Eclipsing Binaries Observed with the WIRE Satellite II

Total Page:16

File Type:pdf, Size:1020Kb

Eclipsing Binaries Observed with the WIRE Satellite II A&A 467, 1215–1226 (2007) Astronomy DOI: 10.1051/0004-6361:20077184 & c ESO 2007 Astrophysics Eclipsing binaries observed with the WIRE satellite II. β Aurigae and non-linear limb darkening in light curves J. Southworth1, H. Bruntt2, and D. L. Buzasi3 Department of Physics, University of Warwick, Coventry, CV4 7AL, UK e-mail: [email protected] School of Physics A28, University of Sydney, 2006 NSW, Australia e-mail: [email protected] US Air Force Academy, Department of Physics, CO, USA e-mail: [email protected] Received 29 January 2007 / Accepted 13 March 2007 ABSTRACT Aims. We present the most precise light curve ever obtained of a detached eclipsing binary star and use it investigate the inclusion of non-linear limb darkening laws in light curve models of eclipsing binaries. This light curve, of the bright eclipsing system β Aurigae, was obtained using the star tracker aboard the wire satellite and contains 30 000 datapoints with a point-to-point scatter of 0.3 mmag. Methods. We analyse the wire light curve using a version of the ebop code modified to include non-linear limb darkening laws and to directly incorporate observed times of minimum light and spectroscopic light ratios into the photometric solution as individual observations. We also analyse the dataset with the Wilson-Devinney code to ensure that the two models give consistent results. Results. ebop is able to provide an excellent fit to the high-precision wire data. Whilst the fractional radii of the stars are only defined to a precision of 5% by this light curve, including an accurate published spectroscopic light ratio improves this dramatically to 0.5%. Using non-linear limb darkening improves the quality of the fit significantly compared to the linear law and causes the measured radii to increase by 0.4%. It is possible to derive all of the limb darkening coefficients from the light curve, although they are strongly correlated with each other. The fitted coefficients agree with theoretical predictions to within their fairly large error estimates. We were able to obtain a reasonably good fit to the data using the Wilson-Devinney code, but only using the highest available integration accuracy and by iterating for a long time. Bolometric albedos of 0.6 were found, which are appropriate to convective rather than radiative envelopes. Conclusions. The radii and masses of the components of β Aur are RA = 2.762 ± 0.017 R, RB = 2.568 ± 0.017 R, MA = 2.376 ± 0.027 M and MB = 2.291 ± 0.027 M, where A and B denote the primary and secondary star, respectively. Theoretical stellar evolutionary models can match these parameters for a solar metal abundance and an age of 450−500 Myr. The Hipparcos trigonometric parallax and an interferometrically-derived orbital parallax give distances to β Aur which are in excellent agreement with each other and with distances derived using surface brightness relations and several sets of empirical and theoretical bolometric corrections. Key words. stars: fundamental parameters – stars: binaries: eclipsing – stars: binaries: spectroscopic – stars: distances – stars: evolution – stars: individual: β Aurigae 1. Introduction Field Infra-red Explorer (wire) satellite. wire was launched in March 1999 but the coolant for the main camera was lost only The study of detached eclipsing binaries (dEBs) is our primary a few days after launch. Since then the star tracker on wire has source of accurate physical properties of normal stars (Andersen been used to monitor the variability of bright stars of all spec- 1991). By modelling their light curves and deriving radial veloc- tral types, as described in the review by Bruntt (2007). The main ities of the two components from their spectra, it is possible to aims of the current work are to accurately measure the physical measure the masses and radii of the two components to accura- properties of the systems and to investigate whether the currently cies of better than 1% (e.g., Southworth et al. 2005c; Lacy et al. available eclipsing binary light curve models can provide a good ff 2005). The e ective temperatures and luminosities of the stars fit to observational data with measurement uncertainties substan- ff can be found by a variety of di erent methods, including pho- tially below 1 mmag. We expect the answer to the second ques- tometric calibration, spectral analysis and measuring trigono- tion to be “yes”, but this matter is becoming increasingly impor- metric parallaxes. These data can be used to measure accurate tant in light of current and forthcoming space missions, such as distances to stellar systems (Ribas et al. 2005; Southworth et al. Kepler (Basri et al. 2005) and CoRoT (Michel et al. 2006), which 2005a) and to critically investigate the accuracy of the predic- aim to obtain extremely high-quality light curves of a large num- tions resulting from theoretical stellar models (e.g., Ribas 2006). berofstars. We are undertaking a project to obtain accurate and ex- tensive light curves of selected bright dEBs using the Wide Our first paper in this series presented the serendipitous discovery that the bright star ψ Centauri is a long-period dEB Full Table 2 is only available in electronic form at the CDS via (Bruntt et al. 2006, hereafter Paper I). The wire light curve anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via of this object shows deep total eclipses arising from a system http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/467/1215 containing two stars of quite different sizes. dEBs containing Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20077184 1216 J. Southworth et al.: WIRE satellite photometry of β Aurigae two dissimilar stars are particularly useful because the co- Table 1. Identifications and astrophysical data for β Aur. evolutionary nature of the two components can put strong con- straints on the predictions of theoretical models (Southworth β Aur References et al. 2004b). However, one of the most interesting aspects of Bright Star Catalogue HR 2088 1 this work is that we were able to measure the relative radii of Henry Draper Catalogue HD 40183 2 the two stars (radii expressed as a fraction of the orbital size) Hipparcos Catalogue HIP 28360 3 h m s to a precision of better than 0.2%, where the uncertainties were α2000 05 59 31.7229 3 + ◦ estimated from extensive Monte Carlo simulations but did not δ2000 44 56 50.758 3 include error contributions from some sources such as the use Spectral type A1m IV + A1m IV 4, 5 ff Trigonometric parallax 39.72 ± 0.78 mas 3 of di erent algebraic laws to describe the limb darkening of the ± stars. Distance 25.18 0.49 pc 3 Tycho B magnitude (BT ) 1.989 ± 0.005 6 Tycho V magnitude (VT ) 1.904 ± 0.005 6 1.1. β Aurigae References: (1) Hoffleit & Jaschek (1991); (2) Cannon & Pickering wire (1918); (3) Perryman et al. (1997); (4) NJ94; (5) Lyubimkov et al. In this work we present a light curve for the dEB β Aurigae (1996); (6) Høg et al. (1997). (Menkalinan), which is composed of two A1 IV stars orbiting each other with a period of 3.96 days (Table 1). This light curve contains 30 015 datapoints with a point to point scatter of less containing two stars of almost the same size, particularly if they than 0.3 mmag. We chose β Aurasatargetforthewire satel- exhibit shallow eclipses, the ratio of the stellar radii is poorly de- lite due to its brightness, which not only made our observations termined by the light curves (Popper 1984), so NJ94 constrained more precise but also makes it a very difficult object to study their light curve solution with an accurate spectroscopic light ra- with modern telescopes. In addition, it has an accurate trigono- tio. The resulting properties of the stars have since been used for metric parallax from the Hipparcos satellite which means the studies of the helium–metal enrichment law (Ribas et al. 2000) effective temperatures and surface brightnesses of the stars can and the fundamental effective temperature scale (Smalley et al. be measured directly and used to calibrate these quantities for 2002). other objects. β Aur was one of the first stars discovered to be a spectro- 2. Observations and data reduction scopic binary system, by Maury (1890), and an orbit was calcu- lated by Rambaut (1891) from the published observations. It was β Aur was observed with the wire star tracker from subsequently discovered by Stebbins (1911) to undergo shallow 2006 March 30 to April 20. During each 93.2 min orbit of Earth eclipses, and so was also one of the first known eclipsing bina- wire switched between two targets in order to minimise the in- ries. A detailed discussion of early work, and an investigation fluence of scattered light from the daytime side of Earth. In the into whether the speed of light is dependent on wavelength, was data reduction we discarded the datapoints at the very begin- given by Baker (1910). ning and the end of each orbit, resulting in a duty cycle of 25%. The brightness of β Aur and the shallowness of its eclipses Observations were obtained during every orbit for 21 days. The has made it difficult to observe photometrically, and only wire passband is approximately V+R (Bruntt et al. 2007). It the study by Johansen (1971) has provided accurate results. may in future be possible to obtain a more precise description of Johansen obtained light curves of β Aur in seven passbands, the response function by considering the the total set of observa- four of which closely resemble the Strömgren uvby system, and tions obtained using the wire star tracker.
Recommended publications
  • Primary Velocity and Orbital Phase Effects on Planetary Detectability from Small Epoch Number Data Sets
    The Astronomical Journal, 162:26 (16pp), 2021 July https://doi.org/10.3847/1538-3881/abf7b9 © 2021. The Author(s). Published by the American Astronomical Society. Primary Velocity and Orbital Phase Effects on Planetary Detectability from Small Epoch Number Data Sets Cam Buzard1 , Stefan Pelletier2 , Danielle Piskorz3 , Björn Benneke2 , and Geoffrey A. Blake1,3 1 Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA; [email protected] 2 Institute for Research on Exoplanets, Université de Montréal, Montreal, QC, Canada 3 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA Received 2021 January 21; revised 2021 April 2; accepted 2021 April 12; published 2021 June 22 Abstract Cross-correlation analyses of high-resolution spectroscopic data have recently shown great success in directly detecting planetary signals and enabling the characterization of their atmospheres. One such technique aims to observe a system at multiple epochs and combine the measured planetary radial velocities from each epoch into a measurement of the planetary Keplerian orbital velocity Kp, constituting a direct detection of the planetary signal. Recent work has shown that in few-epoch (∼5) data sets, unintended structure can arise at a high level, obscuring the planetary detection. In this work, we look to simulations to examine whether there are ways to reduce this structured noise in few-epoch data sets by careful planning of observations. The choice of observation date allows observers to select the primary (stellar) velocity through a set systemic velocity and chosen barycentric velocity and the planetary orbital phase so we focus on the effects of these two parameters.
    [Show full text]
  • Observational Data Disfavor Dark Matter and Stochastic Star Formation
    1 Galaxies as simple dynamical systems: observational data disfavor dark matter and stochastic star formation Pavel Kroupa Abstract: According to modern theory galactic evolution is driven by the dynamics of dark matter and stochastic star formation, but galaxies are observed to be simple systems. The existence of dark matter particles is a key hypothesis in present-day cosmology and galactic dynamics. Given the large body of high-quality work within the standard model of cosmology (SMoC), the validity of this hypothesis is challenged significantly by two independent arguments: (1) The dual dwarf galaxy theorem must be true in any realistic cosmological model. But the now available data appear to falsify it when the dark-matter-based model is compared with the observational data. A consistency test for this conclusion comes 8 from the significantly anisotropic distributions of satellite galaxies (baryonic mass < 10 M ) which orbit in the same direction around their hosting galaxies in disk-like structures which cannot be derived from dark-matter models. (2) The action of dynamical friction due to expansive and massive dark matter halos must be evident in the galaxy population. The evidence for dynamical friction is poor or even absent. Independently of this, the long history of failures of the SMoC have the likelihood that it describes the observed Universe to less than 10−4 %. The implication for fundamental physics is that exotic dark matter particles do not exist and that consequently effective gravitational physics on the scales of galaxies and beyond ought to be non-Newtonian/non-Einsteinian. An analysis of the kinematical data in galaxies shows them to be described in the weak-gravitational regime elegantly by scale-invariant dynamics, as discovered by Milgrom.
    [Show full text]
  • Theory of Stellar Atmospheres
    © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. EXTENDED BIBLIOGRAPHY References [1] D. Abbott. The terminal velocities of stellar winds from early{type stars. Astrophys. J., 225, 893, 1978. [2] D. Abbott. The theory of radiatively driven stellar winds. I. A physical interpretation. Astrophys. J., 242, 1183, 1980. [3] D. Abbott. The theory of radiatively driven stellar winds. II. The line acceleration. Astrophys. J., 259, 282, 1982. [4] D. Abbott. The theory of radiation driven stellar winds and the Wolf{ Rayet phenomenon. In de Loore and Willis [938], page 185. Astrophys. J., 259, 282, 1982. [5] D. Abbott. Current problems of line formation in early{type stars. In Beckman and Crivellari [358], page 279. [6] D. Abbott and P. Conti. Wolf{Rayet stars. Ann. Rev. Astr. Astrophys., 25, 113, 1987. [7] D. Abbott and D. Hummer. Photospheres of hot stars. I. Wind blan- keted model atmospheres. Astrophys. J., 294, 286, 1985. [8] D. Abbott and L. Lucy. Multiline transfer and the dynamics of stellar winds. Astrophys. J., 288, 679, 1985. [9] D. Abbott, C. Telesco, and S. Wolff. 2 to 20 micron observations of mass loss from early{type stars. Astrophys. J., 279, 225, 1984. [10] C. Abia, B. Rebolo, J. Beckman, and L. Crivellari. Abundances of light metals and N I in a sample of disc stars. Astr. Astrophys., 206, 100, 1988. [11] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions. (Washington, DC: U.S. Government Printing Office), 1972.
    [Show full text]
  • Stellar Astrophysics and Exoplanet Science with the Maunakea Spectroscopic Explorer (Mse)
    Draft version March 11, 2019 Typeset using LATEX twocolumn style in AASTeX62 STELLAR ASTROPHYSICS AND EXOPLANET SCIENCE WITH THE MAUNAKEA SPECTROSCOPIC EXPLORER (MSE) Maria Bergemann,1 Daniel Huber,2 Vardan Adibekyan,3 George Angelou,4 Daniela Barr´ıa,5 Timothy C. Beers,6 Paul G. Beck,7, 8 Earl P. Bellinger,9 Joachim M. Bestenlehner,10 Bertram Bitsch,1 Adam Burgasser,11 Derek Buzasi,12 Santi Cassisi,13, 14 Marcio´ Catelan,15, 16 Ana Escorza,17, 18 Scott W. Fleming,19 Boris T. Gansicke,¨ 20 Davide Gandolfi,21 Rafael A. Garc´ıa,22, 23 Mark Gieles,24, 25, 26 Amanda Karakas,27 Yveline Lebreton,28, 29 Nicolas Lodieu,30 Carl Melis,11 Thibault Merle,18 Szabolcs Mesz´ aros,´ 31, 32 Andrea Miglio,33 Karan Molaverdikhani,1 Richard Monier,28 Thierry Morel,34 Hilding R. Neilson,35 Mahmoudreza Oshagh,36 Jan Rybizki,1 Aldo Serenelli,37, 38 Rodolfo Smiljanic,39 Gyula M. Szabo,´ 31 Silvia Toonen,40 Pier-Emmanuel Tremblay,20 Marica Valentini,41 Sophie Van Eck,18 Konstanze Zwintz,42 Amelia Bayo,43, 44 Jan Cami,45, 46 Luca Casagrande,47 Maksim Gabdeev,48 Patrick Gaulme,49, 50 Guillaume Guiglion,41 Gerald Handler,51 Lynne Hillenbrand,52 Mutlu Yildiz,53 Mark Marley,54 Benoit Mosser,28 Adrian M. Price-Whelan,55 Andrej Prsa,56 Juan V. Hernandez´ Santisteban,40 Victor Silva Aguirre,57 Jennifer Sobeck,58 Dennis Stello,59, 60, 61, 62 Robert Szabo,63, 64 Maria Tsantaki,3 Eva Villaver,65 Nicholas J. Wright,66 Siyi Xu,67 Huawei Zhang,68 Borja Anguiano,69 Megan Bedell,70 Bill Chaplin,71, 72 Remo Collet,9 Devika Kamath,73, 74 Sarah Martell,75, 76 Sergio´ G.
    [Show full text]
  • On the Analysis of Two Low-Mass, Eclipsing Binary Systems
    ON THE ANALYSIS OF TWO LOW-MASS, ECLIPSING BINARY SYSTEMS IN THE YOUNG ORION NEBULA CLUSTER By Yilen G´omezMaqueo Chew Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Physics August, 2010 Nashville, Tennessee Approved: Prof. Keivan G. Stassun Prof. David J. Ernst Prof. Robert A. Knop Prof. Robert C. O’Dell Prof. Andrej Prˇsa Prof. David A. Weintraub ACKNOWLEDGEMENTS This research would not have been possible without the financial support of CONACYT and Keivan Stassun. I am very grateful to the people from Villanova’s Astronomy Department for shar- ing their knowledge on eclipsing binaries, for their hospitality, and for always proving excellent espresso. I would like to also thank those in the Physics and Astronomy Department at Vanderbilt that helped me through this journey, specially the other grad students, Leslie who always had words of encouragement, and Bob who believed in me. Special thanks to Gilma and Martha for sharing with me all these years, with their ups and downs. I am also grateful for the good time spent at the Fortress, with the other members of the garrison: Talia and Yonah. Thank you Brittany, for being Thing 1 or Thing 2, as required, and also to Stacey for Hana Club. I would like to thank Jeff for good food, and words. And I would also like to thank Ponch for being a good friend. Finally, I would like to thank my parents and sister, Yuyen, for being patient and never doubting that I could accomplish this, as well as the Agraz GM family for feeding me and keeping me well caffeinated when I visited.
    [Show full text]
  • CHROMOSPHERIC Ca Ii EMISSION in NEARBY F, G, K, and M STARS1 J
    The Astrophysical Journal Supplement Series, 152:261–295, 2004 June A # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. CHROMOSPHERIC Ca ii EMISSION IN NEARBY F, G, K, AND M STARS1 J. T. Wright,2 G. W. Marcy,2 R. Paul Butler,3 and S. S. Vogt4 Received 2003 November 11; accepted 2004 February 17 ABSTRACT We present chromospheric Ca ii H and K activity measurements, rotation periods, and ages for 1200 F, G, K, and M type main-sequence stars from 18,000 archival spectra taken at Keck and Lick Observatories as a part of the California and Carnegie Planet Search Project. We have calibrated our chromospheric S-values against the Mount Wilson chromospheric activity data. From these measurements we have calculated median activity levels 0 and derived RHK, stellar ages, and rotation periods from general parameterizations for 1228 stars, 1000 of which have no previously published S-values. We also present precise time series of activity measurements for these stars. Subject headings: stars: activity — stars: chromospheres — stars: rotation On-line material: machine-readable tables 1. INTRODUCTION Duncan et al. (1991) published data from this program in the form of ‘‘season averages’’ of H and K line strengths from The California and Carnegie Planet Search Program has 65,263 observations of 1296 stars (of all luminosity classes) in included observations of 2000 late-type main-sequence stars at high spectral resolution as the core of its ongoing survey of the Northern Hemisphere, and later as detailed analyses of 171,300 observations of 111 stars characterizing the varieties bright, nearby stars to find extrasolar planets through precision and evolution of stellar activity in dwarf stars.
    [Show full text]
  • Observer's Handbook 1987
    CONTRIBUTORS AND ADVISORS A l a n H. B a t t e n , Dominion Astrophysical Observatory, 5071 W. Saanich Road, Victoria, BC, Canada V8X 4M6 (The Nearest Stars). L a r r y D. B o g a n , Department of Physics, Acadia University, Wolfville, NS, Canada B0P 1X0 (Configurations of Saturn’s Satellites). Terence Dickinson, Yarker, ON, Canada K0K 3N0 (The Planets). D a v id W. D u n h a m , International Occultation Timing Association, P.O. Box 7488, Silver Spring, MD 20907, U.S.A. (Lunar and Planetary Occultations). A lan Dyer, Edmonton Space Sciences Centre, 11211-142 St., Edmonton, AB, Canada T5M 4A1 (Messier Catalogue, Deep-Sky Objects). Fred Espenak, Planetaiy Systems Branch, NASA-Goddard Space Flight Centre, Greenbelt, MD, U.S.A. 20771 (Eclipses and Transits). M a r ie F i d l e r , 23 Lyndale Dr., Willowdale, ON, Canada M2N 2X9 (Observatories and Planetaria). Victor Gaizauskas, Herzberg Institute of Astrophysics, National Research Council, Ottawa, ON, Canada K1A 0R6 (Solar Activity). R o b e r t F. G a r r i s o n , David Dunlap Observatory, University of Toronto, Box 360, Richmond Hill, ON, Canada L4C 4Y6 (The Brightest Stars). Ian H alliday, Herzberg Institute of Astrophysics, National Research Council, Ottawa, ON, Canada K1A 0R6 (Miscellaneous Astronomical Data). W illiam Herbst, Van Vleck Observatory, Wesleyan University, Middletown, C T , U.S.A. 06457 (Galactic Nebulae). H e l e n S. H o g g , David Dunlap Observatory, University of Toronto, Box 360, Richmond Hill, ON, Canada L4C 4Y6 (Foreword).
    [Show full text]
  • Determination of Mass Loss and Mass Transfer Rates of Algol (Beta Persei) from the Analysis of Absorption Lines in the UV Spectra Obtained by the IUE Satellite
    Determination of Mass Loss and Mass Transfer Rates of Algol (Beta Persei) from the Analysis of Absorption Lines in the UV Spectra Obtained by the IUE Satellite by Kristen Wecht Presented to the Graduate and Research Committee of Lehigh University in Candidacy for the Degree of Doctor of Philosophy in Physics Lehigh University April 2006 CERTIFICATE OF APPROVAL Approved and recommended for acceptance as a dissertation to partial fulfillment of the requirements for the degree of Doctor of Physics. ________________ Date _________________ _____________________________ Accepted Date George E. McCluskey, Jr. (Advisor) Special Committee Directing the Doctoral Work of Kristen Wecht __________________________________ Gary G. DeLeo __________________________________ A. Peet Hickman __________________________________ John P. Huennekens __________________________________ Daniel Zeroka ii CONTENTS Certificate of Approval ii Acknowledgements iii Table of Contents vi List of Tables ix List of Figures x Abstract 1 1 Introduction 2 2 Background 5 2.1 Stellar Properties, Evolution and Classification 5 2.2 Binary Star Characteristics and Classification 8 2.3 Observational Indications of Mass Flow 17 2.4 Algol (Beta Persei), Algol-type Systems and the Algol Paradox 22 2.5 Previous Observations and Models for Algol 28 3 IUE Observations 33 3.1 IUE Spacecraft and Database 33 3.2 IUE Observations of Algol 39 3.3 Line-of-sight Geometry for Each Algol IUE Observation 45 3.4 Sample IUE Data for Algol 66 4 Analysis of the Data 68 vi 4.1 Data Analysis Overview 68
    [Show full text]
  • IUE References from 1978 Until June 2001
    IUE REFERENCES from 1978 until June 2001 ¾ ½;4 J. Fernley ½ , P. Pitts , M. Barylak ¿ ¿ ¿ R. Gonzalez-Riestra´ ¿ ,E.Solano ,A.Talavera ,F.Rodr´ıguez ½ ESA IUE Observatory, PO Box 50727, 28080 Madrid, Spain ¾ NASA GSFC, Greenbelt, Maryland ¿ Laboratorio de Astrof´ısica Espacial y F´ısica Fundamental PO Box 50727, 28080 Madrid, Spain 4 Affiliated with the Astrophysics Division, Space Science Department ESTEC, the Netherlands We have compiled a list of references to IUE publications covering the period from 1978 until June 2001. This compilation is based upon earlier works of Mead et al. (1986), Pitts (1991) and our own. The IUE satellite has provided the scientific community with over 110,000 UV spectra which are now in the public domain. Prospective user of these IUE data are provided with a list that holds a total of 3776 IUE papers from the following journals: Journal Abbreviation Nr. Astronomical Journal AJ 200 Astronomy and Astrophysics A&A 982 Astronomy and Astrophysics Supplement A&AS 94 Astrophysical Journal APJ 1513 Astrophysical Journal Supplement APJS 112 Astrophysics and Space Science AP&SS 69 Advances in Space Research ASR 3 Geophysical Research Letters GRL 10 Irish Astronomical Journal IAJ 2 Icarus ICARUS 56 Journal of Geophysical Research JGR 19 Monthly Notices of the Royal Astr. Soc. MNRAS 410 Nature NATURE 53 Proceedings of the National Academy of Sience PNAS 2 Proceedings Astron. Soc. of Australia PASA 3 Publications Astron. Soc. of Japan PASJ 6 Publications of the Astron.Soc.of Pacific PASP 167 Revista Mexicana de Astronomia y Astrofisica RMAA 18 Science SCIENCE 2 Others (BAIC, M&P, RSPT, etc.) 55 Total 3776 We trust that this compilation is useful although we have not added other publications like meeting abstracts, conference proceedings, or other popular articles.
    [Show full text]
  • And Pre-Main Sequence Stars in Taurus-Auriga-Perseus
    A&A manuscript no. (will be inserted by hand later) ASTRONOMY Your thesaurus codes are: AND 06(08.06.1; 13.25.5; 08.12.1) ASTROPHYSICS X-ray flares on zero-age- and pre-main sequence stars in Taurus-Auriga-Perseus B. Stelzer1, R. Neuhauser¨ 1 and V. Hambaryan2 1 Max-Planck-Institut f¨ur extraterrestrische Physik, Giessenbachstr. 1, D-85740 Garching, Germany 2 Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany Received <6 April 1999> / Accepted <3 February 2000> Abstract. We present the results of a systematic search for X- 1. Introduction ray flares on young stars observed during ROSAT PSPC obser- vations of the Taurus-Auriga-Perseus sky region. All pointed The Taurus-Auriga-Perseus region offers the opportunity to PSPC observations currently available from the ROSAT Public study the X-ray emission of young stars at several evolution- Data Archive with known pre-main sequence T Tauri Stars or ary stages. The youngest stars observed by ROSAT in this por- young Pleiads or Hyads in the field of view are analyzed. A tion of the sky are the T Tauri Stars (TTSs) of the Taurus- study of the activity of late-type stars of different ages provides Auriga and Perseus star forming regions, late-type pre-main information on the evolution of their coronal activity, which sequence (PMS) stars of M 3M⊙ with an estimated age of 105 107 yrs. Two young≤ star clusters, the Pleiades and may be linked to their angular momentum. − We develop a criterion for the detection of flares based Hyades, are also located in this region of the sky at age of 8 8 on the shape of the X-ray lightcurve.
    [Show full text]
  • Observer's Handbook 1969
    THE OBSERVER’S HANDBOOK 1969 Sixty-first Year of Publication THE ROYAL ASTRONOMICAL SOCIETY OF CANADA THE ROYAL ASTRONOMICAL SOCIETY OF CANADA Incorporated 1890 — Royal Charter 1903 The National Office of the Royal Astronomical Society of Canada is located a t 252 College Street, Toronto 2B, Ontario. The business office of the Society, reading rooms and astronomical library, are housed here. Membership in the Society is open to anyone interested in astronomy. Applicants may affiliate with one of the Society’s sixteen centres across Canada, or may join the National Society direct. Centres of the Society are established in St. John’s, Quebec, Montreal, Ottawa, Kingston, Hamilton, Niagara Falls, London, Windsor, Winnipeg, Edmonton, Calgary, Vancouver, Victoria, and Toronto. Addresses of the Centres’ secretaries may be obtained from the National Office. Publications of the Society are free to members, and include the J ournal (6 issues per year) and the Observer’s H andbook (published annually in November). Annual fees of $7.50 are payable October 1 and include the publi­ cations for the following year. VISITING HOURS AT SOME CANADIAN OBSERVATORIES David Dunlap Observatory, Richmond Hill, Ont. Tuesday mornings, 10:00-11:00 a.m. Saturday evenings, April through October (by reservation). Dominion Astrophysical Observatory, Victoria, B.C. Monday to Friday, daytime, no program. Saturday evenings, April through November. Dominion Observatory, Ottawa, Ont. Monday to Friday, daytime, rotunda only. Saturday evenings, April through October. Dominion Radio Astrophysical Observatory, Penticton, B.C. Sunday, July and August only (2:00-5:30 p.m.). Planetariums: Calgary Centennial Planetarium, Calgary, Alta. Daily (except Tues.), 2, 3:15, 7, 8:15 p.m.
    [Show full text]
  • An Ultra-Hot Jupiter Transiting HR5599 in a Polar Orbit
    MNRAS 000, 1–10 (2018) Preprint 14 September 2018 Compiled using MNRAS LATEX style file v3.0 WASP-189b: an ultra-hot Jupiter transiting the bright A star HR5599 in a polar orbit⋆ D. R. Anderson,1 L. Y. Temple,1 L. D. Nielsen,2 A. Burdanov,3 C. Hellier,1 † F. Bouchy,2 D. J. A. Brown,4,5 A. Collier Cameron,6 M. Gillon,3 E. Jehin,3 P. F. L. Maxted,1 F. Pepe,2 D. Pollacco,4,5 F. J. Pozuelos,3 D. Queloz,2,7 D. S´egransan,2 B. Smalley,1 A. H. M. J. Triaud,8 O. D. Turner,2 S. Udry2 and R. G. West4,5 1Astrophysics Group, Keele University, Staffordshire ST5 5BG, UK 2Observatoire de Gen`eve, Universit´ede Gen`eve, 51 Chemin des Maillettes, 1290 Sauverny, Switzerland 3Space sciences, Technologies and Astrophysics Research (STAR) Institute, Universit´ede Li`ege, Li`ege 1, Belgium 4Department of Physics, University of Warwick, Coventry CV4 7AL, UK 5Centre for Exoplanets and Habitability, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK 6SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, Fife KY16 9SS, UK 7Cavendish Laboratory, J J Thomson Avenue, Cambridge CB3 0HE, UK 8School of Physics & Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK Accepted XXX. Received YYY; in original form 2018 September 13 ABSTRACT We report the discovery of WASP-189b: an ultra-hot Jupiter in a 2.72-d transiting orbit around the V = 6.6 A star WASP-189 (HR 5599). We detected periodic dim- mings in the star’s lightcurve, first with the WASP-South survey facility then with the TRAPPIST-South telescope.
    [Show full text]