Status of Private Cypress Wetland Forests in Georgia - Alternatives for Conservation and Restoration William Conner Clemson University, [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

Status of Private Cypress Wetland Forests in Georgia - Alternatives for Conservation and Restoration William Conner Clemson University, Wconner@Clemson.Edu Clemson University TigerPrints Publications Plant and Environmental Sciences 2012 Status of Private Cypress Wetland Forests in Georgia - Alternatives for Conservation and Restoration William Conner Clemson University, [email protected] Laura Fabrizio Southern Environmental Law Center Bill Sapp Southern Environmental Law Center Follow this and additional works at: https://tigerprints.clemson.edu/ag_pubs Part of the Forest Sciences Commons Recommended Citation Conner, William; Fabrizio, Laura; and Sapp, Bill, "Status of Private Cypress Wetland Forests in Georgia - Alternatives for Conservation and Restoration" (2012). Publications. 15. https://tigerprints.clemson.edu/ag_pubs/15 This Presentation is brought to you for free and open access by the Plant and Environmental Sciences at TigerPrints. It has been accepted for inclusion in Publications by an authorized administrator of TigerPrints. For more information, please contact [email protected]. STATUS OF PRIVATE CYPRESS WETLAND FORESTS IN GEORGIA Alternatives for Conservation and Restoration ACKNOWLEDGEMENTS We thank the United States Environmental Protection Agency for funding this project, and especially, Jennifer Derby and Tom Welborn for their dedication to conserving Georgia’s cypress resources. We are also grateful to Richard Harper, Jeffery Turner, and Tony Johnson of the U.S. Forest Service, Forest Inventory and Analysis, for their invaluable assistance and train- ing in the retrieval and analysis of the agency’s forest trend data. We thank the Riverkeepers of the Altamaha, Ogeechee, Satilla, and Savannah Rivers for their important contributions to this project. In addition, we wish to express our apprecia- tion to James Holland, the Altamaha Riverkeeper, for the many hours he spent arranging the Wilkinson County case study site visits and working with us in the field to document site conditions. We are grateful to the landowners of the Wilkinson County site for allowing us to evaluate their property and to Mr. Wyndell Berryhall for his assistance in the field. We also wish to thank all those who provided thoughtful review and comments on drafts of this report: Richard Harper, John Greis, Mark Brown, and Tony Johnson of the U.S. Forest Service; Rhett Jackson, Professor of Hydrology, Warnell School of Forestry and Natural Resources, University of Georgia; Frank Green and James Johnson, Georgia Forestry Commission; James Jeter, Ala- bama Forestry Commission; Hughes Simpson, Texas Forest Service; John Swords, U.S. Fish and Wildlife Service; and Shaun Blocker, U.S. Army Corps of Engineers. The Southern Environmental Law Center is a nonprofit organization dedicated to protecting the health and environment of the Southeast (Alabama, Georgia, North Carolina, South Carolina, Tennessee, and Virginia). Founded in 1986, SELC’s team of 40 legal experts represent more than 100 partner groups on issues of climate change and energy, air and water quality, forests, the coast and wetlands, transportation, and land use. Authors: Laura Fabrizio, Southern Environmental Law Center, William Conner, Clemson University, Department of Forestry and Natural Resources, Baruch Institute of Coastal Ecology and Forest Science, and Bill Sapp, Southern Environmental Law Center, Se- nior Attorney Contributors: Chris DeScherer, Adam Kron, and Kathleen Sullivan GIS Analysis and Maps: Jovian Sackett and David Lewis Graphic Design: Ami Somers Funded by: U.S. Environmental Protection Agency Cover photo by Craig Tanner (www.TMElive.com) For more information about SELC, please visit our web site or contact: Southern Environmental Law Center The Candler Building 127 Peachtree Street, Suite 605 Atlanta, GA 30303-1840 Phone 404-521-9900 Fax 404-521-9909 SouthernEnvironment.org Limited Grant of License: Community organizations, other nonprofit institutions and government agencies may make and distribute reproductions of this report for noncommercial, educational purposes. All such copies must include notice of copy- right and license. All other rights reserved. STATUS OF PRIVATE CYPRESS WETLAND FORESTS IN GEORGIA Alternatives for Conservation and Restoration TABLE OF CONTENTS REPORT SUMMARY 2 CHAPTER 1: THE IMPORTANCE OF CYPRESS FORESTS 6 Georgia’s Coast and Its Cypress Resource 6 Cypress Forests and Their Various Types 6 The Future of Georgia’s Cypress Forests 8 CHAPTER 2: CYPRESS STATUS AND TRENDS 9 Data Analyses 9 Forest Service Timber Product and Output 14 GIS Analysis 15 Local Cypress Trends 17 Case Study Site Investigation 22 CHAPTER 3: THE MULTIPLE CAUSES OF CYPRESS VULNERABILITY 30 Increased Demand for Cypress Mulch 30 Hydrologic Changes 31 Regeneration 32 Coastal Development 32 Conversion to Pine Plantations 33 Other Sources of Loss 34 CHAPTER 4: INSUFFICIENT LEGAL PROTECTION FOR GEORGIA’S CYPRESS FORESTS 35 Federal Clean Water Act Section 404 35 Confusion Over Geographically Isolated Cypress Wetlands 35 Silviculture and Forest Road Exemptions 36 Georgia Forestry Commission and Best Management Practices 36 Georgia’s Floodplain BMPs 36 Protection Under the Floodplain BMPs 37 Current Wetland BMPs 37 Forested Wetlands BMPs Needed 38 Other Georgia Forestry Commission Programs 39 CHAPTER 5: ACTIONS NEEDED TO ENSURE CYPRESS SUSTAINABILITY 40 Monitoring and Research 40 Consumer Awareness and Market Practices 4 1 Technical Training and Certifications 4 1 Best Management Practices 4 1 Regulation and Enforcement 4 1 Cypress Resource Alliance 42 REPORT SUMMARY STUDY GOALS AND APPROACH Scientific Literature Review and Case Study Findings Georgia’s coastal plain is home to a wide array of The existing scientific literature and the case study we cypress-dominated wetland ecosystems. Some cypress conducted reveal that we should be concerned about the long- wetlands are found in broad flood plains along rivers, term health of cypress ecosystems in Georgia. Many of the while others are located in small depressions, scattered concerns described below warrant immediate attention. throughout the coastal plain. Wherever cypress ecosys- • Regeneration. Cypress forests are rarely replanted after tems are found, they perform valuable functions. These they are harvested. Foresters generally believe that cypress ecosystems capture and store floodwaters, buffer storm trees will regrow from stump sprouts. As the scientific surges, provide habitat to fish and wildlife, and facilitate literature and our case study reveal, however, stump groundwater recharge. Additionally, these areas provide sprouts are not a reliable form of cypress regeneration and recreational opportunities for sight-seeing, boating, in many cases cypress needs to be replanted to ensure re- birding, hunting, and fishing. And, if managed correctly, growth. certain cypress ecosystems can be a renewable source of • Hydrologic Modifications.Reservoirs, impoundments, high quality commercial wood products. ditches, canals, water withdrawal structures, and outfall Unfortunately, there are numerous threats to Georgia’s structures have altered how water flows across Georgia’s cypress ecosystems. The U.S. Environmental Protec- coastal plain. The need for water supplies to support grow- tion Agency (EPA) funded this study to assess Georgia’s ing metropolitan areas such as Atlanta, Macon and the cypress ecosystems and identify any needed conservation coastal region means the prospect of continued hydro- measures. Specifically, the goals of this study were to 1) logic changes is likely. When these modifications result evaluate the status of private cypress-dominated wet- in prolonged high water levels, cypress seedlings cannot lands in Georgia using existing data; 2) identify any gaps take root. The Georgia Department of Natural Resources in the information needed to characterize this resource has found upstream dams have already impacted cypress and ensure its long-term health; and 3) develop recom- mendations for the conservation and restoration of these ecosystems. Figure 1 The focus of this study was on whether Georgia is los- ing—in quantity and quality—a valuable and irreplace- able ecosystem. The focus was not on whether Georgia is maximizing harvestable cypress timber, but on the conser- vation of cypress forest ecosystems. For instance, mature cypress trees provide important habitat for wildlife. While harvesting old-growth cypress may increase the ecosys- tem’s initial rate of growth, such actions remove habitat that can be lost if cypress regeneration is unsuccessful. KEY STUDY FINDINGS To achieve the goals of this study, we 1) analyzed data on cypress, evaluated a case study site, and considered anecdotal information; 2) evaluated applicable laws, regu- lations, and policies (including forestry Best Management Practices or BMPs); and 3) prepared recommendations designed to increase the protection of cypress ecosystems. We summarize our findings in the sections below: 2 swamps along the Altamaha, Savannah, and Ogeechee National Wetlands Inventory database. We compared Rivers, and as a result, the agency has identified NWI data, which is based on aerial photographs, to Geor- cypress-gum swamps as the number-one priority con- gia Land Use Trends Land Cover of Georgia Data based servation habitat for Georgia’s southern coastal plain.1 on satellite imagery for the period from 1991 to 2005 (See • Development and Insufficient Legal Protection.As Appendix 3). This analysis reveals the following: the economy recovers and more people move to the • Acreage. The cypress ecosystem acreage indentified coast, pressure will increase to fill in cypress swamps to by NWI in
Recommended publications
  • Ghosts of the Western Glades Just Northwest of Everglades National Park Lies Probably the Wildest, Least Disturbed Natural Area in All of Florida
    Discovering the Ghosts of the Western Glades Just Northwest of Everglades National Park lies probably the wildest, least disturbed natural area in all of Florida. Referred to as the Western Everglades (or Western Glades), it includes Fakahatchee Strand State Preserve and Big Cypress National Preserve. Environmentalists that pushed for the creation of Everglades National Park originally wanted this area included in it. But politics and lack of funds prevented this. Several decades passed before Big Cypress National Preserve was born in 1974. Preserves have slightly less restrictive rules than national parks. So how is the Big Cypress Swamp distinct from the Everglades? Even though both habitats have many similarities (sawgrass prairies & tree islands, for instance), the Big Cypress Swamp is generally 1-2 feet higher in elevation. Also, it has a mainly southwesterly flow of water, dumping into the “ten thousand islands” area on Florida’s Gulf of Mexico coast and serving as an important watershed for the River of Grass to the south. Then, of course, there are the cypress trees. Cypress Trees Not surprisingly, of course, is the fact that the Big Cypress Swamp has about 1/3 of its area covered in cypress trees. Mostly they are the small “dwarf pond cypress” trees. (“Big” refers to the large mass of land not the size of the trees.) A few locations, however, still do boast the impressive towering “bald cypress” trees but most of those were logged out between the years 1913 - 1948. Ridge & Slough Topography Topography simply means the relief (or elevation variances) of any particular area of land.
    [Show full text]
  • Limpkin Aramus Guarauna Taxa: Avian SE-GAP Spp Code: Blimp Order: Gruiformes ITIS Species Code: 176197 Family: Aramidae Natureserve Element Code: ABNMJ01010
    Limpkin Aramus guarauna Taxa: Avian SE-GAP Spp Code: bLIMP Order: Gruiformes ITIS Species Code: 176197 Family: Aramidae NatureServe Element Code: ABNMJ01010 KNOWN RANGE: PREDICTED HABITAT: P:\Proj1\SEGap P:\Proj1\SEGap Range Map Link: http://www.basic.ncsu.edu/segap/datazip/maps/SE_Range_bLIMP.pdf Predicted Habitat Map Link: http://www.basic.ncsu.edu/segap/datazip/maps/SE_Dist_bLIMP.pdf GAP Online Tool Link: http://www.gapserve.ncsu.edu/segap/segap/index2.php?species=bLIMP Data Download: http://www.basic.ncsu.edu/segap/datazip/region/vert/bLIMP_se00.zip PROTECTION STATUS: Reported on March 14, 2011 Federal Status: --- State Status: FL (SSC) NS Global Rank: G5 NS State Rank: AL (SNA), FL (S3), GA (S1S2), IL (SNA), MD (SNA), MS (SNA), NC (SNA), TX (SNA), VA (SNA), NS (SNA) bLIMP Page 1 of 4 SUMMARY OF PREDICTED HABITAT BY MANAGMENT AND GAP PROTECTION STATUS: US FWS US Forest Service Tenn. Valley Author. US DOD/ACOE ha % ha % ha % ha % Status 1 34,779.2 < 1 120.6 < 1 0.0 0 0.0 0 Status 2 18,984.4 < 1 26,563.7 < 1 0.0 0 0.0 0 Status 3 0.0 0 154,688.7 2 0.0 0 31,698.2 < 1 Status 4 0.0 0 0.0 0 0.0 0 0.0 0 Total 53,763.7 < 1 181,373.0 3 0.0 0 31,698.2 < 1 US Dept. of Energy US Nat. Park Service NOAA Other Federal Lands ha % ha % ha % ha % Status 1 0.0 0 362,645.8 5 0.0 0 8,464.4 < 1 Status 2 0.0 0 3,173.0 < 1 12,062.5 < 1 77.1 < 1 Status 3 0.0 0 270,295.1 4 0.0 0 0.0 0 Status 4 0.0 0 0.0 0 0.0 0 0.0 0 Total 0.0 0 636,113.9 9 12,062.5 < 1 8,541.5 < 1 Native Am.
    [Show full text]
  • Evaluating the Functional Response of Isolated Cypress Domes to Groundwater Alteration in West-Central Florida
    Evaluating the functional response of isolated cypress domes to groundwater alteration in west-central Florida by Megan Kristine Bartholomew A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama May 6, 2017 Copyright 2017 by Megan Bartholomew Approved by Christopher Anderson, Chair, Professor of Wetland Ecology Robert Boyd, Professor of Plant Ecology Jacob Berkowitz, Research Soil Scientist Abstract The hydrology of a wetland is the single most important determinant of its function and slight alterations can lead to significant changes in plant communities and biogeochemistry within the wetland. Therefore, understanding the influence of hydrology on vegetative and soil processes is pivotal to restoration efforts. This study investigated how hydrologic alteration and recovery influenced wetland vegetation and soil processes in Starkey Wilderness Park (SWP), a well-field in west-central Florida. Vegetation responses to groundwater alterations were observed using long term species and hydrologic data collected from SWP. The results from the vegetation study suggest that hydrologic recovery has restored vegetative functions and measures, such as species richness and hydrophytic assemblages, in a relatively short (5-7 year) period. However, differences in species composition and community variation persist in wetlands of various degrees of hydrologic alterations. A field study was also conducted to determine how hydrologic alterations continue to affect wetland decomposition rates and other soil processes. After eight years of hydrologic recovery, altered wetlands experienced faster decomposition than reference wetlands and rates seemed to be linked to differences in both inundation and percent soil organic matter.
    [Show full text]
  • Status of Private Cypress Wetland Forests in Georgia
    STATUS OF PRIVATE CYPRESS WETLAND FORESTS IN GEORGIA Alternatives for Conservation and Restoration ACKNOWLEDGEMENTS We thank the United States Environmental Protection Agency for funding this project, and especially, Jennifer Derby and Tom Welborn for their dedication to conserving Georgia’s cypress resources. We are also grateful to Richard Harper, Jeffery Turner, and Tony Johnson of the U.S. Forest Service, Forest Inventory and Analysis, for their invaluable assistance and train- ing in the retrieval and analysis of the agency’s forest trend data. We thank the Riverkeepers of the Altamaha, Ogeechee, Satilla, and Savannah Rivers for their important contributions to this project. In addition, we wish to express our apprecia- tion to James Holland, the Altamaha Riverkeeper, for the many hours he spent arranging the Wilkinson County case study site visits and working with us in the field to document site conditions. We are grateful to the landowners of the Wilkinson County site for allowing us to evaluate their property and to Mr. Wyndell Berryhall for his assistance in the field. We also wish to thank all those who provided thoughtful review and comments on drafts of this report: Richard Harper, John Greis, Mark Brown, and Tony Johnson of the U.S. Forest Service; Rhett Jackson, Professor of Hydrology, Warnell School of Forestry and Natural Resources, University of Georgia; Frank Green and James Johnson, Georgia Forestry Commission; James Jeter, Ala- bama Forestry Commission; Hughes Simpson, Texas Forest Service; John Swords, U.S. Fish and Wildlife Service; and Shaun Blocker, U.S. Army Corps of Engineers. The Southern Environmental Law Center is a nonprofit organization dedicated to protecting the health and environment of the Southeast (Alabama, Georgia, North Carolina, South Carolina, Tennessee, and Virginia).
    [Show full text]
  • The Effects of Urbanization on the Structure, Quality, and Diversity of Cypress Plant Communities in Central Florida
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2009 The Effects Of Urbanization On The Structure, Quality, And Diversity Of Cypress Plant Communities In Central Florida Courtney Knickerbocker University of Central Florida Part of the Biology Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Knickerbocker, Courtney, "The Effects Of Urbanization On The Structure, Quality, And Diversity Of Cypress Plant Communities In Central Florida" (2009). Electronic Theses and Dissertations, 2004-2019. 4044. https://stars.library.ucf.edu/etd/4044 THE EFFECTS OF URBANIZATION ON THE STRUCTURE, QUALITY, AND DIVERSITY OF CYPRESS PLANT COMMUNITIES IN CENTRAL FLORIDA by COURTNEY M. KNICKERBOCKER B.A. University of Central Florida, 2002 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Biology In the College of Sciences at the University of Central Florida Orlando, Florida Spring Term 2009 © 2009 Courtney Knickerbocker ii ABSTRACT The integrity of wetland ecosystems is largely determined by hydrological functionality, degree of connectivity to like ecosystems, and permeability to external influence. Land use changes in upland areas adjacent to wetland ecosystems may influence hydrology and connectivity while introducing novel biotic and abiotic materials. There is an increasing trend toward the use of remote assessment techniques to determine the degree of impact of external influences on adjacent wetlands.
    [Show full text]
  • The Everglades National Park and Big Cypress National Preserve
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The Everglades National Park and Big Cypress National Preserve Vegetation Mapping Project Interim Report—Eastern Big Cypress (Regions 5 & 6), Big Cypress National Preserve Natural Resource Report NPS/SFCN/NRR—2019/2035 ON THE COVER Photograph of flooded Cypress Dome, Big Cypress National Preserve. Photo credit Magali Guichardot (21 July 2017). The Everglades National Park and Big Cypress National Preserve Vegetation Mapping Project Interim Report—Eastern Big Cypress (Regions 5 & 6), Big Cypress National Preserve Natural Resource Report NPS/SFCN/NRR—2019/2035 Pablo L. Ruiz1, Anna Lee1, Carl Thompson1, Ivan Castillo2, Magali Guichardot2, Craig P. Perry1, Alejandro Arteaga Garcia1, Michael Foguer1, Michelle C. Prats1, Ellen Garcia2, Samantha Lamosa2, Robert B. Shamblin1, and Kevin R. T. Whelan1 1South Florida Caribbean Network Inventory and Monitoring Program 18001 Old Cutler Road, Suite 419 Palmetto Bay, Florida 33157 2Florida International University 11200 SW 8th Street Miami, Florida 33199 October 2019 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Mapping Ecological Systems in the East Gulf Coastal Plain
    A SATELLITE DERIVED MAP OF ECOLOGICAL SYSTEMS IN THE EAST GULF COASTAL PLAIN, USA Except where reference is made to the work of others, the work described in this thesis is my own or was done in collaboration with my advisory committee. This thesis does not include proprietary or classified information. ____________________ Kevin James Kleiner Certificate of Approval: _________________________ _________________________ Philip L. Chaney Mark D. MacKenzie, Chair Associate Professor Assistant Professor Geology and Geography Forestry and Wildlife Sciences _________________________ _________________________ Lawrence D. Teeter Joe F. Pittman Professor Interim Dean Forestry and Wildlife Sciences Graduate School A SATELLITE DERIVED MAP OF ECOLOGICAL SYSTEMS IN THE EAST GULF COASTAL PLAIN, USA Kevin James Kleiner A Thesis Submitted to the Graduate Faculty of Auburn University in Partial Fulfillment of the Requirements for the Degree of Master of Science Auburn, Alabama August 4, 2007 A SATELLITE DERIVED MAP OF ECOLOGICAL SYSTEMS IN THE EAST GULF COASTAL PLAIN, USA Kevin James Kleiner Permission is granted to Auburn University to make copies of this thesis at its discretion, upon request of individuals or institutions and at their expense. The author reserves all publication rights. ____________________________ Signature of Author ____________________________ Date of Graduation iii VITA Kevin James Kleiner, son of Thomas and Lynette Kleiner, was born on December 1, 1969 in Waukegan, Illinois. He graduated from Grayslake Community High School in 1987 and completed a bachelor of science degree in Mechanical Engineering at the University of Illinois at Urbana-Champaign in May, 1993. He is currently employed by Auburn University as a Research Assistant in the School of Forestry and Wildlife Sciences.
    [Show full text]
  • Appendices I Through VIII
    APPENDIX I: Standards for Ecological Classification A given terrestrial ecological system is defined as a group of plant community types that tend to co-occur within landscapes with similar ecological processes, substrates, and/or environmental gradients. A given terrestrial ecological system will typically manifest itself in a landscape at intermediate geographic scales of 10s to 1,000s of hectares and persist for 50 or more years. Ecological processes include natural disturbances such as fire and flooding. Substrates may include a variety of soil surface and bedrock features, such as shallow soils, alkaline parent materials, sandy/gravelling soils, or peatlands. Finally, environmental gradients include hydrologically defined patterns in coastal zones, arid grassland or desert areas, or montane, alpine or subalpine zones defined by climate. By plant community type, we mean a vegetation classification unit at the association or alliance level of the US National Vegetation Classification (US-NVC) (Grossman et al. 1998, Jennings et al. 2003, NatureServe 2004), or, if these are not available, other comparable vegetation units. US-NVC associations are used wherever possible to describe the component biotic communities of each terrestrial system. Ecological systems are defined using both spatial and temporal criteria that influence the grouping of associations. Associations that consistently co-occur on the landscape therefore define biotic components of each ecological system type. Our approach to ecological systems definition using US-NVC associations is similar to the biotope or habitat approach used, for example, by the EUNIS habitat classification, which explicitly links meso-scale habitat units to European Vegetation Survey alliance units (Rodwell et al. 2002).
    [Show full text]
  • Purple Gallinule
    Purple Gallinule Porphyrio martinica Taxa: Avian SE-GAP Spp Code: bPUGA Order: Gruiformes ITIS Species Code: 176280 Family: Rallidae NatureServe Element Code: ABNME12010 KNOWN RANGE: PREDICTED HABITAT: P:\Proj1\SEGap P:\Proj1\SEGap Range Map Link: http://www.basic.ncsu.edu/segap/datazip/maps/SE_Range_bPUGA.pdf Predicted Habitat Map Link: http://www.basic.ncsu.edu/segap/datazip/maps/SE_Dist_bPUGA.pdf GAP Online Tool Link: http://www.gapserve.ncsu.edu/segap/segap/index2.php?species=bPUGA Data Download: http://www.basic.ncsu.edu/segap/datazip/region/vert/bPUGA_se00.zip PROTECTION STATUS: Reported on March 14, 2011 Federal Status: --- State Status: AL (GB), IL (RE), KY (N), NC (SR), NV (YES), NY (PB - GS), UT (None), QC (Non suivie) NS Global Rank: G5 NS State Rank: AL (S3B), AR (S1B), AZ (SNA), CO (SNA), CT (SNA), DC (SNA), DE (SNA), FL (SNR), GA (S4), IL (SNA), IN (SNA), KS (SNA), KY (SNA), LA (S4B), MD (SNA), ME (SNA), MI (SNA), MS (S3B), NC (S1?B), NJ (SNA), NM (SNA), NV (SNA), NY (SNRN), OH (SNA), OK (S1), PA (SNA), SC (S4), TN (S1B), TX (S4B), UT (SNA), VA (SNA), WI (SNA), WY (SNA), LB (SNA), NB (SNA), NF (SNA), NS (SNA), ON (SNA), QC (SNA) bPUGA Page 1 of 5 SUMMARY OF PREDICTED HABITAT BY MANAGMENT AND GAP PROTECTION STATUS: US FWS US Forest Service Tenn. Valley Author. US DOD/ACOE ha % ha % ha % ha % Status 1 35,579.2 < 1 5,270.3 < 1 0.0 0 0.0 0 Status 2 43,474.2 < 1 30,150.2 < 1 0.0 0 1.5 < 1 Status 3 0.0 0 226,716.6 3 0.0 0 67,074.4 1 Status 4 0.0 0 0.0 0 0.0 0 0.0 0 Total 79,053.4 1 262,137.1 4 0.0 0 67,075.9 1 US Dept.
    [Show full text]
  • Attribute Data Dictionary
    Name Description ZONE 1 - Northern Cascades 2 - Oregon Coastal Range 3 - Northern California Coastal Range 4 - Southern California Coastal Range 5 - California Central Valley 6 - Sierra Nevada Mountain Range 7 - Cascade Mountain Range 8 - Grande Coulee Basin of the Columbia Plateau 9 - Blue Mountain Region of the Columbia Plateau 10 - Northwestern Rocky Mountains 12 - Western Great Basin 13 - Death Valley Basin 14 - Sonoran Desert 15 - Mogollon Rim 16 - Utah High Plateaus 17 - Eastern Great Basin 18 - Snake River Plain 19 - Northern Rocky Mountains 20 - Missouri River Plateau 21 - Middle Rocky Mountains 22 - Wyoming Basin 23 - Colorado Plateau 24 - Navajo Plateau 25 - Rio Grande Basin 26 - Chihuahuan Desert 27 - Great Plains Tablelands 28 - Southern Rocky Mountains 29 - Wyoming Highlands 30 - Northwestern Great Plains 31 - Sandhills 32 - Southeastern Great Plains 33 - Western Great Plains 34 - Southern Great Plains 35 - Edwards Plateau 36 - Western Gulf Plains 37 - Ouachita Hills 38 - Eastern Great Plains 39 - Prairie Coteau Lands 40 - Northern Great Plains 41 - Northern Lake Country 42 - Western Till Plains 43 - Till Plains 44 - Ozark Highlands 45 - Mississippi Alluvial Plains 46 - Gulf Plains 47 - Appalachia Bluegrass Hills 48 - Cumberland Highlands 49 - Central Till Plains 50 - Central Great Lakes Uplands 51 - Great Lakes Plains 52 - Eastern Till Plains 53 - Appalachia 54 - Southern Piedmont 55 - Southeastern Coastal Plain 56 - Floridian Coastal Plain 57 - Southern Appalachia 58 - Eastern Coastal Plain 59 - Northeastern Piedmont 60
    [Show full text]
  • Fire Reinforces Structure of Pondcypress (Taxodium Distichum Var. Imbricarium) Domes in a Wetland Landscape
    Wetlands DOI 10.1007/s13157-012-0277-9 ARTICLE Fire Reinforces Structure of Pondcypress (Taxodium distichum var. imbricarium) Domes in a Wetland Landscape Adam C. Watts & Leda N. Kobziar & James R. Snyder Received: 10 July 2011 /Accepted: 17 January 2012 # Society of Wetland Scientists 2012 Abstract Fire periodically affects wetland forests, particu- mortality in these swamps, and imply the existence of feed- larly in landscapes with extensive fire-prone uplands. Rare backs that maintain the characteristic shape of cypress occurrence and difficulty of access have limited efforts to domes. understand impacts of wildfires fires in wetlands. Following a 2009 wildfire, we measured tree mortality and structural Keywords Delayed mortality. Edge effect . Fire severity. changes in wetland forest patches. Centers of these circular Logistic regression . Patch size . Wetland forest landscape features experienced lower fire severity, although no continuous patch-size or edge effect was evident. Initial survival of the dominant tree, pondcypress (Taxodium dis- Introduction tichum var. imbricarium), was high (>99%), but within one year of the fire approximately 23% of trees died. Delayed Isolated wetland communities often are situated in land- mortality was correlated with fire severity, but unrelated to scape mosaics among uplands that experience relatively other hypothesized factors such as patch size or edge dis- frequent fire events. Such landscape mosaics of widely tance. Tree diameter and soil elevation were important pre- divergent fire frequencies occur worldwide in regions where dictors of mortality, with smaller trees and those in areas lightning strikes provide ignition sources. Due to seasonal with lower elevation more likely to die following severe fire.
    [Show full text]
  • Can Rewatering Reverse the Effects of Regional Drainage
    CAN REWATERING REVERSE THE EFFECTS OF REGIONAL DRAINAGE ON FOREST COMMUNITIES OF THE BIG CYPRESS SWAMP? by Scott M. T. Park A Thesis Submitted to the Faculty of The Charles E. Schmidt College of Science in Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton , Florida May 2002 Can rewatering reverse the effects of regional drainage on forest communities of the Big Cypress Swamp? by Scott M. T. Park This thesis was prepared under the direction of the candidate's thesis advisor, Dr. John C. Volin, Division of Biological Sciences, and has been approved by the members of his supervisory committee. It was submitted to the faculty of The Charles E. Schmidt College of Science and was accepted in partial fulfillment of the requirements for the degree of Master of Science. SUPERVISORY COMMITTEE: Dr. Daniel F. Austin Dr. William A. Dunson Director, Envrronmental Sciences Program Vice Provost II ACKNOWLEDGEMENTS I wish to thank Dr. John C. Volin for his mentoring and research assistantship throughout my studies. Also, Dr. Daniel F. Austin and Dr. William A. Dunson for their continued guidance to focus my efforts through numerous turns in the thesis process. In addition, I would like to express my sincere gratitude to Dr. Dianne Owen for her "youthful enthusiasm" with statistical analysis. I am truly grateful to everyone who has helped me to collect data. Especially, I would like to thank Michelle DaCosta, Jordan Muss, Michael Lott, John Erickson and Molly Taylor for their willingness to "swamp tromp" to sampling sites. Most importantly, I would also like to thank Dara Park, who helped me enjoy the rain as well as the sunny weather.
    [Show full text]