Return to Main LECTURE 16: LINEAR PREDICTION-BASED REPRESENTATIONS Objectives ● Objectives: System View: Analysis/Synthesis ❍ Introduce analysis/synthesis systems The Error Signal ❍ Discuss error analysis and gain-matching Gain Matching ❍ Relate linear prediction coefficients to other spectral representations Transformations: Levinson-Durbin ❍ Introduce reflection and prediction coefficent recursions Reflection Coefficients Transformations ❍ Lattice/ladder filter implementations The Burg Method There is a classic textbook on this subject: Summary: Signal Modeling J.D. Markel and A.H. Gray, Linear Prediction of Speech, Springer-Verlag, New Typical Front End York, New York, USA, ISBN: 0-13-007444-6, 1976. On-Line Resources: This lecture also includes material from two other textbooks: AJR: Linear Prediction LPC10E MAD LPC J. Deller, et. al., Discrete-Time Processing of Speech Signals, MacMillan Publishing Co., ISBN: 0-7803-5386-2, 2000. Filter Design and, L.R. Rabiner and B.W. Juang, Fundamentals of Speech Recognition, Prentice-Hall, Upper Saddle River, New Jersey, USA, ISBN: 0-13-015157-2, 1993. Return to Main Introduction: 01: Organization (html, pdf) Speech Signals: ECE 8463: FUNDAMENTALS OF SPEECH 02: Production (html, pdf) RECOGNITION 03: Digital Models Professor Joseph Picone (html, pdf) Department of Electrical and Computer Engineering Mississippi State University 04: Perception (html, pdf) email:
[email protected] phone/fax: 601-325-3149; office: 413 Simrall 05: Masking URL: http://www.isip.msstate.edu/resources/courses/ece_8463 (html, pdf) Modern speech understanding systems merge interdisciplinary technologies from Signal Processing, 06: Phonetics and Phonology Pattern Recognition, Natural Language, and Linguistics into a unified statistical framework. These (html, pdf) systems, which have applications in a wide range of signal processing problems, represent a revolution in Digital Signal Processing (DSP).