Lecture 6: Risk and Uncertainty
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Var and Other Risk Measures
What is Risk? Risk Measures Methods of estimating risk measures Bibliography VaR and other Risk Measures Francisco Ramírez Calixto International Actuarial Association November 27th, 2018 Francisco Ramírez Calixto VaR and other Risk Measures What is Risk? Risk Measures Methods of estimating risk measures Bibliography Outline 1 What is Risk? 2 Risk Measures 3 Methods of estimating risk measures Francisco Ramírez Calixto VaR and other Risk Measures What is Risk? Risk Measures Methods of estimating risk measures Bibliography What is Risk? Risk 6= size of loss or size of a cost Risk lies in the unexpected losses. Francisco Ramírez Calixto VaR and other Risk Measures What is Risk? Risk Measures Methods of estimating risk measures Bibliography Types of Financial Risk In Basel III, there are three major broad risk categories: Credit Risk: Francisco Ramírez Calixto VaR and other Risk Measures What is Risk? Risk Measures Methods of estimating risk measures Bibliography Types of Financial Risk Operational Risk: Francisco Ramírez Calixto VaR and other Risk Measures What is Risk? Risk Measures Methods of estimating risk measures Bibliography Types of Financial Risk Market risk: Each one of these risks must be measured in order to allocate economic capital as a buer so that if a catastrophic event happens, the bank won't go bankrupt. Francisco Ramírez Calixto VaR and other Risk Measures What is Risk? Risk Measures Methods of estimating risk measures Bibliography Risk Measures Def. A risk measure is used to determine the amount of an asset or assets (traditionally currency) to be kept in reserve in order to cover for unexpected losses. -
EART6 Lab Standard Deviation in Probability and Statistics, The
EART6 Lab Standard deviation In probability and statistics, the standard deviation is a measure of the dispersion of a collection of values. It can apply to a probability distribution, a random variable, a population or a data set. The standard deviation is usually denoted with the letter σ. It is defined as the root-mean-square (RMS) deviation of the values from their mean, or as the square root of the variance. Formulated by Galton in the late 1860s, the standard deviation remains the most common measure of statistical dispersion, measuring how widely spread the values in a data set are. If many data points are close to the mean, then the standard deviation is small; if many data points are far from the mean, then the standard deviation is large. If all data values are equal, then the standard deviation is zero. A useful property of standard deviation is that, unlike variance, it is expressed in the same units as the data. 2 (x " x ) ! = # N N Fig. 1 Dark blue is less than one standard deviation from the mean. For Fig. 2. A data set with a mean the normal distribution, this accounts for 68.27 % of the set; while two of 50 (shown in blue) and a standard deviations from the mean (medium and dark blue) account for standard deviation (σ) of 20. 95.45%; three standard deviations (light, medium, and dark blue) account for 99.73%; and four standard deviations account for 99.994%. The two points of the curve which are one standard deviation from the mean are also the inflection points. -
Robust Logistic Regression to Static Geometric Representation of Ratios
Journal of Mathematics and Statistics 5 (3):226-233, 2009 ISSN 1549-3644 © 2009 Science Publications Robust Logistic Regression to Static Geometric Representation of Ratios 1Alireza Bahiraie, 2Noor Akma Ibrahim, 3A.K.M. Azhar and 4Ismail Bin Mohd 1,2 Institute for Mathematical Research, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia 3Graduate School of Management, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia 4Department of Mathematics, Faculty of Science, University Malaysia Terengganu, 21030, Malaysia Abstract: Problem statement: Some methodological problems concerning financial ratios such as non- proportionality, non-asymetricity, non-salacity were solved in this study and we presented a complementary technique for empirical analysis of financial ratios and bankruptcy risk. This new method would be a general methodological guideline associated with financial data and bankruptcy risk. Approach: We proposed the use of a new measure of risk, the Share Risk (SR) measure. We provided evidence of the extent to which changes in values of this index are associated with changes in each axis values and how this may alter our economic interpretation of changes in the patterns and directions. Our simple methodology provided a geometric illustration of the new proposed risk measure and transformation behavior. This study also employed Robust logit method, which extends the logit model by considering outlier. Results: Results showed new SR method obtained better numerical results in compare to common ratios approach. With respect to accuracy results, Logistic and Robust Logistic Regression Analysis illustrated that this new transformation (SR) produced more accurate prediction statistically and can be used as an alternative for common ratios. Additionally, robust logit model outperforms logit model in both approaches and was substantially superior to the logit method in predictions to assess sample forecast performances and regressions. -
Iam 530 Elements of Probability and Statistics
IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS LECTURE 3-RANDOM VARIABLES VARIABLE • Studying the behavior of random variables, and more importantly functions of random variables is essential for both the theory and practice of statistics. Variable: A characteristic of population or sample that is of interest for us. Random Variable: A function defined on the sample space S that associates a real number with each outcome in S. In other words, a numerical value to each outcome of a particular experiment. • For each element of an experiment’s sample space, the random variable can take on exactly one value TYPES OF RANDOM VARIABLES We will start with univariate random variables. • Discrete Random Variable: A random variable is called discrete if its range consists of a countable (possibly infinite) number of elements. • Continuous Random Variable: A random variable is called continuous if it can take on any value along a continuum (but may be reported “discretely”). In other words, its outcome can be any value in an interval of the real number line. Note: • Random Variables are denoted by upper case letters (X) • Individual outcomes for RV are denoted by lower case letters (x) DISCRETE RANDOM VARIABLES EXAMPLES • A random variable which takes on values in {0,1} is known as a Bernoulli random variable. • Discrete Uniform distribution: 1 P(X x) ; x 1,2,..., N; N 1,2,... N • Throw a fair die. P(X=1)=…=P(X=6)=1/6 DISCRETE RANDOM VARIABLES • Probability Distribution: Table, Graph, or Formula that describes values a random variable can take on, and its corresponding probability (discrete random variable) or density (continuous random variable). -
A Framework for Dynamic Hedging Under Convex Risk Measures
A Framework for Dynamic Hedging under Convex Risk Measures Antoine Toussaint∗ Ronnie Sircary November 2008; revised August 2009 Abstract We consider the problem of minimizing the risk of a financial position (hedging) in an incomplete market. It is well-known that the industry standard for risk measure, the Value- at-Risk, does not take into account the natural idea that risk should be minimized through diversification. This observation led to the recent theory of coherent and convex risk measures. But, as a theory on bounded financial positions, it is not ideally suited for the problem of hedging because simple strategies such as buy-hold strategies may not be bounded. Therefore, we propose as an alternative to use convex risk measures defined as functionals on L2 (or by simple extension Lp, p > 1). This framework is more suitable for optimal hedging with L2 valued financial markets. A dual representation is given for this minimum risk or market adjusted risk when the risk measure is real-valued. In the general case, we introduce constrained hedging and prove that the market adjusted risk is still a L2 convex risk measure and the existence of the optimal hedge. We illustrate the practical advantage in the shortfall risk measure by showing how minimizing risk in this framework can lead to a HJB equation and we give an example of computation in a stochastic volatility model with the shortfall risk measure 1 Introduction We are interested in the problem of hedging in an incomplete market: an investor decides to buy a contract with a non-replicable payoff X at time T but has the opportunity to invest in a financial market to cover his risk. -
Measurements of Entropic Uncertainty Relations in Neutron Optics
applied sciences Review Measurements of Entropic Uncertainty Relations in Neutron Optics Bülent Demirel 1,† , Stephan Sponar 2,*,† and Yuji Hasegawa 2,3 1 Institute for Functional Matter and Quantum Technologies, University of Stuttgart, 70569 Stuttgart, Germany; [email protected] 2 Atominstitut, Vienna University of Technology, A-1020 Vienna, Austria; [email protected] or [email protected] 3 Division of Applied Physics, Hokkaido University Kita-ku, Sapporo 060-8628, Japan * Correspondence: [email protected] † These authors contributed equally to this work. Received: 30 December 2019; Accepted: 4 February 2020; Published: 6 February 2020 Abstract: The emergence of the uncertainty principle has celebrated its 90th anniversary recently. For this occasion, the latest experimental results of uncertainty relations quantified in terms of Shannon entropies are presented, concentrating only on outcomes in neutron optics. The focus is on the type of measurement uncertainties that describe the inability to obtain the respective individual results from joint measurement statistics. For this purpose, the neutron spin of two non-commuting directions is analyzed. Two sub-categories of measurement uncertainty relations are considered: noise–noise and noise–disturbance uncertainty relations. In the first case, it will be shown that the lowest boundary can be obtained and the uncertainty relations be saturated by implementing a simple positive operator-valued measure (POVM). For the second category, an analysis for projective measurements is made and error correction procedures are presented. Keywords: uncertainty relation; joint measurability; quantum information theory; Shannon entropy; noise and disturbance; foundations of quantum measurement; neutron optics 1. Introduction According to quantum mechanics, any single observable or a set of compatible observables can be measured with arbitrary accuracy. -
THE USE of EFFECT SIZES in CREDIT RATING MODELS By
THE USE OF EFFECT SIZES IN CREDIT RATING MODELS by HENDRIK STEFANUS STEYN submitted in accordance with the requirements for the degree of MASTER OF SCIENCE in the subject STATISTICS at the UNIVERSITY OF SOUTH AFRICA SUPERVISOR: PROF P NDLOVU DECEMBER 2014 © University of South Africa 2015 Abstract The aim of this thesis was to investigate the use of effect sizes to report the results of statistical credit rating models in a more practical way. Rating systems in the form of statistical probability models like logistic regression models are used to forecast the behaviour of clients and guide business in rating clients as “high” or “low” risk borrowers. Therefore, model results were reported in terms of statistical significance as well as business language (practical significance), which business experts can understand and interpret. In this thesis, statistical results were expressed as effect sizes like Cohen‟s d that puts the results into standardised and measurable units, which can be reported practically. These effect sizes indicated strength of correlations between variables, contribution of variables to the odds of defaulting, the overall goodness-of-fit of the models and the models‟ discriminating ability between high and low risk customers. Key Terms Practical significance; Logistic regression; Cohen‟s d; Probability of default; Effect size; Goodness-of-fit; Odds ratio; Area under the curve; Multi-collinearity; Basel II © University of South Africa 2015 i Contents Abstract .................................................................................................................................................. -
Measures of Central Tendency (Mean, Mode, Median,) Mean • Mean Is the Most Commonly Used Measure of Central Tendency
Measures of Central Tendency (Mean, Mode, Median,) Mean • Mean is the most commonly used measure of central tendency. • There are different types of mean, viz. arithmetic mean, weighted mean, geometric mean (GM) and harmonic mean (HM). • If mentioned without an adjective (as mean), it generally refers to the arithmetic mean. Arithmetic mean • Arithmetic mean (or, simply, “mean”) is nothing but the average. It is computed by adding all the values in the data set divided by the number of observations in it. If we have the raw data, mean is given by the formula • Where, ∑ (the uppercase Greek letter sigma), refers to summation, X refers to the individual value and n is the number of observations in the sample (sample size). • The research articles published in journals do not provide raw data and, in such a situation, the readers can compute the mean by calculating it from the frequency distribution. Mean contd. • Where, f is the frequency and X is the midpoint of the class interval and n is the number of observations. • The standard statistical notations (in relation to measures of central tendency). • The mean calculated from the frequency distribution is not exactly the same as that calculated from the raw data. • It approaches the mean calculated from the raw data as the number of intervals increase Mean contd. • It is closely related to standard deviation, the most common measure of dispersion. • The important disadvantage of mean is that it is sensitive to extreme values/outliers, especially when the sample size is small. • Therefore, it is not an appropriate measure of central tendency for skewed distribution. -
Divergence-Based Risk Measures: a Discussion on Sensitivities and Extensions
entropy Article Divergence-Based Risk Measures: A Discussion on Sensitivities and Extensions Meng Xu 1 and José M. Angulo 2,* 1 School of Economics, Sichuan University, Chengdu 610065, China 2 Department of Statistics and Operations Research, University of Granada, 18071 Granada, Spain * Correspondence: [email protected]; Tel.: +34-958-240492 Received: 13 June 2019; Accepted: 24 June 2019; Published: 27 June 2019 Abstract: This paper introduces a new family of the convex divergence-based risk measure by specifying (h, f)-divergence, corresponding with the dual representation. First, the sensitivity characteristics of the modified divergence risk measure with respect to profit and loss (P&L) and the reference probability in the penalty term are discussed, in view of the certainty equivalent and robust statistics. Secondly, a similar sensitivity property of (h, f)-divergence risk measure with respect to P&L is shown, and boundedness by the analytic risk measure is proved. Numerical studies designed for Rényi- and Tsallis-divergence risk measure are provided. This new family integrates a wide spectrum of divergence risk measures and relates to divergence preferences. Keywords: convex risk measure; preference; sensitivity analysis; ambiguity; f-divergence 1. Introduction In the last two decades, there has been a substantial development of a well-founded risk measure theory, particularly propelled since the axiomatic approach introduced by [1] in relation to the concept of coherency. While, to a large extent, the theory has been fundamentally inspired and motivated with financial risk assessment objectives in perspective, many other areas of application are currently or potentially benefited by the formal mathematical construction of the discipline. -
G-Expectations with Application to Risk Measures
g-Expectations with application to risk measures Sonja C. Offwood Programme in Advanced Mathematics of Finance, University of the Witwatersrand, Johannesburg. 5 August 2012 Abstract Peng introduced a typical filtration consistent nonlinear expectation, called a g-expectation in [40]. It satisfies all properties of the classical mathematical ex- pectation besides the linearity. Peng's conditional g-expectation is a solution to a backward stochastic differential equation (BSDE) within the classical framework of It^o'scalculus, with terminal condition given at some fixed time T . In addition, this g-expectation is uniquely specified by a real function g satisfying certain properties. Many properties of the g-expectation, which will be presented, follow from the spec- ification of this function. Martingales, super- and submartingales have been defined in the nonlinear setting of g-expectations. Consequently, a nonlinear Doob-Meyer decomposition theorem was proved. Applications of g-expectations in the mathematical financial world have also been of great interest. g-Expectations have been applied to the pricing of contin- gent claims in the financial market, as well as to risk measures. Risk measures were introduced to quantify the riskiness of any financial position. They also give an indi- cation as to which positions carry an acceptable amount of risk and which positions do not. Coherent risk measures and convex risk measures will be examined. These risk measures were extended into a nonlinear setting using the g-expectation. In many cases due to intermediate cashflows, we want to work with a multi-period, dy- namic risk measure. Conditional g-expectations were then used to extend dynamic risk measures into the nonlinear setting. -
Introduction
DA-STATS Introduction Shan E Ahmed Raza Department of Computer Science University of Warwick [email protected] DASTATS – Teaching Team Shan E Ahmed Raza Fayyaz Minhas Richard Kirk Introduction 2 About Me • PhD (Computer Science) University of Warwick 2011-2014 warwick.ac.uk/searaza Supervisor(s): Professor Nasir Rajpoot and Dr John Clarkson • Research Fellow University of Warwick 2014 – 2017 • Postdoctoral Fellow The Institute of Cancer Research 2017 – 2019 • Assistant Professor Computer Science, University of Warwick 2019 • Research Interests Computational Pathology Multi-Channel and Multi-Model Image Analysis Deep Learning and Pattern Recognition Introduction 3 Course Outline • Introduction To Descriptive And Predictive Techniques. warwick.ac.uk/searaza • Introduction To Python. • Data Visualisation And Reporting Techniques. • Probability And Bayes Theorem • Sampling From Univariate Distributions. • Concepts Of Multivariate Analysis. • Linear Regression. • Application Of Data Analysis Requirements In Work. • Appreciate Of Limitations Of Traditional Analysis. Introduction 4 DA-STATS Topic 01: Introduction to Descriptive and Predictive Analysis Shan E Ahmed Raza Department of Computer Science University of Warwick [email protected] Outline • Introduction to Descriptive, Predictive and Prescriptive Techniques • Data and Model Driven Modelling • Descriptive Analysis Scales of Measurement and data Measures of central tendency, statistical dispersion and shape of distribution • Correlation Techniques DA-STATS - Topic 01: Introduction -
Media Diversity and the Analysis of Qualitative Variation
Media diversity and the analysis of qualitative variation David Deacon & James Stanyer CENTRE FOR RESEARCH IN COMMUNICATION AND CULTURE, LOUGHBOROUGH UNIVERSITY January 2019 1 Abstract Diversity is recognised as a significant criterion for appraising the democratic performance of media systems. This article begins by considering key conceptual debates that help differentiate types and levels of diversity. It then addresses one of the core methodological challenges in measuring diversity: how do we model statistical variation and difference when many measures of source and content diversity only attain the nominal level of measurement? We identify a range of obscure statistical indices developed in other fields that measure the strength of ‘qualitative variation’. Using original data, we compare the performance of five diversity indices and, on this basis, propose the creation of a more effective diversity average measure (DIVa). The article concludes by outlining innovative strategies for drawing statistical inferences from these measures, using bootstrapping and permutation testing resampling. All statistical procedures are supported by a unique online resource developed with this article. Key word: Media diversity, diversity indices, qualitative variation, categorical data Acknowledgements We wish to thank Orange Gao and Peter Dean of Business Intelligence and Strategy Ltd and Dr Adrian Leguina, School of Social Sciences, Loughborough University for their assistance in developing the conceptual and technical aspects of this paper. 2 Introduction Concerns about diversity are at the heart of discussions about the democratic performance of all media platforms (e.g. Entman, 1989: 64, 95; Habermas, 2006: 412, 416; Sunstein, 2018:85). With mainstream media, such debates are fundamentally about plurality, namely, the extent to which these powerful opinion leading organisations are able and/or inclined to engage with and represent the disparate communities, issues and interests that sculpt modern societies.