Unified Model of Ultracold Molecular Collisions James F

Total Page:16

File Type:pdf, Size:1020Kb

Unified Model of Ultracold Molecular Collisions James F Unified model of ultracold molecular collisions James F. E. Croft, John L. Bohn, Goulven Quéméner To cite this version: James F. E. Croft, John L. Bohn, Goulven Quéméner. Unified model of ultracold molecular collisions. Physical Review A, American Physical Society, 2020, 10.1103/PhysRevA.102.033306. hal-02638676 HAL Id: hal-02638676 https://hal.archives-ouvertes.fr/hal-02638676 Submitted on 28 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A unified model of ultracold molecular collisions James F. E. Croft The Dodd-Walls Centre for Photonic and Quantum Technologies, New Zealand and Department of Physics, University of Otago, Dunedin, New Zealand John L. Bohn JILA, NIST, and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440, USA Goulven Qu´em´ener Universit´eParis-Saclay, CNRS, Laboratoire Aim´eCotton, 91405, Orsay, France A scattering model is developed for ultracold molecular collisions, which allows inelastic processes, chemical reactions, and complex formation to be treated in a unified way. All these scattering processes and various combinations of them are possible in ultracold molecular gases, and as such this model will allow the rigorous parametrization of experimental results. In addition we show how, once extracted, these parameters can to be related to the physical properties of the system, shedding light on fundamental aspects of molecular collision dynamics. I. INTRODUCTION duced long-lived collisional complexes and what the loss mechanism was. However, a subsequent experiment on Ultracold samples of molecules can be exquisitely con- RbCs [12] showed that turning on or off the trapping light trolled at the quantum state level, allowing fundamental that confines the molecules can increase or decrease the physical and chemical process to be studied with un- losses of the molecules. This confirmed the hypothesis of precedented precision. This control has been used to a theoretical study [13] that the non-reactive molecules study state-to-state chemistry with full quantum state first form tetramer complexes, and then the complexes are resolution for all reactants and products [1], to probe the lost due to light scattering in the optical dipole trap. In potential energy surface with exquisite resolution [2, 3], addition, an experiment on chemically reactive ultracold and to study the role of nuclear spins in molecular colli- molecules such as KRb succeeded in directly observing the sions [4, 5], More recently an experiment has managed to corresponding ions of the intermediate complex K2Rb2 [6], probe the intermediate complex of an ultracold ultracold as well as of the products K2 and Rb2 of the chemical reaction [6] as such it is now possible to track the complete reaction. Just as for non-reactive molecules, the trap- chemical process from reactants, through intermediates, ping light has a strong effect on the losses of the reactive to products. molecules as well as on the lifetime of the transient com- plex [14], sharing the same conclusion as [12, 13]. It is Understanding the fundamental physical and chemical therefore clear that any theoretical treatment of ultracold process of ultracold molecular collisions is also impor- molecular collisions must be flexible enough to account tant because ultracold gases are fragile systems, prone for the formation of the complexes. to collisional processes that can transfer their atomic or molecular constituents into untrapped states or else re- These experiments can be described by a model that lease large amounts of kinetic energy, leading to trap loss assumes an absorption probability pabs for any two and heating. A new mechanism for loss in an ultracold molecules that get within a certain radius [15], without molecular gas was proposed [7, 8], namely a half-collision ascribing any particular mechanism to the absorption. process in which the reactant molecules share energy in Energy and electric field dependence of two-body loss rotational and vibrational degrees of freedom, spending a rates are well-fit by the resulting formulas. For exam- long time lost in resonant states of a four-body collision ple, the reactive molecules in the KRb experiment vanish complex rather than promptly completing the collision with unit probability pabs = 1 with or without electric process. This idea of transient complex formation, collo- field [4, 16, 17]. The non-reactive species NaRb and RbCs quially dubbed \sticking", takes on an added significance vanish with probabilities 0:89 [18] and 0:66 [11] respec- for ultracold molecular collisions where the number of tively, in zero electric field. Notably, when an electric available exit channels can be very small compared to the field is applied to NaRb, its absorption probability climbs number of resonant states. to pabs = 1 [10]. Assuming the origin of this loss is due to Initial experiments on non-reactive ultracold molecules, complex formation, the increased loss with electric field such as NaRb [9, 10] and RbCs [11], observed two-body may be attributed to the increased density of accessible collisional losses, even though these species are non- states of the complex and/or coupling of these states to reactive and are in their quantum mechanical ground the continuum scattering channels. It is therefore con- state, so have no available inelastic loss channels. As ceivable that complex formation may be a phenomenon these complexes were not directly observed, it remained that can be turned on or off as desired. an open question whether these experiments have pro- While the influence of light scattering on molecular 2 V collisions is undeniable, it should also be possible for µ complex formation the molecules to be confined in \box" traps, where the molecules remain mostly in the dark, encountering trap- d ping light only at the peripheries of the trap [19]. In this a case, loss due to complex formation would allow a more b, c, ... Inelastic Observed direct probe of the fundamental four-body physics of the ) collision. k, l, m, ... Reactive In this paper we propose a phenomenological model of direct scattering collisional losses, based on the theory of average cross sec- indirect scattering ρ, σ, τ, ... Unobserved tions [20], that encompasses both direct collisional losses and loss due to complex formation. As such this model serves not only to parametrize experimental measure- r ments, but also allows those parameters to be related to r0 the physical properties of the system, potentially shedding light on the dynamics of the molecular complex. FIG. 1. Schematic outlining the various scattering processes and channel labels. Direct and indirect scattering processes are shown by red and blue arrows respectively. The incoming channel is labelled a; inelastic scattering channels that can be II. THEORY observed in an experiment are denoted by roman letters b, c, :::; reactive scattering channels that can be observed in an The theory must be flexible enough to describe the experiment are denoted by roman letters k, l, m, :::; inelastic various outcomes available when two molecules collide. or reactive channels that are unobserved in a given experiment These include elastic scattering of the reactants; inelastic are denoted by letters ρ, σ, τ, ::: Finally a dense forest of scattering, where the reactants emerge with the same resonant states labelled by µ of the collision complex, of, with a mean level spacing d, is shown in the well of the potential. chemical identity but in different internal states; reactive scattering into various product states; and absorption into the collision complex. Moreover, depending on the experiment, the various outcomes of the collision may or may not be observed. Note that, within this model, formation of a collision complex will always be regarded an outcome in and of itself: we do not consider where the on the details of a particular experiment. In some ex- complex ultimately decays to. periments, all the final states can be measured so that there are no channels denoted by greek letters, while in others none of the final states can be measured so that A. Molecular scattering, observed and unobserved there are no channels denoted by roman letters (except processes the incident channel a). In some experiments, inelastic channels are measured but reactive ones are not, or vice versa. Therefore one has to determine which processes To this end, we define a flexible system of notation as are labelled as observed or unobserved processes for a illustrated in Fig. 1. This figure shows schematically the particular experiment of interest. In Sec. II D, we will distance r between two collision partners (which may be detail how these unobserved processes can be gathered reactants or products), and the various possible outcome into an overall, absorption term. channels. Channels whose outcome is observed by a par- ticular experiment are labelled by roman letters while channels whose outcome is unobserved are labelled by The observed and unobserved processes are those that greek letters. The channels labelling observed processes are expected to produce inelastic scattering or chemical are further differentiated as follows. Channels labelled reactions immediately, that is, without forming a collision a, b, c, ::: correspond to the elastic and inelastic chan- complex, shown in Fig. 1 by the red arrow labelled direct nels of the reactants, while channels labelled k, l, m, ::: scattering. Typically, the results of these processes release correspond instead to channels of a different molecular kinetic energy greater than the depth of the trap holding arrangement and correspond to the product channels of the molecules, and hence lead to what we term direct loss.
Recommended publications
  • Dynamics of Quenched Ultracold Quantum Gases
    Dynamics of Quenched Ultracold Quantum Gases by John P. Corson B.S., Brigham Young University, 2009 M.S., Brigham Young University, 2011 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Physics 2016 This thesis entitled: Dynamics of Quenched Ultracold Quantum Gases written by John P. Corson has been approved for the Department of Physics Prof. John Bohn Asst. Prof. Jose D’Incao Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Corson, John P. (Ph.D., Physics) Dynamics of Quenched Ultracold Quantum Gases Thesis directed by Prof. John Bohn Recent advances in the tunability of ultracold atomic gases have created opportunities for studying interesting quantum many-body systems. Fano-Feshbach resonances, in particular, allow experimenters to freely adjust the scattering of atoms by controlling an external magnetic field. By rapidly changing this field near a resonance, it is possible to drive systems out of equilibrium towards novel quantum states where correlations between atoms change dynamically. In this thesis, we take a wave-function-based approach to theoretically examine the response of several interesting systems to suddenly-switched, or “quenched”, interactions. We first calculate the time evolution of a Bose-Einstein condensate that is quenched to the unitarity regime, where the scattering length a diverges. Working within the time-dependent vari- ational formalism, we find that the condensate does not deplete as quickly as the usual Bogoliubov theory would suggest.
    [Show full text]
  • Light Scattering from an Atomic Array Trapped Near a One-Dimensional Nanoscale Waveguide: a Microscopic Approach
    PHYSICAL REVIEW A 97, 023827 (2018) Light scattering from an atomic array trapped near a one-dimensional nanoscale waveguide: A microscopic approach V. A. Pivovarov,1 A. S. Sheremet,2,3 L. V. Gerasimov,4 V. M. Porozova,5 N. V. Corzo,2 J. Laurat,2 and D. V. Kupriyanov5,* 1Physics Department, St.-Petersburg Academic University, Khlopina 8, 194021 St.-Petersburg, Russia 2Laboratoire Kastler Brossel, Sorbonne Université, CNRS, PSL Research University, 4 place Jussieu, 75005 Paris, France 3Russian Quantum Center, Novaya 100, 143025 Skolkovo, Moscow Region, Russia 4Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskiye Gory 1-2, 119991 Moscow, Russia 5Department of Theoretical Physics, St-Petersburg State Polytechnic University, 195251 St.-Petersburg, Russia (Received 17 November 2017; published 16 February 2018) The coupling of atomic arrays and one-dimensional subwavelength waveguides gives rise to interesting photon transport properties, such as recent experimental demonstrations of large Bragg reflection, and paves the way for a variety of potential applications in the field of quantum nonlinear optics. Here, we present a theoretical analysis for the process of single-photon scattering in this configuration using a full microscopic approach. Based on this formalism, we analyze the spectral dependencies for different scattering channels from either ordered or disordered arrays. The developed approach is entirely applicable for a single-photon scattering from a quasi-one-dimensional array of multilevel atoms with degenerate ground-state energy structure. Our approach provides an important framework for including not only Rayleigh but also Raman channels in the microscopic description of the cooperative scattering process. DOI: 10.1103/PhysRevA.97.023827 I.
    [Show full text]
  • Effective Quantum Theories with Short- and Long-Range Forces
    Effective quantum theories with short- and long-range forces Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakult¨at der Rheinischen Friedrich-Wilhelms-Universit¨atBonn vorgelegt von Sebastian K¨onig aus Northeim Bonn, August 2013 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakult¨atder Rheinischen Friedrich-Wilhelms-Universit¨atBonn 1. Gutachter: Prof. Dr. Hans-Werner Hammer 2. Gutachter: Prof. Dr. Ulf-G. Meißner Tag der Promotion: 23. Oktober 2013 Erscheinungsjahr: 2013 Abstract At low energies, nonrelativistic quantum systems are essentially governed by their wave functions at large distances. For this reason, it is possible to describe a wide range of phenomena with short- or even finite-range interactions. In this thesis, we discuss several topics in connection with such an effective description and consider, in particular, modifications introduced by the presence of additional long-range potentials. In the first part we derive general results for the mass (binding energy) shift of bound states with angular momentum ` 1 in a periodic cubic box in two and three spatial dimensions. Our results have applications≥ to lattice simulations of hadronic molecules, halo nuclei, and Feshbach molecules. The sign of the mass shift can be related to the symmetry properties of the state under consideration. We verify our analytical results with explicit numerical calculations. Moreover, we discuss the case of twisted boundary conditions that arise when one considers moving bound states in finite boxes. The corresponding finite-volume shifts in the binding energies play an important role in the study of composite-particle scattering on the lattice, where they give rise to topological correction factors.
    [Show full text]
  • Computer Simulation by Quantum Mechanical Time Dependent Wave Packet Method Especially for Atom / Molecule – Solid Surface Interaction
    Computer simulation by quantum mechanical time dependent wave packet method especially for atom / molecule – solid surface interaction G. Varga* Budapest University of Technology and Economics, Department of Physics, Budafoki út. 8, Budapest, Hungary, H- 1111 Thermal energy atomic scattering on solid surfaces (TEAS) is a useful experimental method to obtain information about the structure, disorders and phonon-spectra of the solid surface. The probe particles (usually He atoms) could spend relatively long time near the solid surface at the interaction region. Dynamics of these interaction processes can not be investigated directly at present. However, an appropriate physical model of the interaction fitted to the intensity distribution of the scattering may be suitable to investigate theoretically the interaction processes by computer simulation. The present work emphasises this computer simulation method (CSM). For an actual CSM an appropriate experimental method at the detector region (TEAS) is required. Moreover a theoretical model for the TEAS (e.g. a one particle quantum mechanical wave packet model governed by the time dependent Schrödinger equation (TDSE)) and a numerical method for solving the TDSE are necessary. The state functions of the consecutive time steps provide enough information as an animation to describe the dynamics of the interaction processes. The animation means subsequent snapshots of e.g. probability density function (PDF) in rapid succession. The sequence of these snapshots provides a movie of the PDF time evolution. Applications, physical models, numerical solution procedures and simulation techniques of time dependent wave packet method (TDWP) are overviewed in present contribution, especially for the case of TEAS and molecular beam scattering (MBS).
    [Show full text]
  • Effective Field Theory for Halo Nuclei
    Effective Field Theory for Halo Nuclei Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakult¨at der Rheinischen Friedrich-Wilhelms-Universit¨at Bonn vorgelegt von Philipp Robert Hagen aus Troisdorf Bonn 2013 Angefertigt mit der Genehmigung der Mathmatisch-Naturwissenschaftlichen Fakult¨at der Rheinischen Friedrich-Wilhelms-Universit¨at Bonn 1. Gutachter: Prof. Dr. Hans-Werner Hammer 2. Gutachter: Prof. Dr. Bastian Kubis Tag der Promotion: 19.02.2014 Erscheinungsjahr: 2014 Abstract We investigate properties of two- and three-body halo systems using effective field theory. If the two-particle scattering length a in such a system is large compared to the typical range of the interaction R, low-energy observables in the strong and the electromagnetic sector can be calculated in halo EFT in a controlled expansion in R/ a . Here we will focus | | on universal properties and stay at leading order in the expansion. Motivated by the existence of the P-wave halo nucleus 6He, we first set up an EFT framework for a general three-body system with resonant two-particle P-wave interactions. Based on a Lagrangian description, we identify the area in the effective range parameter space where the two-particle sector of our model is renormalizable. However, we argue that for such parameters, there are two two-body bound states: a physical one and an addi- tional deeper-bound and non-normalizable state that limits the range of applicability of our theory. With regard to the three-body sector, we then classify all angular-momentum and parity channels that display asymptotic discrete scale invariance and thus require renor- malization via a cut-off dependent three-body force.
    [Show full text]
  • Scattering Asymptotic Conditions in Euclidean Relativistic Quantum Theory
    Scattering asymptotic conditions in Euclidean relativistic quantum theory Gordon Aiello and W. N. Polyzou Department of Physics and Astronomy, The University of Iowa, Iowa City, IA 52242, USA (Dated: January 31, 2016) We discuss the formulation of the scattering asymptotic condition as a strong limit in Euclidean quantum theories satisfying the Osterwalder-Schrader axioms. When used with the invariance prin- ciple this provides a constructive method to compute scattering observables directly in the Euclidean formulation of the theory, without an explicit analytic continuation. PACS numbers: I. INTRODUCTION The purpose of this paper is to argue that it is possible to calculate scattering observables directly in the Euclidean representation of quantum field theory without analytic continuation. The essential observation, which is a conse- quence of the Osterwalder Schrader reconstruction theorem [1], is that there is a representation of the physical Hilbert space directly in terms of the Euclidean Green functions without analytic continuation. There is also a representa- tion of the Poincar´eLie algebra on this space. This defines a relativistic quantum theory. Cluster properties of the Schwinger functions suggest that it should be possible to formulate scattering problems directly in this representation. In (1958) Schwinger [2] argued that as a result of the spectral condition that time-ordered Green functions had analytic continuations to Euclidean space-time variables. The analytically continued functions satisfy Schwinger- Dyson equations and are moments of Euclidean path integrals. The Osterwalder-Schrader axioms [1][3] define conditions on a collection of Euclidean Green functions (Schwinger functions) that allow the reconstruction of a relativistic quantum theory. The Schwinger functions are formally defined as moments of a Euclidean path integral [4], R D[φ]e−A[φ]φ(x ) ··· φ(x ) S (x ; ··· ; x ) = 1 n (1) n 1 n R D[φ0]e−A[φ0] where A[φ] is the classical action functional.
    [Show full text]
  • Spectral and Scattering Theory for Translation Invariant Models in Quantum Field Theory
    S p e c t r a l a n d S c a t t e r i n g T h e o r y f o r Tr a n s l a t i o n I n va r i a n t M o d e l s i n Q u a n t u m F i e l d T h e o r y M o r t e n G r u d R a s m u s s e n Colophon Spectral and Scattering Theory for Translation Invariant Models in Quantum Field Theory A PhD thesis by Morten Grud Rasmussen. Written under the supervision of Jacob Schach Møller at Department of Mathematical Sciences, Faculty of Science, Aarhus University. Typeset using LATEX and the memoir document class. The text is set with the Palatino font at 12.0/14.5pt, and the Pazo Math fonts are used for mathematical formulae. Among the packages used are the AMS packages amsfonts, amsmath, amssymb as well as babel, bm, chapterbib, cyrillic, fontenc, graphicx, hypcap, hyperref, inputenc, mathpazo, mathtools, microtype, ntheorem, soul and url. Ques- tions and comments are welcome, and can be sent to the author by emailing [email protected]. Printed at SUN-TRYK, Aarhus University. S p e c t r a l a n d S c a t t e r i n g T h e o r y f o r Tr a n s l a t i o n I n va r i a n t M o d e l s i n Q u a n t u m F i e l d T h e o r y M o r t e n G r u d R a s m u s s e n P h DD issertation M a y 2 0 1 0 Supervisor:Jacob Schach Møller Department of Mathematical Sciences Aarhus University Contents Introduction iii 1 Overview 1 1 The Helffer-Sjöstrand Formula .
    [Show full text]
  • Non-Hermitian Quantum Mechanics: the Case of Bound State Scattering Theory 2
    Non-Hermitian quantum mechanics: the case of bound state scattering theory A. Matzkin Laboratoire de Spectrom´etrie physique (CNRS Unit´e5588), Universit´e Joseph-Fourier Grenoble-1, BP 87, 38402 Saint-Martin, France Abstract. Excited bound states are often understood within scattering based theories as resulting from the collision of a particle on a target via a short-range potential. We show that the resulting formalism is non-Hermitian and describe the Hilbert spaces and metric operator relevant to a correct formulation of such theories. The structure and tools employed are the same that have been introduced in current works dealing with PT-symmetric and quasi-Hermitian problems. The relevance of the non-Hermitian formulation to practical computations is assessed by introducing a non- Hermiticity index. We give a numerical example involving scattering by a short-range potential in a Coulomb field for which it is seen that even for a small but non-negligible non-Hermiticity index the non-Hermitian character of the problem must be taken into account. The computation of physical quantities in the relevant Hilbert spaces is also discussed. PACS numbers: 03.65.Ca,03.65.Nk arXiv:quant-ph/0603238v1 26 Mar 2006 Non-Hermitian quantum mechanics: the case of bound state scattering theory 2 1. Introduction The standard formulation of quantum mechanics requires physical observables to be mathematically given in terms of Hermitian operators. In recent years theories with a non-Hermitian Hamiltonian have been receiving an increasing interest sparked by work in the field of PT-symmetric quantum mechanics [1]. PT-symmetric Hamiltonians are complex but nevertheless possess a real spectrum.
    [Show full text]
  • Arxiv:Nucl-Th/9305011 V1 18 May 1993 Nitrcinidpnetfotfr Spin
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server June 6, 2005 . A Theorem on Light-Front Quantum Models∗ Wayne N. Polyzou Department of Physics and Astronomy The University of Iowa Iowa City, Iowa 52242 ABSTRACT I give a sufficient condition for a relativistic front-form quantum mechanical model to be scattering equivalent to a relativistic front-form quantum model with an interaction-independent front-form spin. arXiv:nucl-th/9305011 v1 18 May 1993 Submitted to J. Math. Phys. ∗ This work supported by the U.S. Department of Energy. 1. Introduction In this paper I present a sufficient condition for a relativistic front-from quantum model with an interaction dependent spin operator to be scattering equivalent to a relativistic front- from quantum model with an interaction independent spin. Two quantum mechanical models are scattering equivalent if they are unitarily equivalent and have the same scattering matrix. Thus, scattering equivalent models represent equivalent representations of a given physical system. In formulating models it is desirable to work in a representation that has simplifying features. An undesirable feature of relativistic light-front quantum mechanics is that the front-form Hamiltonian and two components of the total angular momentum necessarily involve interactions. This complication is unavoidable. However, if the angular momentum generators are replaced by the spin operator it does not follow that the spin operator is interaction dependent. In some applications the spin operator naturally involves interactions, but it is also possible to construct models with an interaction independent spin operator.
    [Show full text]
  • Relation Between Instant and Light-Front Formulations of Quantum Field Theory
    PHYSICAL REVIEW D 103, 105017 (2021) Editors' Suggestion Relation between instant and light-front formulations of quantum field theory W. N. Polyzou * Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, USA (Received 16 February 2021; accepted 27 April 2021; published 19 May 2021) The scattering equivalence of quantum field theories formulated with light-front and instant-form kinematic subgroups is established using nonperturbative methods. The difficulty with field theoretic formulations of Dirac’s forms of dynamics is that the free and interacting unitary representations of the Poincar´e group are defined on inequivalent representations of the Hilbert space, which means that the concept of kinematic transformations must be modified on the Hilbert space of the field theory. This work addresses this problem by assuming the existence of a field theory with the expected properties and constructs equivalent representations with instant and front-form kinematic subgroups. The underlying field theory is not initially associated with an instant form or light-front form of the dynamics. In this construction the existence of a vacuum and one-particle mass eigenstates is assumed and both the light-front and instant-form representations are constructed to share the same vacuum and one-particle states. If there is spontaneous symmetry breaking there will be a 0 mass particle in the mass spectrum (assuming no Higgs mechanism). The free field Fock space plays no role. There is no “quantization” of a classical theory. The property that survives from the perturbative approach is the notion of a kinematic subgroup, which means kinematic Poincar´e transformations can be trivially implemented by acting on suitable basis vectors.
    [Show full text]
  • Advanced Quantum Mechanics Alexander Altland Ii Contents
    Advanced Quantum Mechanics Alexander Altland ii Contents 1 Scattering theory 1 1.1 Introduction to quantum scattering . .1 1.1.1 Basic concepts . .1 1.1.2 Types of scattering experiments . .3 1.1.3 Differential cross section (definition) . .4 1.2 General theory of potential scattering . .6 1.2.1 Lippmann-Schwinger equation: derivation . .6 1.2.2 Retardation . .9 1.2.3 Lippmann-Schwinger equation: formal solution . 12 1.2.4 Differential cross section (computation) . 14 1.2.5 Born approximation . 18 1.2.6 Examples . 20 1.3 Centro symmetric scattering . 22 1.3.1 Partial wave decomposition of plane waves . 22 1.3.2 Scattering phase shift . 26 1.3.3 Example: scattering off a potential well . 29 1.3.4 Scattering at ultra-low energies: scattering length and bound states . 31 1.4 Dynamics of scattering . 33 1.4.1 Scattering matrix . 34 1.4.2 Time reversal in scattering theory . 37 1.5 Summary & outlook . 43 2 Second quantization 45 2.1 Introduction to second quantization . 47 2.2 Applications of second quantization . 58 2.2.1 Second quantized model Hamiltonians: two examples . 58 2.2.2 Quantization of the electromagnetic field . 60 2.2.3 Atom-field Hamiltonian . 64 2.2.4 Rabi oscillations . 66 2.3 Summary & Outlook . 70 iii iv CONTENTS 3 Relativistic quantum mechanics 73 3.1 Synopsis of special relativity . 73 3.1.1 Covariant notation . 73 3.1.2 Lorentz group essentials . 74 3.2 Klein-Gordon equation . 77 3.3 Dirac equation . 78 3.3.1 Rotation invariance: SU(2){SO(3) correspondence .
    [Show full text]
  • Relativistic Unitary Description of Ππ Scattering
    Relativistic unitary description of ππ scattering M. A. Pichowsky, A. Szczepaniak, and J. T. Londergan Department of Physics and Nuclear Theory Center, Indiana University, Bloomington, Indiana 47405 ranging from the two-pion threshold up to 1400 MeV. A unitary framework based on the Bakamjian-Thomas This system provides an excellent test for the framework. construction of relativistic quantum mechanics is used to de- A relativistic treatment is quite important when dealing scribe two-pion scattering from threshold to 1400 MeV. The with particles as light as pions and the interplay between framework properly includes unitarity cuts for one-, two- and strong dynamics and chiral symmetry makes this system three-hadron states and provides an excellent description of quite interesting. The ππ system is somewhat simpler the available data for ππ phase shifts and inelasticities. The role and importance of three-hadron cuts are calculated and than others, in that its study requires only a minimal discussed. complication from the proper implementation of rela- tivistic spins, since both of the two-body states (ππ and KK¯ ) involved are comprised of spin-0 particles. Another I. INTRODUCTION attractive aspect of applying the framework to ππ scat- tering is the relative wealth of experimental data for the isoscalar, S-wave channel. A nonperturbative framework capable of describing the One drawback with using ππ scattering as a touchstone relativistic, coupled-channel scattering of hadrons is pre- may be that inelasticities due to open states of three or sented. The approach is based on a relativistic Hamil- more particles, do not appear to be significant for this tonian formulation with model interactions introduced process; that is, the ρππ and ππππ thresholds seem to into the mass operator, and with few-body states imple- have little impact on the S-andP -wave observables.
    [Show full text]