Combining Satellite Lidar, Airborne Lidar and Ground Plots to Estimate the Amount and Distribution of Aboveground Biomass In

Total Page:16

File Type:pdf, Size:1020Kb

Combining Satellite Lidar, Airborne Lidar and Ground Plots to Estimate the Amount and Distribution of Aboveground Biomass In Page 1 of 59 Combining Satellite Lidar, Airborne Lidar and Ground Plots to Estimate the Amount and Distribution of Aboveground Biomass in the Boreal Forest of North America Hank A. Margolis 1,2 , Ross F. Nelson 2, Paul M. Montesano 2,3 , André Beaudoin 4, Guoqing Sun 2,5 , Hans-Erik Andersen 6, Michael A. Wulder 7 1. Centre d’étude de la forêt; Faculté de foresterie, de géographie et de géomatique; Université Laval; Québec City, QC, G1V 0A6, Canada. Email: [email protected] ; Tel: (418) 656-7120. Corresponding Author 2. Biospheric Sciences Laboratory; NASA Goddard Space Flight Center; Greenbelt, MD, 20771, USA. Email: [email protected] , 3. Science Systems and Applications Inc., NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA. Email: [email protected] 4. Laurentian Forestry Centre; Canadian Forest Service; Natural Resources Canada; 1055 rue du PEPS; Quebec City, QC, G1V 4C7, Canada. E-mail: [email protected] 5. University of Maryland; Department of Geographical Sciences; College Park, MD 20742, USA. Email: [email protected] 4. USDA Forest Service; Pacific Northwest Research Station; P.O. Box 352100; Seattle, WA 98195-2100, USA. Email: [email protected] 5. Pacific Forestry Centre; Canadian Forest Service; Natural Resources Canada; 506 West Burnside Road; Victoria, BC, V8Z 1M5, Canada. Email: [email protected] Can. J. For. Res. Downloaded from www.nrcresearchpress.com by University of St. Andrews - Library on 04/24/15 Revised Version: Submitted to the Canadian Journal of Forest Research For personal use only. This Just-IN manuscript is the accepted prior to copy editing and page composition. It may differ from final official version of record. 1 Page 2 of 59 1 ABSTRACT 2 We report estimates of the amount, distribution, and uncertainty of aboveground biomass 3 (AGB) of the different ecozones and forest land cover classes within the North American boreal 4 forest; analyze the factors driving the error estimates; and compare our estimates to other 5 reported values. A three-phase sampling strategy was used (1) to tie ground plot AGB to 6 airborne profiling lidar metrics, (2) to link the airborne estimates of AGB to ICESat-GLAS lidar 7 measurements such that (3) GLAS could be used as a regional sampling tool. We estimated the 8 AGB of the North American boreal forest at 21.8 Pg with relative error of 1.9% based on 256 9 GLAS orbits (229 086 pulses). The distribution of AGB was 46.6% for Western Canada, 43.7% for 10 Eastern Canada, and 9.7% for Alaska. With a single exception, relative errors were under 4% for 11 the three regions and for the major cover types and under 10% at the ecozone level. 12 The uncertainties of the estimates were calculated using a variance estimator that 13 accounted for only sampling error, i.e., the variability among GLAS orbital estimates, and 14 airborne to spaceborne regression error, i.e., the uncertainty of the model coefficients. Work is 15 on-going to develop robust statistical techniques for integrating other sources of error such as 16 ground to air regression error and allometric error. Small ecozones with limited east-west 17 extents tended to have fewer GLAS orbits and a greater percent sampling error. AGB densities 18 derived from GLAS agreed closely with the estimates derived from both forest inventories 19 (<17%) and a MODIS-based interpolation technique (<26%) for more southern, well-inventoried Can. J. For. Res. Downloaded from www.nrcresearchpress.com by University of St. Andrews - Library on 04/24/15 20 ecozones, whereas differences were much greater for unmanaged northern and/or 21 mountainous ecozones. 22 KEY WORDS : Aboveground biomass, lidar, North American boreal forest, ICESat-GLAS, Landsat, 23 MODIS, forest inventory, kNN. For personal use only. This Just-IN manuscript is the accepted prior to copy editing and page composition. It may differ from final official version of record. 2 Page 3 of 59 24 25 INTRODUCTION 26 Extending east to west across the entire continent, the North American boreal forest 27 encompasses ~3.7 million km 2 of which ~58% is classified as forest and other wooded land 28 (Brandt 2009). The North American boreal forest provides ecosystem services at local, regional, 29 and global scales including the storage of large amounts of carbon in living biomass and soils 30 (Kurz et al. 2013). However, this carbon is vulnerable to climate change and the amounts 31 sequestered vary in response to changes in forest fires (Amiro et al. 2009) and insect epidemics 32 (Kurz et al. 2008). Both on-going and projected increases in temperature have been reported, 33 with mean annual temperatures across the Canadian boreal zone expected to increase 4 to 5° C 34 by 2100 (Price et al. 2013). Climate change has the potential to create positive feedbacks 35 through which decreases in forest carbon sequestration lead to increased atmospheric CO 2 36 concentrations further exacerbating climate warming (Soja et al. 2007). More frequent and 37 larger wildfires, increased insect infestations, and changing vegetation structure due to melting 38 permafrost are likely consequences of increased temperatures in the boreal forest region (Price 39 et al. 2013). Therefore, it is useful to examine different approaches for monitoring boreal 40 carbon and to explore the development of new monitoring capabilities (Wulder et al. 2013a). 41 The primary operational approach for assessing large-scale forest biomass and carbon 42 stocks in the boreal forest of North America involves combining forest inventory ground plots Can. J. For. Res. Downloaded from www.nrcresearchpress.com by University of St. Andrews - Library on 04/24/15 43 with growth and yield curves for different land cover types and disturbance frequencies (Stinson 44 et al. 2011). Laser-ranging airborne lidar has the potential to provide supplemental information 45 on aboveground biomass (AGB) density of forests and has been used increasingly as a sampling For personal use only. This Just-IN manuscript is the accepted prior to copy editing and page composition. It may differ from final official version of record. 3 Page 4 of 59 46 tool at local to regional scales (Wulder et al. 2012a,b). This airborne technology is particularly 47 useful in extending AGB measurements into areas where few, if any, ground plots exist, e.g., 48 unmanaged forest regions. 49 Airborne lidars provide direct measurements of distances between the aircraft and 50 various ground targets. Data processing algorithms calculate both the distance to the ground 51 and the height above the ground of different components of the forest. From these 52 measurements, a number of lidar metrics related to forest height and canopy structure can be 53 derived which can then be converted into AGB (Nelson et al. 1988). Both profiling and scanning 54 lidars have been used as sampling tools (e.g., Nelson et al. 2012, Gobakken et al. 2012) and 55 various statistical approaches have been developed to estimate both AGB and carbon stocks as 56 well as their statistical uncertainties (Gregoire et al. 2012, Ståhl et al. 2011). For example, in 57 lidar-assisted model-based sampling, ground plots representative of the entire area of interest 58 are selected. Models are constructed which predict ground-measured biomass as a function of 59 lidar height and canopy density metrics and then these models are applied to the entire area 60 (Nelson et al. 2012). The error calculations account for the non-random, spatially dependent 61 transect data obtained by the lidar (Ene et al. 2013) which is accomplished partially by using the 62 transect as the sampling unit. 63 Reliable measurements of forest AGB from a space-based lidar would be useful because 64 such an instrument could provide repeated global-scale sampling of variables related to forest Can. J. For. Res. Downloaded from www.nrcresearchpress.com by University of St. Andrews - Library on 04/24/15 65 height from which regional and global biomass could be derived. The first opportunity to 66 explore the utility of a global sample of satellite-based lidar measurements occurred in 2003 67 when ICESat-1 (Ice Cloud and land Elevation SATellite) was launched with the Geosciences Lidar For personal use only. This Just-IN manuscript is the accepted prior to copy editing and page composition. It may differ from final official version of record. 4 Page 5 of 59 68 Altimetry System (GLAS) aboard. Using the GLAS waveform lidar, the ICESat mission’s main 69 objective was to measure changes in the mass balance of the polar ice sheets, and it collected 70 ice elevation data from 2003 to 2009. However, GLAS also offered the scientific community the 71 possibility of estimating forest height and AGB, although the sensor was not explicitly designed 72 for this objective. Global tree height maps have been developed (Simard et al. 2011) and Bolton 73 et al. (2013) compared this information to tree height data in Canada and found that discarding 74 GLAS waveforms from steep terrain reduced errors in height estimates. 75 Boudreau et al. (2008) and Nelson et al. (2009a) applied a sampling approach for 1.3 76 million km 2 of forest in the province of Québec that involved three different sampling phases, 77 i.e., ground, airborne, and satellite. The basic approach involved (1) building an initial statistical 78 model to link PALS height measurements to ground plot biomass, (2) building a second model to 79 relate the estimated biomass from the airborne lidar to the height metrics obtained by GLAS for 80 the 1,325 GLAS pulses that were flown by the aircraft, and (3) use the GLAS height metrics, 81 slope, and land cover for the ~104,000 quality-filtered GLAS pulses available across the province 82 of Quebec to calculate the AGB and carbon stocks for the province by land cover type.
Recommended publications
  • Global Ecological Forest Classification and Forest Protected Area Gap Analysis
    United Nations Environment Programme World Conservation Monitoring Centre Global Ecological Forest Classification and Forest Protected Area Gap Analysis Analyses and recommendations in view of the 10% target for forest protection under the Convention on Biological Diversity (CBD) 2nd revised edition, January 2009 Global Ecological Forest Classification and Forest Protected Area Gap Analysis Analyses and recommendations in view of the 10% target for forest protection under the Convention on Biological Diversity (CBD) Report prepared by: United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC) World Wide Fund for Nature (WWF) Network World Resources Institute (WRI) Institute of Forest and Environmental Policy (IFP) University of Freiburg Freiburg University Press 2nd revised edition, January 2009 The United Nations Environment Programme World Conservation Monitoring Centre (UNEP- WCMC) is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme (UNEP), the world's foremost intergovernmental environmental organization. The Centre has been in operation since 1989, combining scientific research with practical policy advice. UNEP-WCMC provides objective, scientifically rigorous products and services to help decision makers recognize the value of biodiversity and apply this knowledge to all that they do. Its core business is managing data about ecosystems and biodiversity, interpreting and analysing that data to provide assessments and policy analysis, and making the results
    [Show full text]
  • Future Spruce Budworm Outbreak May Create a Carbon Source in Eastern Canadian Forests
    Ecosystems (2010) 13: 917–931 DOI: 10.1007/s10021-010-9364-z Ó 2010 UKCrown: Natural Resources Canada, Government of Canada Future Spruce Budworm Outbreak May Create a Carbon Source in Eastern Canadian Forests Caren C. Dymond,1,2* Eric T. Neilson,1 Graham Stinson,1 Kevin Porter,3 David A. MacLean,4 David R. Gray,3 Michel Campagna,5 and Werner A. Kurz1 1Natural Resources Canada, Canadian Forest Service, 506 West Burnside Road, Victoria, British Columbia V8Z 1M5, Canada; 2Ministry of Forests and Range, Government of British Columbia, P.O. Box 9504, Stn Prov Govt, Victoria, British Columbia V8W 9C1, Canada; 3Natural Resources Canada, Canadian Forest Service, P.O. Box 4000, 1350 Regent Street South, Fredericton, New Brunswick E3B 5P7, Canada; 4Faculty of Forestry and Environmental Management, University of New Brunswick, P.O. Box 4400, Fredericton, New Bruns- wick E3B 5A3, Canada; 5Ressources Naturelles et faune Que´bec, 880, chemin Sainte-Foy, 10e e´tage, Que´bec, Quebec G1S 4X4, Canada ABSTRACT Spruce budworm (Choristoneura fumiferana Clem.) is adding spruce budworm significantly reduced an important and recurrent disturbance throughout ecosystem C stock change for the landscape from a spruce (Picea sp.) and balsam fir (Abies balsamea L.) sink (4.6 ± 2.7 g C m-2 y-1 in 2018) to a source dominated forests of North America. Forest carbon (-16.8 ± 3.0 g C m-2 y-1 in 2018). This result was (C) dynamics in these ecosystems are affected during mostly due to reduced net primary production. The insect outbreaks because millions of square kilome- ecosystem stock change was reduced on average by ters of forest suffer growth loss and mortality.
    [Show full text]
  • Modeling Alaska Boreal Forests with a Controlled Trend Surface Approacha Mo Zhou and Jingjing Liang*
    2010 Joint Meeting of the Forest Inventory and Analysis (FIA) Symposium and the Southern Mensurationists MoDelInG AlASKA BoreAl ForeSTS WITH A ConTrolleD TrenD SUrFACe APProACHa Mo Zhou and Jingjing Liang* ABSTrACT nonspatial model of Liang (2010). With remote sensing data and the Geographic Information System (GIS), stand- An approach of Controlled Trend Surface was proposed to simultaneously level predictions were aggregated to tentatively map forest take into consideration large-scale spatial trends and nonspatial effects. dynamics of the entire region. A geospatial model of the Alaska boreal forest was developed from 446 permanent sample plots, which addressed large-scale spatial trends in recruitment, diameter growth, and mortality. The model was tested on The Alaska boreal forest is generally defined as a biome two sets of validation plots and the results suggest that the controlled characterized by coniferous forests. In this study, it trend surface model was generally more accurate than both nonspatial and represented a vast area composed of the following conventional trend surface models. With this model, we mapped the forest ecoregions: Interior Alaska-Yukon lowland Taiga, Cook dynamics of the entire Alaska boreal region by aggregating predicted stand states across the region. Inlet Taiga, and Copper Plateau Taiga. Forestry is very important for the state of Alaska (AlaskaDNR 2006; Wurtz and others 2006), and is an indispensable component of rural economies (AlaskaDNR 2006). Liang (2010) develops InTroDUCTIon the first Matrix Model for all major Alaska boreal tree species which is tested to be much more accurate than the Geospatial effects at large scales have been reported in two growth and yield tables.
    [Show full text]
  • The Pyrogeography of Eastern Boreal Canada from 1901 to 2012 Simulated with the LPJ-Lmfire Model
    Biogeosciences, 15, 1273–1292, 2018 https://doi.org/10.5194/bg-15-1273-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. The pyrogeography of eastern boreal Canada from 1901 to 2012 simulated with the LPJ-LMfire model Emeline Chaste1,2, Martin P. Girardin1,3, Jed O. Kaplan4,5,6, Jeanne Portier1, Yves Bergeron1,7, and Christelle Hély2,7 1Département des Sciences Biologiques, Université du Québec à Montréal and Centre for Forest Research, Case postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada 2EPHE, PSL Research University, ISEM, University of Montpellier, CNRS, IRD, CIRAD, INRAP, UMR 5554, 34095 Montpellier, France 3Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada 4ARVE Research SARL, 1009 Pully, Switzerland 5Max Planck Institute for the Science of Human History, 07743 Jena, Germany 6Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK 7Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, 445 boul. de l’Université, Rouyn-Noranda, QC J9X 5E4, Canada Correspondence: Emeline Chaste ([email protected]) Received: 11 August 2017 – Discussion started: 20 September 2017 Revised: 22 January 2018 – Accepted: 23 January 2018 – Published: 5 March 2018 Abstract. Wildland fires are the main natural disturbance pendent data sets. The simulation adequately reproduced the shaping forest structure and composition in eastern boreal latitudinal gradient in fire frequency in Manitoba and the lon- Canada. On average, more than 700 000 ha of forest burns gitudinal gradient from Manitoba towards southern Ontario, annually and causes as much as CAD 2.9 million worth of as well as the temporal patterns present in independent fire damage.
    [Show full text]
  • Climate and Biodiversity Impacts of Crop-Based Biofuels
    Climate and Climate biodiversity impacts of crop-based biofuels crop-based impacts of biodiversity Climate and biodiversity impacts of crop-based biofuels Pieter Elshout Pieter Pieter Elshout PIETER ELSHOUT Climate and biodiversity impacts of crop-based biofuels Colofon Climate and biodiversity impacts of crop-based biofuels Design/Lay-out Proefschriftenbalie, Nijmegen Print Ipskamp Printing, Nijmegen ISBN 978-94-028-1513-9 © Pieter Elshout, 2019 Climate and biodiversity impacts of crop-based biofuels Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken, volgens besluit van het college van decanen in het openbaar te verdedigen op dinsdag 11 juni 2019 om 14.30 uur precies door Petrus Marinus Franciscus Elshout geboren op 22 september 1987 te Waalwijk Promotor Prof. dr. M.A.J. Huijbregts Copromotoren Dr. R. van Zelm Dr. M. van der Velde (European Commission, Joint Research Centre, Ispra, Italië) Manuscriptcommissie Prof. dr. ir. A.J. Hendriks Prof. dr. R.S.E.W. Leuven Prof. dr. A.P.C. Faaij (RUG) Table of Contents Chapter 1 General Introduction 7 Chapter 2 A spatially explicit greenhouse gas balance of biofuel production: case studies of corn bioethanol and soybean biodiesel produced in the United States 17 Chapter 3 Greenhouse gas payback times for crop-based biofuels 37 Chapter 4 Greenhouse gas payback times for first generation bioethanol and biodiesel based on recent crop production data 53 Chapter 5 A spatially explicit data-driven approach to assess the effect of agricultural land occupation on species groups 69 Chapter 6 Global relative species loss due to first generation biofuel production for the transport 87 Chapter 7 Synthesis 103 Appendices 117 Literature 183 Summary | Samenvatting 207 Acknowledgements 215 Curriculum Vitae 219 Publications 221 chapter 1 General Introduction General introduction 9 1.1 | Background Fossil fuels are the dominant energy source in today’s world.
    [Show full text]
  • Central and South America Report (1.8
    United States NHEERL Environmental Protection Western Ecology Division May 1998 Agency Corvallis OR 97333 ` Research and Development EPA ECOLOGICAL CLASSIFICATION OF THE WESTERN HEMISPHERE ECOLOGICAL CLASSIFICATION OF THE WESTERN HEMISPHERE Glenn E. Griffith1, James M. Omernik2, and Sandra H. Azevedo3 May 29, 1998 1 U.S. Department of Agriculture, Natural Resources Conservation Service 200 SW 35th St., Corvallis, OR 97333 phone: 541-754-4465; email: [email protected] 2 Project Officer, U.S. Environmental Protection Agency 200 SW 35th St., Corvallis, OR 97333 phone: 541-754-4458; email: [email protected] 3 OAO Corporation 200 SW 35th St., Corvallis, OR 97333 phone: 541-754-4361; email: [email protected] A Report to Thomas R. Loveland, Project Manager EROS Data Center, U.S. Geological Survey, Sioux Falls, SD WESTERN ECOLOGY DIVISION NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY CORVALLIS, OREGON 97333 1 ABSTRACT Many geographical classifications of the world’s continents can be found that depict their climate, landforms, soils, vegetation, and other ecological phenomena. Using some or many of these mapped phenomena, classifications of natural regions, biomes, biotic provinces, biogeographical regions, life zones, or ecological regions have been developed by various researchers. Some ecological frameworks do not appear to address “the whole ecosystem”, but instead are based on specific aspects of ecosystems or particular processes that affect ecosystems. Many regional ecological frameworks rely primarily on climatic and “natural” vegetative input elements, with little acknowledgement of other biotic, abiotic, or human geographic patterns that comprise and influence ecosystems.
    [Show full text]
  • Canadian Boreal Forests and Climate Change Mitigation1 T.C
    293 REVIEW Canadian boreal forests and climate change mitigation1 T.C. Lemprière, W.A. Kurz, E.H. Hogg, C. Schmoll, G.J. Rampley, D. Yemshanov, D.W. McKenney, R. Gilsenan, A. Beatch, D. Blain, J.S. Bhatti, and E. Krcmar Abstract: Quantitative assessment of Canada's boreal forest mitigation potential is not yet possible, though the range of mitigation activities is known, requirements for sound analyses of options are increasingly understood, and there is emerging recognition that biogeophysical effects need greater attention. Use of a systems perspective highlights trade-offs between activities aimed at increasing carbon storage in the ecosystem, increasing carbon storage in harvested wood products (HWPs), or increasing the substitution benefits of using wood in place of fossil fuels or more emissions-intensive products. A systems perspective also suggests that erroneous conclusions about mitigation potential could result if analyses assume that HWP carbon is emitted at harvest, or bioenergy is carbon neutral. The greatest short-run boreal mitigation benefit generally would be achieved by avoiding greenhouse gas emissions; but over the longer run, there could be significant potential in activities that increase carbon removals. Mitigation activities could maximize landscape carbon uptake or maximize landscape carbon density, but not both simultaneously. The difference between the two is the rate at which HWPs are produced to meet society's demands, and mitigation activities could seek to delay or reduce HWP emissions and increase substitution benefits. Use of forest biomass for bioenergy could also contribute though the point in time at which this produces a net mitigation benefit relative to a fossil fuel alternative will be situation-specific.
    [Show full text]
  • Province of Québec PRODUCED in the CONTEXT of THE
    RISK ANALYSIS Forest Region: Province of Québec PRODUCED IN THE CONTEXT OF THE REQUIREMENTS OF THE FOREST STEWARDSHIP COUNCIL (FSC) CONTROLLED WOOD STANDARD Version 1.3 Official November 1st, 2018 Prepared by the Quebec Forest Industry Council (QFIC) and the Quebec Wood Export Bureau (QWEB) TABLE OF CONTENTS FIGURES ..................................................................................................................... iii TABLES ...................................................................................................................... iv ACRONYMS AND INITIALISMS ..................................................................................... v SUMMARY .................................................................................................................. 1 1. TERRITORIAL ANALYSIS ................................................................................ 2 2. DETAILED RISK ANALYSIS ........................................................................... 13 Category 1: A district of origin may be considered low risk in relation to illegal harvesting if sound governance indicators are present ............................................................. 13 1.1 Evidence of enforcement of logging-related laws in the district .............................. 13 1.2 In the district there is evidence demonstrating the legality of harvests and wood purchases, including robust and effective systems for granting licences and harvest permits. ....................................................................................................................
    [Show full text]
  • Acadiensis Cover
    PRESENT AND PAST/PRÉSENT ET PASSÉ Looking Backward, Looking Ahead: History and Future of the New Brunswick Forest Industries AS IS THE CASE IN NEIGBOURING JURISDICTIONS – principally, Quebec, Maine, Nova Scotia, and Ontario – the New Brunswick forest industries are in the midst of a crisis that extends back at least a decade. This is particularly the case with pulp and paper, the dominant forest industry in the region. The crisis has been a constant source of discussion in the media and in government, industry, and professional forestry circles. Despite the prominence of forestry issues in the public discourse, there has been a decided lack of attention devoted to the history of the forest industries; that is, no attempt has been made to examine how the dynamics that led to cyclical transformations in the New Brunswick forest industries over the past two centuries can help to explain the current crisis and, perhaps, inform public policy. The purpose of this essay, then, is to trace common threads between past and present forest industry transformations and also to highlight conditions that add complexity to finding solutions to the present crisis. Three themes come to mind when assessing the contemporary crisis in the New Brunswick forest industries in historical perspective. First, natural resource-based industries have life cycles that are determined by political, economic, and environmental factors. This is a fairly obvious point to make when considering mining industries, for example, where the resource endowment is generally understood
    [Show full text]
  • Download Date 01/10/2021 08:57:38
    Alaska's Water: A Critical Resource Item Type Technical Report Authors Bredthauer, Stephen R. Citation Bredthauer, S.R., Chairman. 1984. Alaska's water: a critical resource. Proceedings. Alaska Section, American Water Resources Association. Institute of Water Resources, University of Alaska, Fairbanks. Report IWR-I06. 224 pp. Publisher University of Alaska, Institute of Water Resources Download date 01/10/2021 08:57:38 Link to Item http://hdl.handle.net/11122/1819 ALASKA'S WATER: A CRITICAL RESOURCE PROCEEDINGS Stephen R. Bredthauer, Chairman Alaska Section American Water Resources Association Institute of Water Resources University of Alaska Fairbanks, Alaska 99701 Report IWR-106 November 1984 -ii- Bredthauer, S.R_, Chairman. 1984. Alaska's water: a critical resource. Proceedings. Alas]ca Section, American Water Resources Association. Institute of Water Resources, University of Alaska, Fairbanks. Report IWR-I06. 224 pp. -iii- -iv- TABLE OF CONTENTS INSTRUMENTATION. .............................................. 1 Solar and longwave radiation data for southcentral Alaska. .................................................. 3 Instrumentation of the tide-affected Potter Marsh outlet near Anchorage, Alaska............................ 15 FORECASTING. .................................................. 25 Information content of river forecasts................... 27 A relationship between snow course information and runoff.............................................. 37 Impact of glaciers on long-term basin water yield........ 51 RIVER PROCESSES..
    [Show full text]
  • Identifying Priority Ecoregions for Amphibian Conservation in the U.S. and Canada
    Acknowledgements This assessment was conducted as part of a priority setting effort for Operation Frog Pond, a project of Tree Walkers International. Operation Frog Pond is designed to encourage private individuals and community groups to become involved in amphibian conservation around their homes and communities. Funding for this assessment was provided by The Lawrence Foundation, Northwest Frog Fest, and members of Tree Walkers International. This assessment would not be possible without data provided by The Global Amphibian Assessment, NatureServe, and the International Conservation Union. We are indebted to their foresight in compiling basic scientific information about species’ distributions, ecology, and conservation status; and making these data available to the public, so that we can provide informed stewardship for our natural resources. I would also like to extend a special thank you to Aaron Bloch for compiling conservation status data for amphibians in the United States and to Joe Milmoe and the U.S. Fish and Wildlife Service, Partners for Fish and Wildlife Program for supporting Operation Frog Pond. Photo Credits Photographs are credited to each photographer on the pages where they appear. All rights are reserved by individual photographers. All photos on the front and back cover are copyright Tim Paine. Suggested Citation Brock, B.L. 2007. Identifying priority ecoregions for amphibian conservation in the U.S. and Canada. Tree Walkers International Special Report. Tree Walkers International, USA. Text © 2007 by Brent L. Brock and Tree Walkers International Tree Walkers International, 3025 Woodchuck Road, Bozeman, MT 59715-1702 Layout and design: Elizabeth K. Brock Photographs: as noted, all rights reserved by individual photographers.
    [Show full text]
  • The Pyrogeography of Eastern Boreal Canada from 1901 to 2012 Simulated with the LPJ-Lmfire Model Emeline Chaste1,2, Martin P
    The pyrogeography of eastern boreal Canada from 1901 to 2012 simulated with the LPJ-LMfire model Emeline Chaste1,2, Martin P. Girardin1,3, Jed O. Kaplan4,5,6, Jeanne Portier1, Yves Bergeron1,7, Christelle Hély2,7 5 1Département des Sciences Biologiques, Université du Québec à Montréal and Centre for Forest Research, Case postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada 2EPHE, PSL Research University, ISEM, Univ. Montpellier, CNRS, IRD, CIRAD, INRAP, UMR 5554, F-34095 Montpellier, FRANCE 3Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, P.O. Box 10380, Stn. Sainte- 10 Foy, Québec, QC G1V 4C7, Canada 4ARVE Research SARL, 1009 Pully, Switzerland 5Max Planck Institute for the Science of Human History, 07743 Jena, Germany 6Environmental Change Institute, School of Geography and the Environment, University of Oxford, OX1 3QY, UK 7Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, 445 boul. de l’Université, Rouyn-Noranda, QC 15 J9X 5E4, Canada Correspondence to: Emeline Chaste ([email protected]) Abstract. Wildland fires are the main natural disturbance shaping forest structure and composition in eastern boreal Canada. On average, more than 700,000 ha of forest burn annually, and causes as much as C$2.9 million worth of damage. Although we know that occurrence of fires depends upon the coincidence of favourable conditions for fire ignition, propagation and fuel 20 availability, the interplay between these three drivers in shaping spatiotemporal patterns of fires in eastern Canada remains to be evaluated. The goal of this study was to reconstruct the spatiotemporal patterns of fire activity during the last century in eastern Canada’s boreal forest as a function of changes in lightning ignition, climate and vegetation.
    [Show full text]