Nuclear Pairing Gaps and Neutron Star Cooling

Total Page:16

File Type:pdf, Size:1020Kb

Nuclear Pairing Gaps and Neutron Star Cooling universe Article Nuclear Pairing Gaps and Neutron Star Cooling Jin-Biao Wei ∗ , Fiorella Burgio and Hans-Josef Schulze INFN Sezione di Catania, Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy; [email protected] (F.B.); [email protected] (H.-J.S.) * Correspondence: [email protected] Received: 13 July 2020; Accepted: 5 August 2020; Published: 8 August 2020 Abstract: We study the cooling of isolated neutron stars with particular regard to the importance of nuclear pairing gaps. A microscopic nuclear equation of state derived in the Brueckner-Hartree-Fock approach is used together with compatible neutron and proton pairing gaps. We then study the effect of modifying the gaps on the final deduced neutron star mass distributions. We find that a consistent description of all current cooling data can be achieved and a reasonable neutron star mass distribution can be predicted employing the (slightly reduced by about 40%) proton 1S0 Bardeen-Cooper-Schrieffer (BCS) gaps and no neutron 3P2 pairing. Keywords: neutron star; nuclear superfluidity; nuclear equation of state 1. Introduction A very important effect of nuclear superfluidity in a neutron star (NS) is the suppression of standard neutrino cooling processes and the appearance of new ones, which then compete with each other [1–4]. The superfluidity has therefore a decisive influence on the temperature evolution of an isolated NS, and this can be compared with known observational data in order to deduce constraints on the various pairing gaps and also on the nuclear equation of state (EOS). This article is dedicated to this problem, and we will perform a detailed analysis of NS cooling with the above goal. It is currently still not clear whether all NSs have a purely nucleonic substructure, that is, can be considered to be built of individual neutrons and protons, or whether heavy NSs hide exotic baryons like hyperons or even deconfined quark matter in their extremely dense interior. In this work we follow the simple first assumption and consider purely nucleonic NSs. We model their internal structure by a theoretical EOS that has been derived within the Brueckner-Hartree-Fock (BHF) many-body method, fulfilling all current constraints imposed by observational data from nuclear structure, heavy-ion collisions, NS global properties, and recently NS merger events [5–7]. Within this framework we then investigate the cooling evolution of NSs, and in particular the effect of the proton 1S0 and the neutron 3P2 pairing gaps. This investigation has been carried out in several previous publications [8–11], and we refine here our analysis regarding the constraints on the pairing gaps deduced from comparison with cooling data. In fact we have previously concluded that a good reproduction of all current cooling data is possible by assuming the Bardeen-Cooper-Schrieffer (BCS) gap in the proton 1S0 channel, but not allowing pairing in the neutron 3P2 channel. However, the BCS approximation disregards any medium effects on the gaps, which are not supposed to be small in the dense NS matter. An accurate quantitative theoretical computation of such effects is however still very difficult or impossible, and therefore we investigate in this work empirically the effects of such modifications on the cooling evolution in order to identify possible constraints that may be obtained in this way. In particular, we concentrate in this article on the NS mass distribution that can be obtained by comparing theoretical cooling curves with the currently available set of cooling data [12] (We do not yet utilize the very recent update of these data [13] in this work), and which is therefore a functional of the pairing gaps. Universe 2020, 6, 115; doi:10.3390/universe6080115 www.mdpi.com/journal/universe Universe 2020, 6, 115 2 of 16 This paper is organized as follows. In Section2 we give a brief overview of the theoretical framework, namely the BHF formalism adopted for the nuclear EOS, the various cooling processes, and the related nucleonic pairing gaps. Section3 is devoted to the presentation and discussion of the results for stellar structure, the cooling diagrams, and the derived mass distribution. Conclusions are drawn in Section4. 2. Formalism 2.1. Nuclear Equation of State The nuclear EOS of the model is derived in the framework of the Brueckner-Bethe-Goldstone theory, which is based on a linked-cluster expansion of the energy per nucleon of nuclear matter [14–16]. The basic ingredient in this many-body approach is the in-medium Brueckner reaction matrix G, which is the solution of the Bethe-Goldstone equation (¯h = c = 1) j12i Q h12j G(E; r, x) = V + V G(E; r, x) , (1) ∑ − − 1,2 E e1 e2 where V is the bare nucleon-nucleon (NN) interaction, E is the starting energy, and the multi-indices 1, 2 denote in general momentum, isospin, and spin. x = rp/r is the proton fraction, and rp and r are the proton and the total baryon density, respectively. The propagation of intermediate baryon pairs is determined by the Pauli operator Q and the single-particle (s.p.) energy 2 k1 e1 = e(1; r, x) = + U1 . (2) 2m1 The BHF approximation for the s.p. potential U using the continuous choice is U1(r, x) = Re ∑ h12jG(e1 + e2; r, x)j12ia , (3) (2) 2<kF where the matrix element is antisymmetrized. Due to the occurrence of U1 in Equation (2), the coupled system of Equations (1)–(3) must be solved in a self-consistent manner for several Fermi momenta of the particles involved. The corresponding BHF energy density is k2 1 e = ∑ 2 ∑ + Ui(k) . (4) i=n,p (i) 2mi 2 k<kF It has been shown that the energy and the nuclear EOS can be calculated with good accuracy in the Brueckner two-hole-line approximation with the continuous choice for the s.p. potential, since the results in this scheme are quite close to the calculations which include also the three-hole-line contribution [17–20]. In this scheme, the only input quantity needed is the bare NN interaction V in the Bethe-Goldstone Equation (1). In the present work, we use the Argonne V18 potential [21] as the two-nucleon interaction, supplemented by a consistent meson-exchange three-body force (TBF), which allows to reproduce correctly the nuclear-matter saturation point [22–25] and other properties of nuclear matter around saturation [26]. Further important ingredients in the cooling simulations are the neutron and proton effective masses, which we actually used in our previous simulations presented in Reference [8]. In the BHF approach, the effective masses can be expressed self-consistently in terms of the s.p. energy e(k) [27], m∗(k) k de(k) −1 = . (5) m m dk Universe 2020, 6, 115 3 of 16 As found in [8], their effect can be absorbed into a rescaling of the pairing gaps that we also employ in this paper, and therefore we simply use the bare nucleon mass here. This is also convenient for comparison with other works that use bare masses. For completeness, we mention that the BHF method provides the EOS for homogeneous nuclear −3 matter, r > rt ≈ 0.08 fm . For the low-density inhomogeneous crustal part we adopt the well-known −3 Negele-Vautherin EOS [28] for the inner crust in the medium-density regime (0.001 fm < r < rt), and the ones by Baym-Pethick-Sutherland [29] and Feynman-Metropolis-Teller [30] for the outer crust −3 (r < 0.001 fm ). The transition density rt is adjusted to provide a smooth transition of pressure and energy density between both branches of the betastable EOS [31]. The NS mass domain that we are interested in, is hardly affected by the structure of this low-density transition region and the crustal EOS: The choice of the crust model can influence the predictions of radius and related deformability to a small extent, of the order of 1% for the value of a 1.4-solar-mass NS, R1.4 [31–33], which is negligible for our purpose. Even neglecting the crust completely, NS radius and deformability do not change dramatically [34]. In order to illustrate the bulk properties of the V18 EOS thus obtained, Figure1 shows the resulting NS mass-radius and mass-central density relations obtained in the standard way by solving the TOV equations for betastable and charge-neutral matter. We remark that the value of the maximum mass Mmax = 2.34 M of the V18 EOS is larger than the current observational lower limits [35–38]. Regarding the radius, we found in Reference [39,40] that for the V18 EOS R1.4 = 12.33 km, which fulfils the constraints derived from the tidal deformability in the GW170817 merger event, R1.36 = 11.9 ± 1.4 km [6], see also similar compatible constraints on masses and radii derived in References [41–47]. The V18 EOS is also compatible with estimates of the mass and +0.15 radius of the isolated pulsar PSR J0030+0451 observed recently by NICER, M = 1.44−0.14 M and +1.24 +0.15 +1.14 R = 13.02−1.06 km [48], or M = 1.36−0.16 M and R = 12.71−1.19 km [49]. The figure also shows the density of the onset of direct Urca (DU) cooling, rDU, and the one of the vanishing of the p1S0 BCS gap, r1S0, to be introduced and discussed in the following, along with the pairing parameter sx. 2.5 s =1.4 x 1.2 2.0 1.0 ( , M ) 1S0 1S0 0.8 J0030+0451 ] 0.6 1.5 GW170817 0.4 M [M ( , M ) 1.0 DU DU DU 0.5 0.0 0.0 0.3 0.6 0.9 10 11 12 13 14 -3 [fm ] R [km] c Figure 1.
Recommended publications
  • Chiral Symmetry Restoration by Parity Doubling and the Structure of Neutron Stars
    Chiral symmetry restoration by parity doubling and the structure of neutron stars Micha l Marczenko,1 David Blaschke,1, 2, 3 Krzysztof Redlich,1, 4 and Chihiro Sasaki1 1Institute of Theoretical Physics, University of Wroc law, PL-50204 Wroc law, Poland 2Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia 3National Research Nuclear University, 115409 Moscow, Russia 4Extreme Matter Institute EMMI, GSI, D-64291 Darmstadt, Germany (Dated: November 14, 2018) We investigate the equation of state for the recently developed hybrid quark-meson-nucleon model under neutron star conditions of β−equilibrium and charge neutrality. The model has the character- istic feature that, at increasing baryon density, the chiral symmetry is restored within the hadronic phase by lifting the mass splitting between chiral partner states, before quark deconfinement takes place. Most important for this study are the nucleon (neutron, proton) and N(1535) states. We present different sets for two free parameters, which result in compact star mass-radius relations in accordance with modern constraints on the mass from PSR J0348+0432 and on the compactness from GW170817. We also consider the threshold for the direct URCA process for which a new relationship is given, and suggest as an additional constraint on the parameter choice of the model that this process shall become operative at best for stars with masses above the range for binary radio pulsars, M > 1:4 M . I. INTRODUCTION neutron stars. However, already before this occurs, a strong phase transition manifests itself by the appearance The investigation of the equation of state (EoS) of com- of an almost horizontal branch on which the hybrid star pact star matter became rather topical within the past solutions lie, as opposed to the merely vertical branch of few years, mainly due to the one-to-one correspondence pure neutron stars.
    [Show full text]
  • Convective Urca Process and Cooling in Dense Stellar Matter
    Convective Urca Process and cooling in dense stellar matter M. Schoenberg: The name Urca was given by us to the process which accompanies the emission of neutrino in supernova because of the following curious situation: In Rio de Janeiro, we went to play at the Casino-da-Urca and Gamow was very impressed with the table in which there was a roulette, in which money disappeared very quickly. With a sense of humor, he said: ‘Well, the energy is being lost in the centre of supernova with almost the same rapidity as money does from these tables!’ (from Grib, Novello: “Gamow in rio and the discovery of the URCA process”, Astronom & Astrophys. Trans. 2000, Vol 19) Feb 10 2010, Advisor-Seminar WS09/10 by Fabian Miczek Urca reactions Urca pairs consist of mother (M) and daughter (D) nuclei Urca reactions A A − - beta decay: Z1M Z De e A − A - electron capture: Z De Z 1Me Central questions: Is a continuous cycling between mother and daugter possible? Both reactions emit a neutrino => possible cooling mechanism? 2 electron captures require a threshold energy Eth=EM−ED−me c beta decays release the threshold energy M We're interested in degenerate stellar matter (ideal gas of ions, Fermi gas of electrons) E th threshold energy can be provided by e- mc2 the Fermi energy of the electrons D Example (E = 4.4 MeV) 23 23 − th Na Nee e 23 − 23 Nee Nae Electron captures in degenerate matter Fermi energy > threshold energy assume zero temperature ( kT << E ) F A − A Z De Z 1 M e energy heat M neutrino Fermi electron threshold e- mc2 density of states D
    [Show full text]
  • On the Theory of Gamma-Ray and Fast Radio Bursts
    On the Theory of Gamma-ray and Fast Radio Bursts D. Skripachov Abstract Gamma-ray bursts are characterized by energy comparable to the rest mass of stars and duration comparable to the time of passage of light of several diameters of star. It means GRBs signal the flares occur when stars fall on supermassive neutron collapsars (SMNC) located at the centers of galaxies. Long, short, very short and weak GRBs are matched the fall of main sequence stars, white dwarfs, neutron stars (NS) and rogue planets, respectively. GRB is the result of heating of star caused by the action of three factors: transverse compression of angular convergence to SMNC, friction of light matter (LM), and volumetric compression of the entry into gravitationally distended space. GRB is a circular flare in the stellar corona. GRB lasts until the star will be hidden under the π- horizon, on which the angle of gravitational deflection of beams is 180°. Multiple peaks are caused by the fall of binary stars and stars with planets, as well as by consecutive bursts of stellar core and overlying layers. Early afterglow is due to the annihilation, and later (x-ray and radio) due to aurora and remanence of LM. FRB precedes very short GRB. Milliseconds before GRB, "magnetic lightning" arises, which is a reconnection of magnetic field lines from NS anterior pole to SMNC. Magnetic dipoles of LM nuclei are aligned along the magnetic lines of force. This is accompanied by radio emission generated strictly perpendicular magnetic tube connecting NS and SMNC. Gravitation bends the plane of FRB in the hyperboloid with the cone angle of 40°.
    [Show full text]
  • Participant List Xiamen-CUSTIPEN Workshop, Xiamen, January 3 to 7, 2019
    Participant list Xiamen-CUSTIPEN Workshop, Xiamen, January 3 to 7, 2019 No. Name Affiliation Email 01 Shunke Ai 艾舜轲 Beijing Normal University, China [email protected]. edu.cn 02 Nils Andersson University of Southampton, UK N.A.Andersson@sot on.ac.uk Contribution Title: Using gravitational waves to constrain matter at extreme densities ​ Abstract: The spectacular GW170817 neutron star merger event provided interesting ​ constraint on neutron star physics (in terms of the tidal deformability). Future detections are expected improve on this. In this talk I will discuss if we can expect to also make progress on issues relating to the composition and state of matter. 03 Zhan Bai 摆展 Peking University, China [email protected] n Contribution Title: Constraining Hadron-Quark Phase Transition Chemical Potential via Astronomical observation 04 Shishao Bao 鲍世绍 Shanxi Normal University, China [email protected] du.cn 05 Andreas Bauswein GSI Darmstadt, Germany Andreas.Bauswein @h-its.org Contribution Title: Neutron star mergers and the high-density equation of state 06 Subrata kumar Biswal Institute of Theoretical Physics, [email protected] Chinese Academy of Sciences, China Contribution Title: Effects of the φ-meson on the hyperon production in the hyperon star ​ Abstract: Using relativistic mean field formalism, we have studied the effects of the strange ​ vector φ-meson on the equation of state and consequently on the maximum mass and radius of the hyperon star. Effects of the hyperon coupling constants on the strangeness content of the hyperon star are discussed with a number of the relativistic parameter set. The canonical mass-radius relationship also discussed with various relativistic parameter set.
    [Show full text]
  • The Single Degenerate Progenitor Scenario for Type Ia Supernovae and the Convective Urca Process
    The Single Degenerate Progenitor Scenario for Type Ia Supernovae and the Convective Urca Process ADissertationpresented by Donald Eugene Willcox to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Physics Stony Brook University August 2018 Stony Brook University The Graduate School Donald Eugene Willcox We, the dissertation committe for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation Alan Calder – Dissertation Advisor Associate Professor, Physics and Astronomy Michael Zingale – Chairperson of Defense Associate Professor, Physics and Astronomy Joanna Kiryluk – Committee Member Associate Professor, Physics and Astronomy Matthew Reuter – External Committee Member Assistant Professor, Applied Mathematics and Statistics This dissertation is accepted by the Graduate School Charles Taber Dean of the Graduate School ii Abstract of the Dissertation The Single Degenerate Progenitor Scenario for Type Ia Supernovae and the Convective Urca Process by Donald Eugene Willcox Doctor of Philosophy in Physics Stony Brook University 2018 This dissertation explores the e↵ects of properties of the progenitor massive white dwarf (WD) on thermonuclear (Type Ia) supernovae. It includes a study of explosions from “hy- brid” C/O/Ne progenitors and focuses primarily on the convective Urca process occurring in C/O progenitors shortly before their explosion. Pre-supernova WDs approaching the Chan- drasekhar mass can possess sufficiently high central densities that 23Na synthesized via 12C fusion undergoes electron capture to 23Ne. Convection sweeps 23Ne to regions of lower den- sity where it reverts via beta decay to 23Na, and vice versa. Cyclic weak nuclear processes of this type constitute the convective Urca process in WDs.
    [Show full text]
  • Acknowledgments
    Acknowledgments J. Arons: I have benefitted from many discussions with A. Spitkovsky, P. Chang, N. Bucciantini, E. Amato, R. Blandford, F. Coroniti, D. Backer and E. Quataert. My research efforts on these topics have been supported by NSF grant AST-0507813 and NASA grant NNG06G108G, both to the University of California, Berkeley; by the Department of Energy contract to the Stanford Linear Accelerator Center no. DE-AC3-76SF00515; and by the taxpayers of California. W. Becker: I’m grateful to the Heraeus-Foundation for financing the 363rd Heraeus-Seminar on Neutron Stars and Pulsars which took place in May 2006 at the Physikzentrum in Bad Honnef. A selection of papers presented at this meet- ing and at the IAU Joined Discussion JD02 in Prague in August 2006 became the groundwork to produce this book. I’m further thankful to Joachim Trumper¨ and Harald Lesch for their help and support in organizing the Heraeus-Seminar and to Gunther¨ Hasinger as well as the MPE for additional financial support. Without the great organizational talent and help of Christa Ingram the meetings would not have been what they were. Thanks also for her help in producing this book. Christian Saedtler has spend many days in producing the index of this book. Sincere thanks to him for taking the time. All articles in this book were refereed. I am much obliged to all colleagues who helped in this process. Special thanks goes to Dr. Jaroslaw Dyks, Dr. Ulrich Geppert, Prof. Dr. Yashwant Gupta, Dr. John Kirk, Dr. Maura McLaughlin, Prof. Dr. Andreas Reisenegger and Prof.
    [Show full text]
  • Pos(Confinement8)151
    Cooling of isolated neutron stars as a probe of PoS(Confinement8)151 superdense matter physics Alexander Kaminker∗, Alexander Potekhin and Dmitry Yakovlev Ioffe Physical Technical Institute - Politekhnicheskaya 26, 194021 Saint-Petersburg, Russia E-mail: [email protected], [email protected], [email protected] We review a current state of cooling theory of isolated neutron stars. The main regulators of neutron star cooling are discussed. We outline the sensitivity of cooling models to equation of state of matter in the neutron star core; the presence or absence of enhanced neutrino emission; superfluidity of baryonic component of matter. A comparison of the cooling theory with observa- tions of thermal emission of isolated neutron stars gives a potentially powerful method to study fundamental properties of superdense matter in neutron star interiors. The prospects of studying neutron star parameters and internal structure are outlined. 8th Conference Quark Confinement and the Hadron Spectrum September 1-6, 2008 Mainz. Germany ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Cooling of isolated neutron stars as a probe of superdense matter physics Alexander Kaminker 1. Introduction Microscopic theories of superdense matter in neutron star cores are model dependent and give a vast scatter of possible equation of states (EOSs) (e.g., [1, 2]) with different composition of neu- tron star cores (nucleons, hyperons, pion or kaon condensates, quarks), and different superfluid properties of baryons. The fundamental properties of supranuclear matter cannot be determined on purely theoretical basis, but viable theoretical models can be selected by comparing their predic- tions with observations of neutron stars.
    [Show full text]
  • Thermal Spectrum and Neutrino Cooling Rate of the Vela Pulsar
    Article Thermal Spectrum and Neutrino Cooling Rate of the Vela Pulsar Dmitry D. Ofengeim and Dmitry A. Zyuzin Ioffe Institute, 26 Politekhnicheskaya str., St. Petersburg 194021, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-812-292-7180 Received: 22 June 2018; Accepted: 24 July 2018; Published: 30 July 2018 Abstract: We reanalyse the X-ray spectrum of the PSR B0833–45 (the Vela pulsar) using the data of the Chandra space observatory. In contrast to previous works, we consider a wide range of possible masses ¥ +0.04 and radii of the pulsar. The derived surface temperature of the star Ts = 0.66−0.01 MK (1s level over the entire mass and radius range of our study) is consistent with earlier results. However, the preferable values of Vela’s mass and radius given by the spectral analysis are different from those used previously; they are consistent with modern equation of state models of neutron star matter. In addition, we evaluate the Vela’s surface temperature as a function of assumed values of its mass and radius. This allows us to analyse the neutrino cooling rates consistent with the evaluated surface temperatures and explore the additional restrictions that could be set on the Vela’s mass and radius using different versions of the neutron star cooling theory. Keywords: the Vela pulsar; X-ray spectrum; neutrino cooling rate 1. Introduction In this presentation, we reanalyze the observations of the X-ray surface emission of the Vela pulsar ¥ (PSR B0833-45) and evaluate its effective surface temperature Ts (redshifted for a distant observer), mass M, radius R and the internal neutrino cooling rate using the cooling theory of neutron stars (NSs) [1].
    [Show full text]
  • Jhep06(2018)048
    Published for SISSA by Springer Received: April 13, 2018 Accepted: June 5, 2018 Published: June 8, 2018 Constraining axion-like-particles with hard X-ray emission from magnetars JHEP06(2018)048 Jean-Fran¸coisFortina and Kuver Sinhab aD´epartement de Physique, de G´eniePhysique et d'Optique, Universit´eLaval, 2325 Rue de l'Universit´e,Qu´ebec, QC G1V 0A6, Canada bDepartment of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019, U.S.A. E-mail: [email protected], [email protected] Abstract: Axion-like particles (ALPs) produced in the core of a magnetar will convert to photons in the magnetosphere, leading to possible signatures in the hard X-ray band. We perform a detailed calculation of the ALP-to-photon conversion probability in the magneto- sphere, recasting the coupled differential equations that describe ALP-photon propagation into a form that is efficient for large scale numerical scans. We show the dependence of the conversion probability on the ALP energy, mass, ALP-photon coupling, magnetar radius, surface magnetic field, and the angle between the magnetic field and direction of propa- gation. Along the way, we develop an analytic formalism to perform similar calculations in more general n-state oscillation systems. Assuming ALP emission rates from the core that are just subdominant to neutrino emission, we calculate the resulting constraints on the ALP mass versus ALP-photon coupling space, taking SGR 1806-20 as an example. In particular, we take benchmark values for the magnetar radius and core temperature, and constrain the ALP parameter space by the requirement that the luminosity from ALP- to-photon conversion should not exceed the total observed luminosity from the magnetar.
    [Show full text]
  • Magnetic Neutron Star Cooling and Microphysics A
    A&A 609, A74 (2018) Astronomy DOI: 10.1051/0004-6361/201731866 & c ESO 2018 Astrophysics Magnetic neutron star cooling and microphysics A. Y. Potekhin1; 2; 3 and G. Chabrier1; 4 1 Centre de Recherche Astrophysique de Lyon, Université de Lyon, Université Lyon 1, Observatoire de Lyon, École Normale Supérieure de Lyon, CNRS, UMR 5574, 46 allée d’Italie, 69364 Lyon Cedex 07, France 2 Ioffe Institute, Politekhnicheskaya 26, 194021 Saint Petersburg, Russia e-mail: [email protected] 3 Central Astronomical Observatory at Pulkovo, Pulkovskoe Shosse 65, 196140 Saint Petersburg, Russia 4 School of Physics, University of Exeter, Exeter, EX4 4QL, UK Received 31 August 2017 / Accepted 24 October 2017 ABSTRACT Aims. We study the relative importance of several recent updates of microphysics input to the neutron star cooling theory and the effects brought about by superstrong magnetic fields of magnetars, including the effects of the Landau quantization in their crusts. Methods. We use a finite-difference code for simulation of neutron-star thermal evolution on timescales from hours to megayears with an updated microphysics input. The consideration of short timescales (.1 yr) is made possible by a treatment of the heat- blanketing envelope without the quasistationary approximation inherent to its treatment in traditional neutron-star cooling codes. For the strongly magnetized neutron stars, we take into account the effects of Landau quantization on thermodynamic functions and thermal conductivities. We simulate cooling of ordinary neutron stars and magnetars with non-accreted and accreted crusts and compare the results with observations. Results. Suppression of radiative and conductive opacities in strongly quantizing magnetic fields and formation of a condensed radiating surface substantially enhance the photon luminosity at early ages, making the life of magnetars brighter but shorter.
    [Show full text]
  • Book of Abstracts
    PHAROS Conference 2019: the multi-messenger physics and astrophysics of neutron stars Monday 22 April 2019 - Friday 26 April 2019 HOTEL CAP ROIG Book of Abstracts Contents Complex polarisation variability in radio pulsars and the implication for pulsar magneto- spheres ............................................ 1 Gravitational-wave data analysis for constraining the NS EoS ............... 1 The formation of (heavy) magnetars and collapsars ..................... 1 Neutron Star Equation of State after the GW170817 event .................. 2 Superfluidity and glitches .................................... 2 Pulsar glitches: a window on neutron star interior ...................... 3 The role of magnetic field in pulsar glitches .......................... 3 Spindown-powered transients from long-lived BNS merger remnants ........... 3 GW170817: lessons from the observations of a binary neutron star merger . 4 Gamma-ray bursts and magnetars: observational signatures and predictions in the multi- messenger era ........................................ 4 Modeling the strong-field dynamics of binary neutron star merger ............. 5 Thermal evolution of neo-neutron stars. I. Envelopes and Eddington luminosity phase. 5 An eye on two magnetars ................................... 6 Fast Moving Pulsars in the ISM: 3D RMHD modelling of Bow-Shock Pulsar Wind Nebulae 6 Disk formation from the collapse of a rotating neutron star ................. 7 Equation of state for neutron stars employing chiral interactions within the Green’s func- tion approach ........................................ 7 General predictions for the neutron star crustal moment of inertia ............. 7 Magnetic field evolution in neutron star cores ........................ 8 3D instabilities during the Type I bursts ............................ 9 Relativistic r-modes during type-I X-ray bursts ........................ 9 Unified equations of neutron-star interiors: role of the symmetry energy . 10 Multi-wavelength observations of High Mass X-ray Binaries .
    [Show full text]
  • Arxiv:Astro-Ph/0204151V1 9 Apr 2002
    Accepted for Publication in The Astrophysical Journal Letters New Constraints on Neutron Star Cooling from Chandra Observations of 3C58 Patrick Slane1, David J. Helfand2, and Stephen S. Murray1 ABSTRACT 3C58 is a young Crab-like supernova remnant. Historical evidence strongly suggests an association of the remnant with supernova SN 1181, which would make 3C58 younger than the Crab Nebula. Recent Chandra observations have identified the young 65 ms pulsar J0205+6449 at its center, embedded in a com- pact nebula which, we show here, appears to be confined by the pulsar wind termination shock. We present new Chandra observations of this compact nebula and embedded pulsar which set strong upper limits on thermal emission origi- nating from the neutron star surface. These limits fall far below predictions of standard neutron star cooling, requiring the presence of exotic cooling processes in the neutron star core. Subject headings: ISM: individual (3C58), pulsars: individual (PSR J0205+6449), stars: neutron, supernova remnants, X-rays: general arXiv:astro-ph/0204151v1 9 Apr 2002 1. Introduction Neutron stars are macroscopic manifestations of processes that otherwise occur only in individual atomic nuclei. Formed hot in the core collapse that terminates the life of a massive star, they are supported against gravitational implosion by neutron degeneracy pressure. However, details of the interior structure of neutron stars (NSs) remain poorly understood, largely due to our incomplete understanding of the strong interaction at ultrahigh densities. In the early stages of their lives, energy loss is dominated by neutrino emission. However, the neutrino production rate is highly dependent upon the structure of the interior.
    [Show full text]