International recommendations and specifications from institutions such as ITU, GSMA, 3GPP, ETSI, and also will be in line with international best practice of how to define such quality parameters. The set of parameters for inspection purposes have been described in a separate document (‘Inspection Guide’). Page 2 Cannegieter Street 15 – Unit 5.1 I Philipsburg I St. Maarten I Dutch Caribbean I +1(721) 542.4699 [email protected] I www.sxmregulator.sx Table of Contents 1 Introduction ................................................................................................................................................ 4 1.1 Background and current situation ....................................................................................................... 4 1.2 Purpose of the project ........................................................................................................................
    [Show full text]
  • How to Configure Qos to Conform to Standard Marking Schemes
    AlliedWare PlusTM OS How To | Configure QoS to Conform to Standard Marking Schemes Introduction This How To Note describes how to deploy a QoS solution across an entire network. It explains how to define per-hop behaviours (PHBs) that each switch in the network should perform, and how to ensure that the switches uniformly interpret the QoS information carried in packets. This means you can achieve a predictable performance for different traffic types across the whole network. Packets that enter the network’s edge may carry no QoS information. If so, the edge switch places such information into the packets before transmitting them to the next node. Thus, QoS information is preserved between nodes within the network and the nodes know what treatment to give each packet. Contents Introduction .............................................................................................................................................. 1 Contents ............................................................................................................................................ 1 Which products and software versions does this How To Note apply to? ....................... 2 Related How To Notes ................................................................................................................... 3 Marking QoS information into packets .............................................................................................. 4 Layer 2 CoS/802.1p ........................................................................................................................
    [Show full text]
  • Performance Measurement Methodologies and Quality of Service Evaluation in Voip and Desktop Videoconferencing Networks
    Performance Measurement Methodologies and Quality of Service Evaluation in VoIP and Desktop Videoconferencing Networks Henri TOBIET1 and Pascal LORENZ2 1 NMG TELECOMS – Network Management Group – Telecoms Solutions 20e, rue Salomon Grumbach, BP 2087, 68059 Mulhouse Cedex, France [email protected] 2 University of Colmar - IUT / GTR 34 rue du Grillenbreit - 68008 Colmar, France [email protected] Abstract. The present paper relates to performance and quality of service evaluation for VoIP (Voice over IP) and desktop videoconferencing services in IP networks. Simulation-based performance measurements consist in the generation of performance statistics obtained by measurements realized by simulation on the subscriber interface. They include detailed measurement of call quality, call set-up quality and availability. The tests are accomplished by emission of non-disturbing additional test traffic. The real-time QoS monitoring is based on non-intrusive analysis of real call parameters. The advantage of this method is the exhaustiveness of the analyzed call. The QoS measurements are mainly service availability and call set-up quality. 1 Introduction QoS defined in CCITT Recommendation E.800 may be considered as the generic definition reproduced below: "The collective effect of service performance which determine the degree of satisfaction of a user of the service". Quality of Service on the LAN represents a major challenge, not so much during the predictable processes of compressing the voice streams and splitting them into packets which are mathematically predictable, the real challenge is of sharing the connectionless transmission media with other users in a predictable and quantifiable way. As soon as voice/video traffic reaches the IP network, it must compete with electronic mail traffic, database applications and file transfers [13], [17], [18].
    [Show full text]
  • The Role of Telecommunications Service Quality in the Digital Economy
    The role of telecommunications service quality in the Digital Economy ITU-IMDA Workshop – Singapore, 19 August 2019 Elena Scaramuzzi, Cullen International Regulatory approaches QoS: Command and control • Parameters and measurements criteria • Targets set • Data collection, validation, reporting • Compliance control, enforcement and sanctioning QoE: Consumers empowerment • Tools to compare offers • Speed testing tools • Coverage maps • Other apps • Feedback from users Encouragement and transparency • Operators set own targets • Publicise results • Industry codes of conduct Evolution from telephony to the digital economy Regulators “Service quality” Providers Users Europe Evolution of EU Framework (relevant for QoS/QoE) EECC transposition by EECC 2018 20/12/20 TSM 2015 2009 Review 2002 Framework Amendments to Universal Service and e-Privacy Directives (Citizens’ Rights Directive - 2009) Key amendments Main provisions Net Neutrality • NRAs will be able set minimum quality of service (QoS) requirements • NRAs to report annually on ‘internet freedoms’ Personal data breaches • Obligation on ECS providers to notify subscribers and other impacted individuals • Also inform NRA Data protection breaches • ECS providers must inform authorities when security breaches lead to personal data loss or misuse Use of cookies and spyware • End users to give explicit consent (opt-in) Information for end-users • any lawful conditions limiting access to or use of services and applications • minimum QoS levels offered • any restriction on the use of terminal equipment Number portability • Within 1 working day Emergency – single 112 • Broadened to all providers offering calls to national numbers. This includes number-based VoIP providers • Caller location information should be made available to the authority handling emergency calls as soon as the call reaches that authority.
    [Show full text]