Ecology and Detection of Harmful Freshwater Fish Ciliate Parasites Chilodonella Spp

Total Page:16

File Type:pdf, Size:1020Kb

Ecology and Detection of Harmful Freshwater Fish Ciliate Parasites Chilodonella Spp ResearchOnline@JCU This file is part of the following reference: Bastos Gomes, Giana (2017) Ecology and detection of harmful freshwater fish ciliate parasites Chilodonella spp. in aquaculture. PhD thesis, James Cook University. Access to this file is available from: http://dx.doi.org/10.4225/28/5a399ef03d55d The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] Ecology and detection of harmful freshwater fish ciliate parasites Chilodonella spp. in aquaculture Thesis submitted by Giana Bastos Gomes August, 2017 For the degree of Doctor of Philosophy in the School of Marine and Aquaculture Sciences James Cook University 1 Statement of animal ethics: Experiments within this research were performed in conformity to JCU Animal Ethics Approval Number A2065. 2 Statement on the contributions of others: At the time of the submission of this thesis Chapters 2, 3 and 4 were published in peer-reviewed international journals. Chapter 5 is in preparation for publication in peer-reviewed international journal. I am the lead author of all three articles and the unpublished Chapter derived from this PhD thesis. I acknowledge the specific contribution of co-authorship to these articles: Nature and extent of the intellectual input of each author and their Chapter Details of publication(s) on which chapter is based affiliations Bastos Gomes, G.1, Miller, T.L. 1,2, Jerry, D.R.1, Hutson K.S.1, Bastos Gomes, G.1 Project conception, writing and editing. 2016. Impacts and current status of parasitic Chilodonella spp. Miller, T.L.1,2, Jerry, D.R.1, Hutson K.S.1 Research supervision, editing and 2 (Phyllopharyngea: Chilodonellidae) in freshwater fish aquaculture. funding. Journal of Fish Diseases, 40(5): 703-715. DOI: 10.1111/jfd.12523 Bastos Gomes, G.1, Miller, T.L.1,2, Vaughan, D.B. 1, Jerry, D.R.1, Bastos Gomes, G.1 Execution of project, writing and editing. McCowan, C.3, Bradley, T.L.4, Hutson K.S.1, 2017. Evidence of Miller, T.L.1,2 Research supervision, data analysis, editing and funding. multiple species of Chilodonella (Protozoa, Ciliophora) infecting Vaughan, D.B.1 Execution of project, editing. 3 Australian farmed freshwater fishes. Jerry, D.R.1 Research supervision and editing. Veterinary Parasitology, 237, 8-16. DOI: McCowan, C. 3, Bradley, T.L. 4 Assistance providing samples and editing. http://doi.org/10.1016/j.vetpar.2017.03.004 Hutson K.S.1 Project conception, research supervision, editing and funding. Bastos Gomes, G.1, Hutson K.S.1, Domingos, J.A.1,5, Chung, C.6, Bastos Gomes, G.1 Project conception, execution of project, writing and editing. Hayward, S.6, Miller, T.L.1,2, Jerry, D.R.1, 2017. Use of Hutson K.S.1 Research supervision, editing and funding. environmental DNA (eDNA) and water quality data as a Domingos, J.A.1 Data analysis, editing. 4 management tool to predict protozoan parasites outbreaks in fish Chung, C.6, Hayward, S.6 Assistance providing samples and editing. farms. Aquaculture. Miller, T.L.1,2 Research supervision, editing and funding. DOI: https://doi.org/10.1016/j.aquaculture.2017.06.021 Jerry D.R.1 Research supervision, editing. 3 Bastos Gomes, G.1, Hutson K.S.1, Domingos, J.A.1,5, Bastos Gomes, G.1 Project conception, execution of project, writing and editing. 1 Huerlimann, R.1, Miller, T.L.1,2, Jerry, D.R.1. Interactions between Hutson K.S. Research supervision, editing and funding. 1,5 parasitic protozoan Chilodonella spp. and bacterial communities Domingos, J.A. Data analysis, editing. 5 within a tropical aquaculture system. (In preparation) Aquaculture Huerlimann, R.1 Data analysis, editing. Environment Interactions. Miller, T.L.1,2 Research supervision, editing and funding. Jerry D.R.1 Research supervision, editing. Author’s affiliations: 1 Marine and Aquaculture Sciences, College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, 4811, QLD, Australia 2 Fish Health Laboratory, Department of Fisheries Western Australia, South Perth 6151, WA, Australia 3 Department of Economic Development, Jobs, Transport and Resources, 5 Ring Road Bundoora, 3083, VIC Australia 4 Department of Economic Development, Jobs, Transport and Resources, Chief Veterinary Officer's Unit, 475 Mickleham Road, Attwood, 3049, VIC Australia 5 Department of Agriculture and Fisheries, Agri-Science Queensland, Bribie Island Research Centre, Woorim 4507, QLD, Australia. 6 Sealord King Reef, 188 Cowley Creek Road Cowley, 4871, QLD, Australia. 4 Acknowledgements I am sincerely thankful to my supervisor Dr Kate Hutson for the immense support and encouragement during my candidature. Each and every piece of advice given to me by Kate during my struggles were an incentive to continue my journey. Kate provided me scientific guidance and writing skills that were crucial for the completion of this thesis. I also learned with Kate the importance of professional ethics in the workplace and the skills necessary to be a great team leader. Kate has been an important role model for my professional career. But most importantly, thank you Kate for being a good friend. I am also grateful to my co-supervisor Prof. Dean Jerry for his teachings on career development and the importance of having an open mind to innovation. Dean gave me many work opportunities before my PhD which were essential to develop my self-confidence to embark into this journey. Thank you Dean for every single opportunity you offered me and for the friendship we developed during the last eight years. I am also very grateful to my co- supervisor Dr Terry Miller for his scientific guidance, field trip support and friendship during my PhD. I thank all my colleagues in the Marine Parasitology Laboratory, especially David B. Vaughan, Alejandro Trujillo Gonzalez and Alex Brazenor for their help and support in different aspects of my PhD. My gratitude goes also to my colleagues in the Molecular Ecology and Evolution Laboratory, especially Tansyn Noble and Julie Goldsbury for their support in different phases of my PhD. I’m very grateful to Scott Hayward and Catherine Chung from Sealord King Reef barramundi farm for the research partnership which enabled the experiments of this thesis to be performed using real data from a large-scale commercial fish farm. I am very thankful to James Cook University for offering me all the resources necessary to develop my 5 research. I am eternally grateful to James Cook University for supporting my PhD stipend scholarship and my candidature. I am immensely grateful to my dog Maya and my cat Baby, who stood by my side, without judgement, during each difficulty I encountered. Finally, I would like to express my deepest gratitude to my husband, Jose, who always believed in me more than myself. Jose, thank you for your immense patience and respect. Ze, thank you, with all my love, for giving me unconditional emotional, financial and technical support. 6 Abstract ___________________________________________________________________________ Freshwater fish farming contributes to more than two thirds of global aquaculture production. This rapidly growing agribusiness can be seriously compromised by diseases which can constrain industry development and profitability. In fact, disease problems account for forty percent of global aquaculture production loss. Parasitic ciliates are one of the largest causes of production loss in aquaculture and evidence suggests that they serve as the first portal of entry for many secondary infections in farmed fishes. Ciliate protozoan species of the genus Chilodonella are problematic and ubiquitous in global freshwater aquaculture. While Chilodonella spp. are important components of the 'free-living' fauna of freshwater ecosystems, some species have been implicated in outbreaks resulting in fish mortalities, particularly in high density aquaculture. A comprehensive review on the impacts and current status of parasitic Chilodonella spp. in freshwater fish aquaculture is presented in Chapter 2. Limited information exists on the ecology, infection dynamics and potential triggers leading to outbreaks of Chilodonella spp. in fish production. To assist with preventative management practices and sustainability of freshwater fish aquaculture, this research addressed key knowledge gaps related to the biology, ecology, geographic distribution, and identity of harmful Chilodonella spp. in Australia and examined new non-invasive diagnostic methods. Collectively, the research reported in this thesis provides fundamental baseline understanding of Chilodonella spp. ecology and their detection in fish aquaculture. While Chilodonella piscicola ((Zacharias, 1894; syn. C. cyprini (see Moroff, 1902)) and Chilodonella hexasticha (Kiernik, 1909) have been reported to globally infect wild and farmed fishes, the diversity of Chilodonella spp. parasitising Australian freshwater farmed fishes was 7 unknown prior to this study. Chilodonella cells were isolated from infected barramundi, Lates calcarifer (Bloch, 1790) and Murray cod, Maccullochella peelii (Mitchell, 1838) from fish farms in tropical north Queensland (QLD), temperate Victoria (VIC) and New South Wales (NSW) for genetic and morphological analysis (Chapter 3). Parasites were stained and measured for morphological description and comparative phylogenetic analyses were performed using three markers: ITS1-5.8S-ITS2, small
Recommended publications
  • Aquatic Microbial Ecology 62:139–152 (2011)
    The following supplement accompanies the article Airborne microeukaryote colonists in experimental water containers: diversity, succession, life histories and established food webs Savvas Genitsaris1, Maria Moustaka-Gouni1,*, Konstantinos A. Kormas2 1Department of Botany, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece 2Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 384 46 Nea Ionia, Magnisia, Greece *Corresponding author. Email: [email protected] Aquatic Microbial Ecology 62:139–152 (2011) Supplement. Additional data Fig. S1. Clone library coverage based on Good’s C estimator of the eukaryotic 18S rDNA clone libraries from the water containers. The ratio observed phylotypes: predicted phylotypes (SChao1) was 0.7 in autumn, 0.87 in winter and 0.47 in spring. 2 Fig. S2. Phylogenetic tree of relationships of 18S rDNA (ca. 1600 bp) of the representative unique (grouped on ≥98% similarity) eukaryotic clones (in bold) found in the tap water containers, based on the neighbour-joining method as determined by distance Jukes–Cantor analysis. One thousand bootstrap analyses (distance) were conducted. GenBank numbers are shown in parentheses. Scale bar represents 2% estimated. 3 Table S1. Daily meteorological data in the city of Thessaloniki during the sampling periods of the study Air temperature (oC) Rainfall Sunshine RH Wind speed (mm) (min) (%) (m s-1) min max mean min max mean min max mean min max mean min max mean Autumn 2007 7.1 17.1 11.9 0 18.3 1.9 0 494.5 203.4 33.2 90.5 70.7 0.9 5.5 2.0 Winter 2007–8 –0.7 13.5 7.6 0 17.8 0.7 0 555.7 277.6 24.5 88.7 63.4 0.8 7.7 2.1 Spring 2008 8.5 16.9 13.0 0 34.7 1.9 0 663.7 363.7 36.8 91.0 66.8 1.2 3.6 1.8 Table S2.
    [Show full text]
  • Corynebacterium Sp.|NML98-0116
    1 Limnochorda_pilosa~GCF_001544015.1@NZ_AP014924=Bacteria-Firmicutes-Limnochordia-Limnochordales-Limnochordaceae-Limnochorda-Limnochorda_pilosa 0,9635 Ammonifex_degensii|KC4~GCF_000024605.1@NC_013385=Bacteria-Firmicutes-Clostridia-Thermoanaerobacterales-Thermoanaerobacteraceae-Ammonifex-Ammonifex_degensii 0,985 Symbiobacterium_thermophilum|IAM14863~GCF_000009905.1@NC_006177=Bacteria-Firmicutes-Clostridia-Clostridiales-Symbiobacteriaceae-Symbiobacterium-Symbiobacterium_thermophilum Varibaculum_timonense~GCF_900169515.1@NZ_LT827020=Bacteria-Actinobacteria-Actinobacteria-Actinomycetales-Actinomycetaceae-Varibaculum-Varibaculum_timonense 1 Rubrobacter_aplysinae~GCF_001029505.1@NZ_LEKH01000003=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_aplysinae 0,975 Rubrobacter_xylanophilus|DSM9941~GCF_000014185.1@NC_008148=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_xylanophilus 1 Rubrobacter_radiotolerans~GCF_000661895.1@NZ_CP007514=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_radiotolerans Actinobacteria_bacterium_rbg_16_64_13~GCA_001768675.1@MELN01000053=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_rbg_16_64_13 1 Actinobacteria_bacterium_13_2_20cm_68_14~GCA_001914705.1@MNDB01000040=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_13_2_20cm_68_14 1 0,9803 Thermoleophilum_album~GCF_900108055.1@NZ_FNWJ01000001=Bacteria-Actinobacteria-Thermoleophilia-Thermoleophilales-Thermoleophilaceae-Thermoleophilum-Thermoleophilum_album
    [Show full text]
  • Stress-Tolerance and Taxonomy of Culturable Bacterial Communities Isolated from a Central Mojave Desert Soil Sample
    geosciences Article Stress-Tolerance and Taxonomy of Culturable Bacterial Communities Isolated from a Central Mojave Desert Soil Sample Andrey A. Belov 1,*, Vladimir S. Cheptsov 1,2 , Elena A. Vorobyova 1,2, Natalia A. Manucharova 1 and Zakhar S. Ezhelev 1 1 Soil Science Faculty, Lomonosov Moscow State University, Moscow 119991, Russia; [email protected] (V.S.C.); [email protected] (E.A.V.); [email protected] (N.A.M.); [email protected] (Z.S.E.) 2 Space Research Institute, Russian Academy of Sciences, Moscow 119991, Russia * Correspondence: [email protected]; Tel.: +7-917-584-44-07 Received: 28 February 2019; Accepted: 8 April 2019; Published: 10 April 2019 Abstract: The arid Mojave Desert is one of the most significant terrestrial analogue objects for astrobiological research due to its genesis, mineralogy, and climate. However, the knowledge of culturable bacterial communities found in this extreme ecotope’s soil is yet insufficient. Therefore, our research has been aimed to fulfil this lack of knowledge and improve the understanding of functioning of edaphic bacterial communities of the Central Mojave Desert soil. We characterized aerobic heterotrophic soil bacterial communities of the central region of the Mojave Desert. A high total number of prokaryotic cells and a high proportion of culturable forms in the soil studied were observed. Prevalence of Actinobacteria, Proteobacteria, and Firmicutes was discovered. The dominance of pigmented strains in culturable communities and high proportion of thermotolerant and pH-tolerant bacteria were detected. Resistance to a number of salts, including the ones found in Martian regolith, as well as antibiotic resistance, were also estimated.
    [Show full text]
  • Protozoologica
    Acta Protozool. (2014) 53: 207–213 http://www.eko.uj.edu.pl/ap ACTA doi:10.4467/16890027AP.14.017.1598 PROTOZOOLOGICA Broad Taxon Sampling of Ciliates Using Mitochondrial Small Subunit Ribosomal DNA Micah DUNTHORN1, Meaghan HALL2, Wilhelm FOISSNER3, Thorsten STOECK1 and Laura A. KATZ2,4 1Department of Ecology, University of Kaiserslautern, 67663 Kaiserslautern, Germany; 2Department of Biological Sciences, Smith College, Northampton, MA 01063, USA; 3FB Organismische Biologie, Universität Salzburg, A-5020 Salzburg, Austria; 4Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA Abstract. Mitochondrial SSU-rDNA has been used recently to infer phylogenetic relationships among a few ciliates. Here, this locus is compared with nuclear SSU-rDNA for uncovering the deepest nodes in the ciliate tree of life using broad taxon sampling. Nuclear and mitochondrial SSU-rDNA reveal the same relationships for nodes well-supported in previously-published nuclear SSU-rDNA studies, al- though support for many nodes in the mitochondrial SSU-rDNA tree are low. Mitochondrial SSU-rDNA infers a monophyletic Colpodea with high node support only from Bayesian inference, and in the concatenated tree (nuclear plus mitochondrial SSU-rDNA) monophyly of the Colpodea is supported with moderate to high node support from maximum likelihood and Bayesian inference. In the monophyletic Phyllopharyngea, the Suctoria is inferred to be sister to the Cyrtophora in the mitochondrial, nuclear, and concatenated SSU-rDNA trees with moderate to high node support from maximum likelihood and Bayesian inference. Together these data point to the power of adding mitochondrial SSU-rDNA as a standard locus for ciliate molecular phylogenetic inferences.
    [Show full text]
  • Agrococcus Citreus Sp. Nov., Isolated from a Medieval Wall Painting of the Chapel of Castle Herberstein (Austria)
    International Journal of Systematic Bacteriology (1999), 49, 1165-1 170 Printed in Great Britain Agrococcus citreus sp. nov., isolated from a medieval wall painting of the chapel of Castle Herberstein (Austria) Monika Wieser,'t2 Peter S~humann,~Karin Martin,4 Petra AItenburger,lJ2 Jutta B~rghardt,~Werner Lubitz' and Hans-Jurgen Busse'f2 Author for correspondence: Hans-Jurgen Busse. Tel: +43 1 25077 21 19. Fax: +43 1 25077 2190. e-mail : [email protected] 1 lnstitut fur Mikrobiologie A bacterial strain, D-l/laT,isolated from a medieval wall painting of the chapel und Genetik, Universitat of Herberstein (Styria, Austria) was characterized by a polyphasic approach. Wien, A-1030 Wien, Austria Strain D-l/laTshared 981O!O 165 rRNA sequence similarity to Agrococcus jenensis. The chemotaxonomic characteristics including polar lipid pattern, 2 lnstitut fur Bakteriologie, Mykologie und Hygiene, whole cell sugars, quinone system, polyamine pattern, cell wall composition Veterinarmedizinische and fatty acid profile were in good agreement with those of Agrococcus Universitat, A-1 21 0 Wien, jenensis. The G+C content of the DNA was determined to be 74 mol%. The Austria value of 47 O/O DNA reassociation obtained after DNA-DNA hybridization DSMZ-Deutsche Sammlung between DNA of Agrococcus jenensis and strain D-l/laTas well as differences von Mikroorganismen und Zellkulturen GmbH, in the amino acid composition of the peptidoglycan and in physiological Aussenstelle Jena, characteristics demonstrate that the isolate represents a new species of the Germany genus Agrococcus. The name Agrococcus citreus sp. nov. is proposed for the Hans-Knoll-lnstitut fur new species harbouring isolate D-l/laT.The type strain is DSM 12453T.
    [Show full text]
  • Aestuariimicrobium Ganziense Sp. Nov., a New Gram-Positive Bacterium Isolated from Soil in the Ganzi Tibetan Autonomous Prefecture, China
    Aestuariimicrobium ganziense sp. nov., a new Gram-positive bacterium isolated from soil in the Ganzi Tibetan Autonomous Prefecture, China Yu Geng Yunnan University Jiang-Yuan Zhao Yunnan University Hui-Ren Yuan Yunnan University Le-Le Li Yunnan University Meng-Liang Wen yunnan university Ming-Gang Li yunnan university Shu-Kun Tang ( [email protected] ) Yunnan Institute of Microbiology, Yunnan University https://orcid.org/0000-0001-9141-6244 Research Article Keywords: Aestuariimicrobium ganziense sp. nov., Chemotaxonomy, 16S rRNA sequence analysis Posted Date: February 11th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-215613/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Archives of Microbiology on March 12th, 2021. See the published version at https://doi.org/10.1007/s00203-021-02261-2. Page 1/11 Abstract A novel Gram-stain positive, oval shaped and non-agellated bacterium, designated YIM S02566T, was isolated from alpine soil in Shadui Towns, Ganzi County, Ganzi Tibetan Autonomous Prefecture, Sichuan Province, PR China. Growth occurred at 23–35°C (optimum, 30°C) in the presence of 0.5-4 % (w/v) NaCl (optimum, 1%) and at pH 7.0–8.0 (optimum, pH 7.0). The phylogenetic analysis based on 16S rRNA gene sequence revealed that strain YIM S02566T was most closely related to the genus Aestuariimicrobium, with Aestuariimicrobium kwangyangense R27T and Aestuariimicrobium soli D6T as its closest relative (sequence similarities were 96.3% and 95.4%, respectively). YIM S02566T contained LL-diaminopimelic acid in the cell wall.
    [Show full text]
  • Detachment and Motility of Surface-Associated Ciliates at Increased Flow Velocities
    Vol. 55: 209–218, 2009 AQUATIC MICROBIAL ECOLOGY Printed June 2009 doi: 10.3354/ame01302 Aquat Microb Ecol Published online May 6, 2009 Detachment and motility of surface-associated ciliates at increased flow velocities Ute Risse-Buhl1, 2,*, Anja Scherwass 2, Annette Schlüssel2, Hartmut Arndt2, Sandra Kröwer1, Kirsten Küsel1 1Limnology Research Group, Institute of Ecology, Friedrich Schiller University Jena, Dornburger Strasse 159, 07743 Jena, Germany 2Department of General Ecology and Limnology, Zoological Institute, University of Cologne, 50931 Cologne, Germany ABSTRACT: Though seldom investigated, the microcurrent environment may form a significant part of the ecological niche of protists in stream biofilms. We investigated whether specific morphological features and feeding modes of ciliates are advantageous for a delayed detachment at increased flow velocities. Three sessile filter feeders (Vorticella, Carchesium and Campanella spp.), 6 vagile filter feeders (Aspidisca, Euplotes, Holosticha, Stylonychia, Cinetochilum and Cyclidium spp.) and 2 vagile gulper feeders (Chilodonella and Litonotus spp.) were studied. A rotating disk on top of the culture medium generated different flow velocities in Petri dishes. All tested sessile species stayed attached at the fastest investigated flow velocity (4100 µm s–1). Vorticella convallaria (Peritrichia) remained about 45% of the observed time in a contracted state at >2600 µm s–1. Hence, filtration activity of ses- sile ciliates seemed to be inhibited at high flow velocities. Among the vagile filter feeders, flattened species which extended more than 60 µm into the water column and round species showed the low- est resistance to high flow velocities. Only the vagile flattened gulper feeder Chilodonella uncinata (Phyllopharyngia) withstood flow velocities ≥2600 µm s–1.
    [Show full text]
  • Chilodonella Uncinata – As Potential Protozoan Biopesticide for Mosquito Vectors of Human Diseases
    ACTA SCIENTIFIC MICROBIOLOGY (ISSN: 2581-3226) Volume 2 Issue 12 December 2019 Review Article Chilodonella uncinata – As Potential Protozoan Biopesticide for Mosquito Vectors of Human Diseases Bina Pani Das1,2* 1Former Joint Director, National Centre for Disease Control (NCDC), India, 2Former Principal Investigator, DST Project, Jamia Millia Islamia (JMI), University, India *Corresponding Author: Bina Pani Das, Former Joint Director, National Centre for Disease Control (NCDC), India, Former Principal Investigator, DST Project, Jamia Millia Islamia (JMI), University, India. Received: October 28, 2019; Published: November 11, 2019 DOI: 10.31080/ASMI.2019.02.0435 Abstract Use of microbial control agents provide alternative method to synthetic pesticide for adequate insect management. Naturally occurring microorganisms such as viruses, bacteria, fungi and protozoa are used as biopesticides. Earlier studies revealed among entomopathogenic protozoa two ciliates, viz.: Lambornella clarki and Chilodonella uncinata are known with many biological control properties. This article addresses the current status of development of Ch uncinata sand formulation which is available in dormant stage in easy formulation and packed in sachet as “infusion bag” (easy to store, transport and treat with shelf life >18 months) to be used as potential biopesticide for mosquito vector of human diseases. During the process there were many questions like: (1) Ch uncinata culture should not be kept in refrigerator. But formulation prepared using the same culture tolerant to extreme cool weather. Reason: Ch uncinata has 4 stages in life cycle of which Trophont, the free living infective stage (in culture) is sensitive to cold; Cyst, the dormant stage (in the formulation) is tolerant to extreme cold Ch uncinata (trophont stage) has a chlorophyll particle in its body.
    [Show full text]
  • Genome Analyses of the New Model Protist Euplotes Vannus Focusing on Genome Rearrangement and Resistance to Environmental Stressors
    Received: 16 January 2019 | Revised: 5 April 2019 | Accepted: 8 April 2019 DOI: 10.1111/1755-0998.13023 RESOURCE ARTICLE Genome analyses of the new model protist Euplotes vannus focusing on genome rearrangement and resistance to environmental stressors Xiao Chen1,2 | Yaohan Jiang1 | Feng Gao1,3 | Weibo Zheng1 | Timothy J. Krock4 | Naomi A. Stover5 | Chao Lu2 | Laura A. Katz6 | Weibo Song1,7 1Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China 2Department of Genetics and Development, Columbia University Medical Center, New York, New York 3Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China 4Department of Computer Science and Information Systems, Bradley University, Peoria, Illinois 5Department of Biology, Bradley University, Peoria, Illinois 6Department of Biological Sciences, Smith College, Northampton, Massachusetts 7Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China Correspondence Feng Gao, Institute of Evolution & Marine Abstract Biodiversity, Ocean University of China, As a model organism for studies of cell and environmental biology, the free-living Qingdao, China. Email: [email protected] and cosmopolitan ciliate Euplotes vannus shows intriguing features like dual genome architecture (i.e., separate germline and somatic nuclei in each cell/organism), “gene- Funding information Marine S&T Fund of Shandong Province sized” chromosomes, stop codon reassignment, programmed ribosomal
    [Show full text]
  • Downloaded from Using the Burrows Wheeler Aligner (BWA) Algorithm V0.7.13 (Andrews, 2010; Li and Durbin, 2009)
    The functional diversity and evolution of nuclear processes by Nicholas A. T. Irwin BSc. Hons, University of British Columbia, 2017 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate and Postdoctoral Studies (Botany) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) September 2020 © Nicholas A. T. Irwin, 2020 The following individuals certify that they have read, and recommend to the Faculty of Graduate and Postdoctoral Studies for acceptance, the dissertation entitled: The functional diversity and evolution of nuclear processes submitted by Nicholas A. T. Irwin in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Botany Examining Committee: Dr. Patrick J. Keeling, Professor, Department of Botany, UBC Supervisor Dr. LeAnn J. Howe, Professor, Department of Biochemistry and Molecular Biology, UBC Supervisory Committee Member Dr. Brian S. Leander, Professor, Department of Zoology and Botany, UBC Supervisory Committee Member Dr. Ivan Sadowski, Professor, Department of Biochemistry and Molecular Biology, UBC University Examiner Dr. James D. Berger, Professor Emeritus, Department of Zoology, UBC University Examiner Dr. Joel B. Dacks, Professor, Department of Medicine, University of Alberta External Examiner ii Abstract The nucleus is a defining characteristic of eukaryotic cells which not only houses the genome but a myriad of processes that function synergistically to regulate cellular activity. Nuclear proteins are key in facilitating core eukaryotic processes such as genome compaction, nucleocytoplasmic exchange, and DNA replication, but the interconnectedness of these processes makes them challenging to dissect mechanistically. Moreover, the antiquity of the nucleus complicates evolutionary analyses, limiting our view of nuclear evolution.
    [Show full text]
  • Mesodinium Pulex MP 0004563695.P1
    Pseudocohnilembus persalinus KRX05445.1 Ichthyophthirius multifillis XP_004037375.1 Tetrahymena thermophila XP_001018842.1 Cryptocaryon irritans k141_54336.p1 Pseudocohnilembus persalinus KRX05059.1 Tetrahymena thermophila XP_001017094.3 Ichthyophthirius multifillis XP_004029899.1 Nassula variabilis k141_18808.p1 Cparvum_a_EAK89612.1 Paramecium tetraurelia XP_001437839.1 Paramecium tetraurelia XP_001436783.1 Paramecium tetraurelia XP_001426816.1 Paramecium tetraurelia XP_001428490.1 Colpoda aspera k119_31549.p1 Aristerostoma sp. MMETSP0125-20121206_1718_1 Aristerostoma sp. MMETSP0125-20121206_9427_1 Pseudomicrothorax dubius k141_16595.p1 Furgasonia blochmanni k141_76537.p1 Nassula variabilis k141_25953.p1 Protocruzia adherens MMETSP0216-20121206_9085_1 Heterocapsa artica_d_MMETSP1441-20131203_3016_1 Cryptocaryon irritans k141_19128.p1 Balantidium ctenopharyngodoni k141_68816.p2 Afumigatus_XP_754687.1 Panserina_f_CAP64624.1 Afumigatus_XP_755116.1 Panserina_f_CAP61434.1 Euplotes focardii MMETSP0206-20130828_15472_1 Pseuodokeronopsis sp. MMETSP1396-20130829_12823_1 Heterosigma akashiwo-CCMP2393-20130911_268255_1 Hakashiwo2_s_Heterosigma-akashiwo-CCMP452-20130912_5774_1 Phytophthora infestans_s_EEY69906.1 Mantarctica_v_MMETSP1106-20121128_20623_1 Mantarctica_v_MMETSP1106-20121128_10198_1 Mantarctica_v_MMETSP1106-20121128_26613_1 Mantoniella_v_MMETSP1468-20131203_2761_1 Dunaliella tertiolecta_v_CCMP1320-20130909_4048_1 Tetraselmis_v_MMETSP0419_2-20121207_8020_1 Tastigmatica_v_MMETSP0804-20121206_11479_1 Tetraselmis chui_v_MMETSP0491_2-20121128_10468_1
    [Show full text]
  • Comparative Transcriptome Analyses During the Vegetative Cell Cycle in the Mono-Cellular Organism Pseudokeronopsis Erythrina (Alveolata, Ciliophora)
    microorganisms Article Comparative Transcriptome Analyses during the Vegetative Cell Cycle in the Mono-Cellular Organism Pseudokeronopsis erythrina (Alveolata, Ciliophora) 1,2, 3,4, 5 1,2 1,2, Yiwei Xu y, Zhuo Shen y, Eleni Gentekaki , Jiahui Xu and Zhenzhen Yi * 1 Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China; [email protected] (Y.X.); [email protected] (J.X.) 2 Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China 3 Institute of Microbial Ecology & Matter Cycle, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China; [email protected] 4 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China 5 School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; [email protected] * Correspondence: [email protected]; Tel.: +86-20-8521-0644 These authors contributed equally to this work. y Received: 30 October 2019; Accepted: 9 January 2020; Published: 12 January 2020 Abstract: Studies focusing on molecular mechanisms of cell cycles have been lagging in unicellular eukaryotes compared to other groups. Ciliates, a group of unicellular eukaryotes, have complex cell division cycles characterized by multiple events. During their vegetative cell cycle, ciliates undergo macronuclear amitosis, micronuclear mitosis, stomatogenesis and somatic cortex morphogenesis, and cytokinesis. Herein, we used the hypotrich ciliate Pseudokeronopsis erythrina, whose morphogenesis has been well studied, to examine molecular mechanisms of ciliate vegetative cell cycles. Single-cell transcriptomes of the growth (G) and cell division (D) stages were compared. The results showed that (i) More than 2051 significantly differentially expressed genes (DEGs) were detected, among which 1545 were up-regulated, while 256 were down-regulated at the D stage.
    [Show full text]