Business Process Modelling and Workflow Patterns

Total Page:16

File Type:pdf, Size:1020Kb

Business Process Modelling and Workflow Patterns Business Process Modelling and Workflow Patterns Arthur ter Hofstede Queensland University of Technology Brisbane, Australia R a university for the real world © 2008, www.yawlfoundation.org Acknowledgement • This presentation uses slides prepared by the following people: – Wil van der Aalst, TUE & QUT – Michael Adams, QUT – Lachlan Aldred, QUT – Arthur ter Hofstede, QUT – Marcello La Rosa, QUT – Nick Russell, QUT – Petia Wohed, SU/KTH – Moe Wynn, QUT R © 2008,a university www.yawlfoundation.org for the real world 2 Outline • Background – WfMS and PAIS • Conceptual Foundation - the Workflow Patterns Initiative – Part I • Control-flow patterns • Data patterns • Resource patterns • Next-Generation Business Process Management with YAWL – Part II • The YAWL language • The YAWL system R © 2008,a university www.yawlfoundation.org for the real world 3 Terminology • WF – “The automation of a business process, in whole or part, during which documents, information or tasks are passed from one participant to another for action according to a set of procedural rules.” WfMC, Terminology & Glossary, WFMC-TC-1011 3.0, February 1999 • PAIS – “A software system that manages and executes operational processes involving people, applications, and/or resources on the bases of process models.” M. Dumas, W. van der Aalst, A. ter Hofstede, Process-Aware Information Systems: Bridging People and Software through Process Technology, John Wiley & Sons, 2005 R © 2008,a university www.yawlfoundation.org for the real world 4 The PAIS life cycle Business diagnosis process Process design Modelling Tools Project Management Tools Workflow process process Management enactment implementation Systems M. Dumas, W. van der Aalst, A. ter Hofstede, Process-Aware Information Systems: Bridging People and Software through Process Technology, John Wiley & Sons, 2005 R © 2008,a university www.yawlfoundation.org for the real world 5 Setting the scene – Workflow: What and Why? • Support for coordination of humans and applications in performing business activities • Explicit representation of control flow dependencies and resourcing strategies • Benefits: – Improved efficiency (time, cost) – Compliance – Improved responsiveness R © 2008,a university www.yawlfoundation.org for the real world 6 Perspectives • Control-Flow – Which tasks need to be executed and in what order • Data – What data elements exist, to whom are they visible, how are they passed on • Resources – Who is authorised to execute certain tasks, are tasked assigned by the system or can participants volunteer for their execution, on what basis is work assigned Sometimes these perspectives are explained in terms of Who (Resource), What (Data) and When (Control-flow) These perspectives follow S. Jablonski and C. Bussler’s classification from: Workflow Management: Modeling Concepts, Architecture, and Implementation. International Thomson Computer Press, 1996 R © 2008,a university www.yawlfoundation.org for the real world 7 Workflow Animation © Wil van der Aalst, Vincent Almering and Herman Wijbenga R © 2008,a university www.yawlfoundation.org for the real world 8 Problems in the field of Workflow/BPM • Lack of commonly accepted conceptual foundations • Lack of proper formal foundations (this despite the amount of buzz …) • No lack of proposed standards … • Tools are typically hard to use, expensive and not easily integrated • Lack of support for processes that need to change on-the-fly • Lack of proper support for exceptions • Limited support for design time analysis (verification and validation) • Resource perspective particularly underwhelming • Insufficient support for inter-process communication R © 2008,a university www.yawlfoundation.org for the real world 9 Lack of commonly accepted conceptual foundations How do various workflow environments deal with this? Β Α AND OR D C • Forbid • Execute D once, ignore second triggering • Execute D twice • Execute D once or twice depending on execution … R © 2008,a university www.yawlfoundation.org for the real world 10 Workflow Patterns Initiative • Started in 1999, joint work TU/e and QUT • Objectives: – Identification of workflow modelling scenarios and solutions – Benchmarking • Workflow products (MQ/Series Workflow, Staffware, etc) • Proposed standards for web service composition (BPML, BPEL) • Process modelling languages (UML, BPMN) • Open Source BPM offerings (jBPM, OpenWFE, Enhydra Shark) – Foundation for selecting workflow solutions • Home Page: www.workflowpatterns.com • Primary publication: – W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, A.P. Barros, “Workflow Patterns”, Distributed and Parallel Databases 14(3):5-51, 2003. • Evaluations of commercial offerings, research prototypes, proposed standards for web service composition, etc R © 2008,a university www.yawlfoundation.org for the real world 11 The Workflow Patterns Framework time 2000 2003 Jun 2005 Oct 2005 SepJun 20062006 revised Control-flow P:s 20 Resource P:s - 43 Data P:s - 40 Control-flowException P:s P:s 43 W. van der Aalst N. Russell N. Russell N.N. RussellRussell A. ter Hofstede W. van der Aalst A. ter Hofstede A.W. tervan Hofstede der Aalst B. Kiepuszewski A. ter Hofstede D. Edmond W.A. tervan Hofstede der Aalst A. Barros D. Edmond W. van der Aalst N. Mulyar The ordering of Resource definition Data representation Exception- 23 new patterns handling activities in a & work distribution and handling in a in- Formaliseda process in process in a process process CPN notation CoopIS’2000 CAiSE’2005 ER’2005 TRCAiSE’2006 DAPD’2003 R © 2008,a university www.yawlfoundation.org for the real world 12 The Workflow Patterns Framework time 2000 2003 Jun 2005 Oct 2005 Control-flow P:s 20 Resource P:s - 43 Data P:s - 40 Ex E COSA Domino Workflow Staffware Staffware Staf v FLOWer Visual Workflow WebSphere MQ MQSeries We a Eastman Forte Conductor FLOWer FLOWer FLO l Meteor MQSeries/Workflow COSA COSA CO iPla u Mobile SAR R/3 Workflow iPlanet I-Flow Verve Workflow a Staffware Changengine t InConcert I o n XPDL, BPEL4WS, BPML, BPEL4WS XPDL, BPEL4WS XPD s WSFL, XLANG, WSCI, UML AD 2.0 UML AD 2.0, BPMN BPE UML AD 1.4 UML AD 2.0, BPMN BPMN L a n g u a g e D e v e l o p m e n t: YAWL/newYAWL R © 2008,a university www.yawlfoundation.org for the real world 13 Impact of the Workflow Patterns Systems inspired or directly influenced by the patterns FLOWer 3.0 of Pallas Athena Ivolutia Orchestration Bizagi of Vision Software OpenWFE (an open source WFMS) Staffware Process Suite Zebra (an open source WFMS) Pectra Technology Inc.’s tool Alphaflow (an open source WFMS) Lynx Workflow by InsuraPro jBPM (a free workflow engine) Use of the workflow patterns in selecting a WFMS the Dutch Employee Insurance Administration Office the Dutch Justice Department Other Pattern-based evaluations (e.g. ULTRAflow, OmniFlow, @enterprise, BPMN) Citations (1000+ according to Google Scholar) Education (used in teaching at 10+ Universities) R © 2008,a university www.yawlfoundation.org for the real world 14 Why revisit control flow? • Lack of precision – Solution: CPN formalisation + Context conditions • Merging of various concepts – Solution: A number of patterns were split • Certain patterns missing – Solution: Addition of those patterns R © 2008,a university www.yawlfoundation.org for the real world 15 Approach • All original patterns were reviewed • All continue to serve a valid purpose – Some were retained in original form but with more explicit context conditions and detailed semantics – Others were subdivided along different dimensions (the most basic interpretation replaced the original pattern, the others were added) • New patterns were identified and included • Explicit evaluation criteria were added • Evaluations were completely revised R © 2008,a university www.yawlfoundation.org for the real world 16 The New Control-flow Patterns • Basic Control-flow Patterns • Multiple Instances (MI) Patterns capture elementary aspects of delineate situations with multiple control-flow (similar to the threads of execution in a workflow concepts provided by the WFMC). which relate to the same activity. • Advanced Branching and • State-based Patterns Synchronization Patterns reflect situations which are most describe more complex branching easily modelled in WF languages and synchronization scenarios. with an explicit notion of state. • Iteration Patterns • Cancellation Patterns describe various ways in which categorise the various cancellation iteration may be specified. scenarios that may be relevant for a workflow specification. • Termination Patterns address the issue of when the • Trigger Patterns execution of a workflow is catalogue the different triggering considered to be finished. mechanisms appearing in a process context. R © 2008,a university www.yawlfoundation.org for the real world 17 Structure of a Control-flow pattern • Description: what is it? • Synonym(s) • Example(s) • Motivation: why needed? • Context: conditions + CPN formalisation • Implementation: how typically realised? • Issues: what problems can be encountered? • Solutions: how and to what extent can these problems be overcome? • Evaluation criterion R © 2008,a university www.yawlfoundation.org for the real world 18 Sequence An activity in a workflow process is enabled after the completion of a preceding activity in the same process. R © 2008,a university www.yawlfoundation.org for the real world 19 Basic Control-flow Patterns • Pattern 2: Parallel split, initiation of parallel threads • Pattern 3: Synchronisation, wait for all incoming threads – context assumption:
Recommended publications
  • Service Interaction: Patterns, Formalization, and Analysis
    Service Interaction: Patterns, Formalization, and Analysis 9th International School on Formal Methods for the Design of Computer, Communication and Software Systems: Web Services (SFM-09:WS), Bertinoro, Italy, June 1-6, 2009. prof.dr.ir. Wil van der Aalst www.vdaalst.org Joint work with Arjan Mooij, Christian Stahl, and Karsten Wolf BEST: Berlin - Rostock- Eindhoven Service Technology Program http://www2.informatik.hu-berlin.de/top/best/ PAGE 1 Outline • Introduction to Service Interaction • Workflow and Service Interaction Patterns • Challenging Analysis Questions • A "Crash Course" in Petri Nets • Exposing Services • Replacing and Refining Services • Integrating Services Using Adapters • Service Mining • Conclusion PAGE 2 Introduction to Service Interaction Service-Orientation: Basic Idea invoke receive reply PAGE 4 Service Networks PAGE 5 Choreography PAGE 6 Orchestration orchestration service B service service C A service D PAGE 7 Workflow? PAGE 8 Some Terminology service choreography service definition activity channel activity port channel message port service definition service definition interface interface Important assumption: asynchronous communication. PAGE 9 Interaction is a source of errors! PAGE 10 PAGE 11 deadlock PAGE 12 restaurant is "uncontrollable"* customer is *by any service with only dead "controllable" but will final markings never get any food PAGE 13 PAGE 14 Workflow and Service Interaction Patterns MS Workflow Foundation Global 360 BPM Suite YAWL FileNet InConcert Fujitsu Interstage Axxerion BWise Software AG/webMethods
    [Show full text]
  • Application of Clustering Filters in Order to Exclude Irrelevant
    Turkish Journal of Computer and Mathematics Education Vol.12 No.6 (2021), 1815-1827 Research Article Application of Clustering Filters in Order to Exclude Irrelevant Instances of the Process Before Using Reinforcement Learning to Optimize Business Processes in the Bank Andrey A. Bugaenko* Data Science Director, Sberbank PJSC, Moscow, Russia *Corresponding author: Email: [email protected], [email protected] ORCID 0000-0002-3372-5652 Article History: Received: 10 November 2020; Revised 12 January 2021 Accepted: 27 January 2021; Published online: 5 April 2021 ___________________________________________________________________________ Abstract The research offers and describes the use of clustering filters in order to exclude preliminarily the instances of the process, which contain errors, and which are not related directly with the business process, and, accordingly, are irrelevant for the analysis. Comparison of 15 types of filters was performed using mapped-out data. It was shown that successful preliminary filtering is possible before the application of reinforcement learning for business process analysis, which reduces the data processing amount. Key words Machine learning, process mining, clustering filters, DBSCAN, SVM, robust covariance, isolation forest, local outlier factor, banking. ___________________________________________________________________________ Introduction Currently, when applying reinforcement learning in order to analyze business processes in the bank divisions[14]-[15], we quite often see the situation, when the erroneous actions of managers performing the process, which are not related to the business process directly, are logged in the system and drawn in the network graph of the process as additional nodes, thus distorting the actual time of the completion of the process nodes. This not only distorts the vision of the process, but makes the network graph more complicated, and most importantly, slows down data processing materially.
    [Show full text]
  • Facilitating Dynamic Flexibility and Exception Handling for Workflows
    Facilitating Dynamic Flexibility and Exception Handling for Workflows by Michael James Adams B.Comp (Hons) A dissertation submitted for the degree of IF49 Doctor of Philosophy Principal Supervisor: Associate Professor Arthur H.M. ter Hofstede Associate Supervisors: Dr David Edmond & Professor Wil M.P. van der Aalst Faculty of Information Technology Queensland University of Technology Brisbane, Australia 14 November 2007 Certificate of Acceptance i Keywords workflow exception handling, workflow flexibility, adaptive workflow, service oriented architecture, Activity Theory, Ripple-Down Rules, worklet, exlet, YAWL ii Abstract Workflow Management Systems (WfMSs) are used to support the modelling, analysis, and enactment of business processes. The key benefits WfMSs seek to bring to an or- ganisation include improved efficiency, better process control and improved customer service, which are realised by modelling rigidly structured business processes that in turn derive well-defined workflow process instances. However, the proprietary process definition frameworks imposed by WfMSs make it difficult to support (i) dynamic evo- lution and adaptation (i.e. modifying process definitions during execution) following unexpected or developmental change in the business processes being modelled; and (ii) exceptions, or deviations from the prescribed process model at runtime, even though it has been shown that such deviations are a common occurrence for almost all processes. These limitations imply that a large subset of business processes do not easily translate to the ‘system-centric’ modelling frameworks imposed. This research re-examines the fundamental theoretical principles that underpin workflow technologies to derive an approach that moves forward from the production- line paradigm and thereby offers workflow management support for a wider range of work environments.
    [Show full text]
  • Curriculum Vitae Michael Zur Muehlen 939 Bloomfield Street Hoboken, NJ 07030, USA Home Phone: +1 (551) 208‐1071
    Curriculum Vitae Michael zur Muehlen 939 Bloomfield Street Hoboken, NJ 07030, USA Home Phone: +1 (551) 208‐1071 Management Summary . Internationally respected authority on Business Process Innovation and Operational Risk Management . Assistant Professor, School of Technology Management, Stevens Institute of Technology . Independent Business Process Management & Transformation Consultant . FelloW, WorkfloW Management Coalition . Author of dozens of peer‐revieWed research studies and published articles Synopsis Dr. Michael zur Muehlen directs the SAP/IDS Scheer Center of Excellence in Business Process Innovation at Stevens Institute of Technology, in Hoboken, NJ, and is responsible for Stevens’ graduate and executive education programs in Business Process Management and Service Innovation. He has over 15 years of experience in the field of process automation and WorkfloW management, and has led numerous process improvement and design projects in the utility, financial services, industrial, and telecommunications sector both in Germany and the US. Prior to his appointment at Stevens, Michael Was a senior lecturer at the Department of Information Systems, University of Muenster, Germany, and a visiting lecturer at the University of Tartu, Estonia. An active contributor to standards in the BPM area, Michael Was named a felloW of the WorkfloW Management Coalition in 2004 and chairs the WfMC Working group “Management and Audit”. He studies the practical use of process modeling standards, techniques to manage operational risks in business processes, and the integration of business processes and business rules. SAP Research, the US Army, the Australian Research Council, and private sponsors have funded his research. Michael has presented his research in more than 20 countries. He is the author of a book on WorkfloW‐based process controlling, numerous journal articles, conference papers, book chapters and Working papers on process management and WorkfloW automation.
    [Show full text]
  • Business Process Trends Spotlight
    Spotlight Volume 5, Number 1 January 17, 2012 January Sponsor Academic BPM INTRODUCTION In this Spotlight, we offer some thoughts on what is happening in the BPM academic world, include several of the publications authored by BPM academics and researchers that we have published on BPTrends, and provide some resources for people interested in academic BPM. I imagine that there are many Business Process Practitioners out there who are like me – they switch back and forth between fearing that we are simply involved in a consulting activity that will have a new name in 3-4 years, and feeling confident that we are well on the way to being a profession with a recognized core body of knowledge and best practices. I have been around long enough to watch Performance Improvement, Six Sigma, Business Process Reengineering, Lean and Business Process Management enjoy their moment in the sun. I continue to hope that Business Process Management (BPM) will evolve as a sustainable concept that embraces all of the earlier practices, that is supported by am established body of knowledge and best practices that is recognized and embraced by organizations world-wide. It’s difficult for consultants to market and sell a comprehensive BPM solution because we are often dealing with organizations that seek to play one approach against another. “So,” a company manager might say, “just how is your BPM approach different from Six Sigma or Lean, and why should we use BPM for this project?.” In this context, it is often difficult to explain that BPM is a more comprehensive approach to process improvement that is focused on aligning, integrating, measuring and managing all of an organization’s business processes and that BPM includes the application of all the other available techniques, where and when they are appropriate.
    [Show full text]
  • Process Mining of Enterprise Applications Based on Outsystems Agile Platform
    Process Mining of Enterprise Applications based on OutSystems Agile Platform Alexandre L. Gouveia IST – Instituto Superior Técnico Avenida Prof. Dr. Cavaco Silva 2744-016 Porto Salvo, Portugal E-mail: [email protected] Abstract. Process Mining allows the analysis of business processes based on event logs. When a certain application is running, data referring to its events are recorded to these event logs. Using the details of the recorded events, such as their identification, their status, the date and time they were executed and the connection they have to other events, the business processes embedded in this application can be discovered. By an analysis of a considerable amount of events through process mining algorithms, it is possible to reveal behavioral patterns as well as the process model that drives the application execution. Through the study and comparison of these patterns and models with the ones that modeled the application, an overall improvement to the application may be achieved through successive refinements. The purpose of this paper is to illustrate how process mining can be applied in a specific application development platform, namely the Agile Platform of OutSystems. Keywords: Process Mining, OutSystems Platform, Agile Development, Event Log, Process Models 1 Introduction The term of Process Mining was introduced by [6] for the method of extracting the description of a structured process from a set of events, where each event refers to a task (i.e., a real execution). In their work they referred to process discovery concepts [12] and the idea of applying this method on the context of workflow management [8].
    [Show full text]
  • Hybrid Intelligence to Automate Or Not to There Used to Be a Clear Separation Between Automate, That Is the Question Tasks Done by Machines and Tasks Done by People
    prof.dr.ir Wil van der Aalst Hybrid RWTH Aachen University Intelligence Hybrid Intelligence To Automate or Not to There used to be a clear separation between Automate, That is the question tasks done by machines and tasks done by people. Applications of Machine Learning (ML) and Robotic Process Automation (RPA) have machine learning in lowered the threshold to automate tasks previously done by humans. speech recognition (e.g., Yet organizations are struggling to apply ML and RPA, effectively causing many digital transformation initiatives to fail. Process Mining (PM) Alexa and Siri), image techniques help to decide what should be automated and what not. recognition, automated Interestingly, most processes work best using a combination of human translation, autonomous and machine intelligence. Therefore, we relate Hybrid Intelligence (HI) driving, and medical to process management and process automation using RPA and PM. diagnosis, have blurred the classical divide between human tasks and machine tasks. Although current AI technology outperforms humans in many areas, tasks requiring common sense, contextual knowledge, creativity, adaptivity, and empathy As Niels Bohr once said "It is difficult to make predictions, especially about the future" and, of course, this also applies to process are still best performed management and automation. In 1964, the RAND Corporation published by humans. Hybrid a report with predictions about technological development based on the Intelligence (HI) blends expectations of 82 experts across various fields. For 1980, the report human intelligence and predicted that there would be a manned landing on Mars and families machine intelligence to would have robots as household servants. We are still not any way close combine the best of both to visiting Mars and, 40 years later, we only have robot vacuum cleaners.
    [Show full text]
  • Easychair Preprint Object-Centric Process Mining: Dealing With
    EasyChair Preprint № 2301 Object-Centric Process Mining: Dealing With Divergence and Convergence in Event Data Wil M.P. van der Aalst EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair. January 2, 2020 Object-Centric Process Mining: Dealing With Divergence and Convergence in Event Data Wil M.P. van der Aalst1;2[0000−0002−0955−6940] 1 Process and Data Science (PADS), RWTH Aachen University, Aachen, Germany 2 Fraunhofer Institute for Applied Information Technology, Sankt Augustin, Germany [email protected] Abstract. Process mining techniques use event data to answer a variety of process-related questions. Process discovery, conformance checking, model enhancement, and operational support are used to improve perfor- mance and compliance. Process mining starts from recorded events that are each characterized by a case identifier, an activity name, a timestamp, and optional attributes like resource or costs. In many applications, there are multiple candidate identifiers leading to different views on the same process. Moreover, one event may be related to different cases (conver- gence) and, for a given case, there may be multiple instances of the same activity within a case (divergence). To create a traditional process model, the event data need to be “flattened”. There are typically multiple choices possible, leading to different views that are disconnected. There- fore, one quickly loses the overview and event data need to be exacted multiple times (for the different views). Different approaches have been proposed to tackle the problem. This paper discusses the gap between real event data and the event logs required by traditional process min- ing techniques.
    [Show full text]
  • Blockchains for Business Process Management - Challenges and Opportunities
    Downloaded from orbit.dtu.dk on: Sep 26, 2021 Blockchains for Business Process Management - Challenges and Opportunities Mendling, Jan; Weber, Ingo; Van Der Aalst, Wil; Brocke, Jan vom; Cabanillas, Cristina; Daniel, Florian; Debois, Soren; Di Ciccio, Claudio; Dumas, Marlon; Dustdar, Schahram Total number of authors: 32 Published in: ACM Transactions on Management Information Systems Link to article, DOI: 10.1145/3183367 Publication date: 2018 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Mendling, J., Weber, I., Van Der Aalst, W., Brocke, J. V., Cabanillas, C., Daniel, F., Debois, S., Di Ciccio, C., Dumas, M., Dustdar, S., Gal, A., Garcia-Banuelos, L., Governatori, G., Hull, T. R., La Rosa, M., Leopold, H., Leymann, F., Recker, J., Reichert, M., ... Zhu, L. (2018). Blockchains for Business Process Management - Challenges and Opportunities. ACM Transactions on Management Information Systems, 9(1), [4]. https://doi.org/10.1145/3183367 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Architecture of Information Systems
    Technische Universiteit Eindhoven University of Technology Architecture of Information Systems Full title Architecture of Information Systems Programme leader prof.dr.ir. W.M.P. van der Aalst (from September 2006) prof.dr. K.M. van Hee (until September 2006) Starting date before 1996 Research area Information systems CR-classification H. Information Systems D.2.2 Design Tools and Techniques H.4.1 Office Automation H.2.8 Database Applications Affiliations research school SIKS (Research School for Information and Knowledge Sys- tems) BETA (Research School for Operations Management and Lo- gistics) TU/e LOIS (Logistics, Operations and their Information Systems) Cooperations (at most five per category are listed) national prof. Geert-Jan Houben (Delft) prof. Roel Wieringa (Twente) prof. Farhad Arbab (CWI) prof. Rinus Plasmeijer (Radboud University Nijmegen) international prof. Wolfgang Reisig and prof. Jan Mendling (Humboldt- Universität zu Berlin ) prof. Arthur ter Hofstede and prof. Michael Rosemann (Queensland University of Technology) prof. Karsten Wolf (Universität Rostock) prof. Mathias Weske (Hasso Plattner Institute) prof. Kurt Jensen (University of Aarhus) 25 Research Evaluation Computer Science 2009 * Part B: AIS Technische Universiteit Eindhoven University of Technology Mission statement The Architecture of Information Systems (AIS) research group investigates methods, techniques and tools for the design and analysis of Process-Aware Information Systems (PAIS), i.e., systems that support business processes (workflows) inside and between organizations. We are not only interested in these information systems and their architecture, but also model and analyze the business processes and organizations they support. Our mission is to be one of the worldwide leading research groups in process modeling and analysis, process mining, and PAIS technology.
    [Show full text]
  • Applicability of Process Mining Techniques in Business Environments
    Alma Mater Studiorum —Universita` di Bologna Universita` degli Studi di Padova Dottorato di Ricerca in Informatica Ciclo XXV Settore Concorsuale di afferenza: 01/B1 Settore Scientifico disciplinare: INF/01 Applicability of Process Mining Techniques in Business Environments Presentata da: Andrea Burattin Coordinatore Dottorato Relatore Prof. Maurizio Gabbrielli Prof. Alessandro Sperduti Esame finale anno 2013 2 Abstract This thesis analyses problems related to the applicability, in business en- vironments, of Process Mining tools and techniques. The first contribution reported in this thesis consists in a presentation of the state of the art of Process Mining and a characterization of compa- nies, in terms of their “process awareness”. The work continues identify- ing and reporting the possible circumstance where problems, both “prac- tical” and “conceptual”, can emerge. We identified these three possible problem sources: (i) data preparation (e.g., syntactic translation of data, missing data); (ii) the actual mining (e.g., mining algorithm exploiting all data available); and (iii) results interpretation. Several other problems identified are orthogonal to all sources: for example, the configuration of parameters by not-expert users or the computational complexity. This work proposes at least one solution for each of the presented problems. It is possible to locate the proposed solutions in two scenarios: the first considers the classical “batch Process Mining” paradigm (also known as “off-line”); the second introduces the “on-line Process Mining”. Concerning the batch Process Mining, we first investigated the data preparation problem and we proposed a solution for the identification of the “case-ids” whenever this field is hidden (i.e., when it is not explicitly indicated).
    [Show full text]
  • Business Process Discovery in Real Time
    Business Process Discovery in Real Time Jo~aoJ. Oliveira IST { Technical University of Lisbon Av. Prof. Dr. An´ıbalCavaco Silva 2744-016 Porto Salvo, Portugal [email protected] Abstract. The process mining research field is fairly recent, however it counts with numerous techniques that enable extraction of business process models based on event logs produced in information systems. Typically, these events are extracted to a log file and then analyzed with proper tools, such as ProM. This type of analysis is made over historical data, and by the time it is performed, results could, eventually, be out- dated, in the case that business rules/routines had changed or evolved. The main objective of this dissertation is to develop a process mining tool that can be used in real time as the events are being produced. Furthermore, it is imperative to study the behavior of the tool, as the events occur, being incorporated in real time and updating the models instantaneously. Key words: Process Mining, Complex Event Processing, Event-Driven Architecture, ECA Rules 1 Introduction Monitoring business processes is important to improve the efficiency of orga- nization processes. The Process-Aware Information Systems (PAIS) enable the recording of events { in the event log { that are being generated by the organi- zation, through the execution of it. Enterprise Resource Planning (ERP), Cus- tomer Relationship Management (CRM) or Supply Chain Management (SCM) are examples of the referred ones, among the other existing systems at present [1,2,3]. Typically the discovery of business processes is accomplished throughout the usage of log files.
    [Show full text]