Chromosomes As Organelles in Cell Division and Gametogenesis

Total Page:16

File Type:pdf, Size:1020Kb

Chromosomes As Organelles in Cell Division and Gametogenesis Chromosomes as organelles in cell division and gametogenesis MD Pertile VCGS Pathology, Royal Children’s Hospital, Parkville, VIC 3052 Chromosomal basis of hereditary Genetics: A conceptual approach 2002 B A Pearce DNA and chromosomes Chromosome = “colored body” Gk, chroma + soma [Heinrich Wilhelm Waldeyer 1888] Each chromosome consists of a single molecule of DNA + histone and non-histone proteins (= chromatin) Nucleosome is an octomer of histones 2 x [H2A, H2B, H3 and H4] 146-bp DNA + 55-bp DNA assoc. with linker [H1] DNA and chromosomes Higher-order packaging of chromatin into 30 nm fibre Chromosomes highly condensed during mitosis (10,000-fold compaction) Chromosomes only visible cytologically during cell division Chromosome number Arabidopsis thaliana 2n = 10 Canis familiaris 2n = 78 Drosophila • Chromosome number melanogaster & morphology varies 2n = 8 between organisms • Common aim is faithful passage of DNA into Homo sapiens daughter cells 2n = 46 Mus musculus 2n = 40 Pan troglodytes 2n = 48 Human metaphase chromosomes (2n = 46) Mouse karyotype 2n = 40 (telocentric) 19 pairs of autosomes X & Y sex chromosomes C-banding Centromere Cytologically visible as primary constriction Typically associated with large arrays of AT-rich repetitive DNA (0.5 - 4.0 Mb in humans) No DNA sequence conservation b/w species (centromeric chromatin is epigenetically determined) Site of kinetochore assembly and spindle attachment Dawe & Henikoff 2006 Trends Biochem Sci 31(12), 662-669 Centromeric chromatin CENPA replaces Histone H3 within the centromere associated nucleosomes Kinetochore assembles just before and during the early stages of mitosis Assembles on poleward (CENPA) face and recruits centromere and spindle binding proteins Adapted from Santaguida and Musacchio (2009). EMBO J 28: 2511-2531. Mammalian mitotic cell cycle Cell grows, duplicates DNA and 2n, divides into identical daughter 2c 2n, 2c cells Mammalian cell cycle ~20-24 hrs 2n, (G1 12 hr, S 7 hr, G2 4 hr, M 1 hr) 2c Checkpoints ensure fidelity of DNA replication and cell division cyclin-dependent kinases (CDKs) 2n, 4c regulate cell cycle 2c → 4c CDK inhibitors (CKIs) cause cell Genetics Vol 1 (A-D) 2003 The MacMillan Science Library cycle to halt Checkpoints demand successful completion of prior phase before next phase proceeds Mitosis Spindle checkpoint proteins avert aneuploidy by delaying anaphase onset until c’somes align 2 identical daughter cells produced from mitotic division H3-GFP fusion gene in mouse embryonic fibroblast cells Courtesy Dr. Damien Hudson Chromosome & Chromatin Research Lab, MCRI Meiosis Specialised cell division that occurs in gonads C’some replication in S phase is followed by two consecutive cell divisions Homologous chromosomes pair and recombine during first meiotic Reduction division division (reduction division 2n→n) Second meiotic division is similar to mitosis (without S phase) Produces haploid gametes (4 x n in males and 1 x n in females) Biology 6th Edition 2001 Raven / Johnson Biology 6th Edition 2001 Raven / Johnson Recombination during Prophase of Meiosis I Prophase of Meiosis I Biology 6th Edition 2001 Raven / Johnson Crossing over visualised as chiasmata (visible in diplotene) Occurs during fetal life in females (14-15 wks pc) At least one ‘obligatory’ chiasma per arm for each pair of homologues Normal meiosis Meiosis I Meiosis II Meiosis I non-disjunction Meiosis I Non-disjunction Meiosis II Disomic gametes Nullisomic gametes Meiosis II non-disjunction Meiosis I Meiosis II Non-disjunction Normal gametes Disomic Nullisomic Maternal age and non-disjunction Maternal MI errors predominate amongst trisomies In females, first division is initiated prenatally and suspended in dictyotene until ovulation 12-50 yrs later Second division completed after fertilization Achiasmate bivalents never engage in genetic recombination and drift independently across metaphase plate [40-50% of all DS conceptions from MI non-disjunction result from achiasmate Hassold and Hunt 2001 Nat Rev Genet 2:280-287 bivalents; freq similar in younger and older mothers] Origin of human trisomies Hassold et al 2007 Hum Mol Genet 16(R2) R202-208 Altered genetic recombination and aneuploidy Significant reductions in recombination found in all MI-derived trisomies studied (T15, 16, 18, 21, XXX & XXY of mat origin & T21 and XXY of pat origin) Telomeric exchanges contribute to trisomy amongst younger women but less important in older women (bivalents more susceptible to non- disjoin) Post zygotic errors of chromosome division Post zygotic non-disjunction or anaphase lag leads to chromosomal mosaicism [normal + aneuploid cells] Very common in early human conceptions (perhaps 50- 60% of preimplantation embryos) 5% of early miscarriages 0.3% at amniocentesis (16+ weeks gestation) May manifest as confined placental mosaicism (CPM), generalised mosaicism, tissue limited mosaicism (e.g. Pallister-Killian syndrome) .
Recommended publications
  • Timing of Centrosome Separation Is Important for Accurate Chromosome Segregation
    M BoC | ARTICLE Timing of centrosome separation is important for accurate chromosome segregation William T. Silkwortha, Isaac K. Nardia,*, Raja Paulb, Alex Mogilnerc, and Daniela Ciminia aDepartment of Biological Sciences, Virginia Tech, Blacksburg, VA 24061; bIndian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India; cDepartment of Neurobiology, Physiology and Behavior and Department of Mathematics, University of California, Davis, Davis, CA 95616 ABSTRACT Spindle assembly, establishment of kinetochore attachment, and sister chroma- Monitoring Editor tid separation must occur during mitosis in a highly coordinated fashion to ensure accurate Yixian Zheng chromosome segregation. In most vertebrate cells, the nuclear envelope must break down to Carnegie Institution allow interaction between microtubules of the mitotic spindle and the kinetochores. It was Received: Feb 2, 2011 previously shown that nuclear envelope breakdown (NEB) is not coordinated with centrosome Revised: Nov 17, 2011 separation and that centrosome separation can be either complete at the time of NEB or can Accepted: Nov 22, 2011 be completed after NEB. In this study, we investigated whether the timing of centrosome separation affects subsequent mitotic events such as establishment of kinetochore attach- ment or chromosome segregation. We used a combination of experimental and computa- tional approaches to investigate kinetochore attachment and chromosome segregation in cells with complete versus incomplete spindle pole separation at NEB. We found that cells with incomplete spindle pole separation exhibit higher rates of kinetochore misattachments and chromosome missegregation than cells that complete centrosome separation before NEB. Moreover, our mathematical model showed that two spindle poles in close proximity do not “search” the entire cellular space, leading to formation of large numbers of syntelic at- tachments, which can be an intermediate stage in the formation of merotelic kinetochores.
    [Show full text]
  • Mobile Genetic Elements in Streptococci
    Curr. Issues Mol. Biol. (2019) 32: 123-166. DOI: https://dx.doi.org/10.21775/cimb.032.123 Mobile Genetic Elements in Streptococci Miao Lu#, Tao Gong#, Anqi Zhang, Boyu Tang, Jiamin Chen, Zhong Zhang, Yuqing Li*, Xuedong Zhou* State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China. #Miao Lu and Tao Gong contributed equally to this work. *Address correspondence to: [email protected], [email protected] Abstract Streptococci are a group of Gram-positive bacteria belonging to the family Streptococcaceae, which are responsible of multiple diseases. Some of these species can cause invasive infection that may result in life-threatening illness. Moreover, antibiotic-resistant bacteria are considerably increasing, thus imposing a global consideration. One of the main causes of this resistance is the horizontal gene transfer (HGT), associated to gene transfer agents including transposons, integrons, plasmids and bacteriophages. These agents, which are called mobile genetic elements (MGEs), encode proteins able to mediate DNA movements. This review briefly describes MGEs in streptococci, focusing on their structure and properties related to HGT and antibiotic resistance. caister.com/cimb 123 Curr. Issues Mol. Biol. (2019) Vol. 32 Mobile Genetic Elements Lu et al Introduction Streptococci are a group of Gram-positive bacteria widely distributed across human and animals. Unlike the Staphylococcus species, streptococci are catalase negative and are subclassified into the three subspecies alpha, beta and gamma according to the partial, complete or absent hemolysis induced, respectively. The beta hemolytic streptococci species are further classified by the cell wall carbohydrate composition (Lancefield, 1933) and according to human diseases in Lancefield groups A, B, C and G.
    [Show full text]
  • Transposable Elements Drive Reorganisation of 3D Chromatin
    bioRxiv preprint doi: https://doi.org/10.1101/523712; this version posted January 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Transposable elements drive reorganisation of 3D chromatin during early embryogenesis Kai Kruse1, Noelia Díaz1, §, Rocio Enriquez-Gasca1, §, Xavier Gaume2, 4, Maria-Elena Torres-Padilla2, 3 and Juan M. Vaquerizas1, * 1. Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149 Muenster, Germany. 2. Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, Marchioninistraße 25, 81377 Munich, Germany. 3. Faculty of Biology, Ludwig Maximilians Universität, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany. 4. Present address: Cancer Research Center of Lyon, 28 Rue Laennec, Lyon 69008, France. §. These authors have contributed equally to this work. *. Correspondence to J.M.V. ([email protected], @vaquerizasjm) Keywords: Chromosome conformation capture; low-input Hi-C; early embryonic development; totipotency; transposable elements; MERVL; TAds; 2-cell embryo; 2-cell-like cells; zygotic genome activation; CAF-1; dux. Transposable elements are abundant genetic components of eukaryotic genomes with important regulatory features affecting transcription, splicing, and recombination, among others. Here we demonstrate that the Murine Endogenous Retroviral Element (MuERV-L/MERVL) family of transposable elements drives the 3D reorganisation of the genome in the early mouse embryo. By generating Hi-C data in 2-cell-like cells, we show that MERLV elements promote the formation of insulating domain boundaries through- out the genome in vivo and in vitro.
    [Show full text]
  • Review Cell Division from a Genetic Perspective
    REVIEW CELL DIVISION FROM A GENETIC PERSPECTIVE LELAND H. HARTWELL From the Department of Genetics, University of Washington, Seattle, Washington 98195 Recently, a number of laboratories have begun to incubation at the restrictive condition for that study mutant cells that are defective in specific mutation, whereas mutants with defects in one of stages of the eukaryotic cell cycle. The long-range the continuously required functions will arrest at goals of this work are to identify the genes that the restrictive temperature with cells at a variety code for division-related proteins, to define the of positions in the cell cycle. roles that these gene products play and to investi- Classes of mutants may be distinguished from gate the hierarchies of order that assure their one another and the roles of their products delim- coordinated activity. It is my intent in this brief ited by determining the stage-specific event at review to discuss the strategies employed in this which they arrest. It is convenient to have a genetic approach and to enumerate some of the designation for the first landmark of the cell cycle new conclusions that have come to light. A recent that is blocked in a particular mutant, and I shall review on the genetics of meiosis (2) complements call it the diagnostic landmark for that mutant. this review on mitosis. Mutants of Saccharomyces cerevisiae have been identified that have diagnostic landmarks at spin- MUTANTS dle pole body (SPB) duplication, SPB separation, Mutations that inactivate gene products essential initiation of DNA synthesis, DNA replication, for division would be lethal.
    [Show full text]
  • GENETICS and GENOMICS Ed
    GENETICS AND GENOMICS Ed. Csaba Szalai, PhD GENETICS AND GENOMICS Editor: Csaba Szalai, PhD, university professor Authors: Chapter 1: Valéria László Chapter 2, 3, 4, 6, 7: Sára Tóth Chapter 5: Erna Pap Chapter 8, 9, 10, 11, 12, 13, 14: Csaba Szalai Chapter 15: András Falus and Ferenc Oberfrank Keywords: Mitosis, meiosis, mutations, cytogenetics, epigenetics, Mendelian inheritance, genetics of sex, developmental genetics, stem cell biology, oncogenetics, immunogenetics, human genomics, genomics of complex diseases, genomic methods, population genetics, evolution genetics, pharmacogenomics, nutrigenetics, gene environmental interaction, systems biology, bioethics. Summary The book contains the substance of the lectures and partly of the practices of the subject of ‘Genetics and Genomics’ held in Semmelweis University for medical, pharmacological and dental students. The book does not contain basic genetics and molecular biology, but rather topics from human genetics mainly from medical point of views. Some of the 15 chapters deal with medical genetics, but the chapters also introduce to the basic knowledge of cell division, cytogenetics, epigenetics, developmental genetics, stem cell biology, oncogenetics, immunogenetics, population genetics, evolution genetics, nutrigenetics, and to a relative new subject, the human genomics and its applications for the study of the genomic background of complex diseases, pharmacogenomics and for the investigation of the genome environmental interactions. As genomics belongs to sytems biology, a chapter introduces to basic terms of systems biology, and concentrating on diseases, some examples of the application and utilization of this scientific field are also be shown. The modern human genetics can also be associated with several ethical, social and legal issues. The last chapter of this book deals with these issues.
    [Show full text]
  • Cell Division and Cycle
    Name: _______________________ Date:_____________ Period_________ Subject: ________ Cell Division and Cycle Read the phase to answer the questions 1 through 10. Living organisms are constantly making new cells. They make new cells in order to grow and also to replace old dead cells. The process by which new cells are made is called cell division. Cell division is occurring all the time. Around two trillion cell divisions occur in the average human body every day! Types of Cell Division There are three main types of cell division: binary fission, mitosis, and meiosis. Binary fission is used by simple organisms like bacteria. More complex organisms gain new cells by either mitosis or meiosis. Mitosis Mitosis is used when a cell needs to be replicated into exact copies of itself. Everything in the cell is duplicated. The two new cells have the same DNA, functions, and genetic code. The original cell is called the mother cell and the two new cells are called daughter cells. The full process, or cycle, of mitosis is described in more detail below. Examples of cells that are produced through mitosis include cells in the human body for the skin, blood, and muscles. Cell Cycle for Mitosis Cells go through different phases called the cell cycle. The "normal" state of a cell is called the "interphase". The genetic material is duplicated during the interphase stage of the cell. When a cell gets the signal that it is to duplicate, it will enter the first state of mitosis called the "prophase". Prophase - During this phase the chromatin condenses into chromosomes and the nuclear membrane and nucleolus break down.
    [Show full text]
  • Mitosis Vs. Meiosis
    Mitosis vs. Meiosis In order for organisms to continue growing and/or replace cells that are dead or beyond repair, cells must replicate, or make identical copies of themselves. In order to do this and maintain the proper number of chromosomes, the cells of eukaryotes must undergo mitosis to divide up their DNA. The dividing of the DNA ensures that both the “old” cell (parent cell) and the “new” cells (daughter cells) have the same genetic makeup and both will be diploid, or containing the same number of chromosomes as the parent cell. For reproduction of an organism to occur, the original parent cell will undergo Meiosis to create 4 new daughter cells with a slightly different genetic makeup in order to ensure genetic diversity when fertilization occurs. The four daughter cells will be haploid, or containing half the number of chromosomes as the parent cell. The difference between the two processes is that mitosis occurs in non-reproductive cells, or somatic cells, and meiosis occurs in the cells that participate in sexual reproduction, or germ cells. The Somatic Cell Cycle (Mitosis) The somatic cell cycle consists of 3 phases: interphase, m phase, and cytokinesis. 1. Interphase: Interphase is considered the non-dividing phase of the cell cycle. It is not a part of the actual process of mitosis, but it readies the cell for mitosis. It is made up of 3 sub-phases: • G1 Phase: In G1, the cell is growing. In most organisms, the majority of the cell’s life span is spent in G1. • S Phase: In each human somatic cell, there are 23 pairs of chromosomes; one chromosome comes from the mother and one comes from the father.
    [Show full text]
  • Double Mitotic Nondisjunction
    J Med Genet: first published as 10.1136/jmg.15.5.395 on 1 October 1978. Downloaded from Case reports 395 well be that, in this family, 18q- is unable to segre- mosaicism. Chromosome 18 trisomy was found gate properly during gametogenesis and early post- only in 18% of lymphocytes and not in skin zygotic mitosis, leading to an unbalanced state and fibroblasts. A likely interpretation is double non- +(18q-). disjunction in a single lymphocyte precursor HAROLD N. BASs, FELICE WEBER-PARISI, AND of a trisomy 21 embryo. A brief review of other ROBERT S. SPARKES cases of mitotic multiple nondisjunction and Department ofPediatrics (Genetics), Kaiser- double aneuploid mosaicism is presented. Permanente Medical Center, Panorama City, California 91402; and Division ofMedical Genetics, Chromosomal mosaicism occurs in a small percentage Departments ofMedicine, Pediatrics, andPsychiatry, of patients with Down's syndrome. The vast majority UCLA Centerfor the Health Sciences, Los Angeles, of these mosaics have a normal cell line in addition to California 90024, USA the trisomy 21 cell line. This report describes the first reported instance, to our knowledge, of an unusual References type of double trisomy mosaicism in lymphocytes Castel, Y., Riviere, D., Nawrocki, T., Le Fur, J-M., and Toudic, involving chromosomes 18 and 21. L. (1975). Trisomie partielie 18q par translocation familiale t(l8q-;13q+). Lyon Medical, 233, 211-217. Francke, U. (1972). Quinacrine mustard fluorescence of human chromosomes: characterization of unusual translocations. Case report American Journal ofHuman Genetics, 24, 189-213. Fujita, K., and Fujita, H. M. (1974). An extra small submetacentric The proposita was referred for chromosome analysis chromosome: possible partial trisomy 18.
    [Show full text]
  • Epigenetic Centromere Specification Directs Aurora B Accumulation but Is Insufficient to Efficiently Correct Mitotic Errors
    JCB: Report Epigenetic centromere specification directs aurora B accumulation but is insufficient to efficiently correct mitotic errors Emily A. Bassett,1,2 Stacey Wood,2 Kevan J. Salimian,1,2 Sandya Ajith,1,2 Daniel R. Foltz,3 and Ben E. Black1,2 1Graduate Group in Biochemistry and Molecular Biophysics and 2Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 3Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908 he nearly ubiquitous presence of repetitive centro- of the kinetochore is intact at a human neocentromere mere DNA sequences across eukaryotic species is in lacking repetitive -satellite DNA. However, aurora B is Tparadoxical contrast to their apparent functional dis- inappropriately silenced as a consequence of the altered pensability. Centromeric chromatin is spatially delineated geometry of the neocentromere, thereby compromising into the kinetochore-forming array of centromere protein A the error correction mechanism. This suggests a model (CENP-A)–containing nucleosomes and the inner cen­ wherein the neocentromere represents a primordial inher- tromeric heterochromatin that lacks CENP-A but recruits itance locus that requires subsequent generation of a the aurora B kinase that is necessary for correcting erro- robust inner centromere compartment to enhance fidelity neous attachments to the mitotic spindle. We found that of chromosome transmission. the self-perpetuating network of CENPs at the foundation Introduction
    [Show full text]
  • Questions from Medical Biology and Genetics in Acad. Year 2019/2020 for 1 St Year Dentistry
    Questions from Medical biology and Genetics in acad. year 2019/2020 for 1 st year Dentistry I. The cell 1. Molecular structure of the biological membranes 2. Types of intercellular communications (endocrine, paracrine, autocrine and neural) 3. Types and function of receptors and signal molecules, first and second messengers, amplification of signal 4. Transport through membranes, mechanisms 5. Endoplasmic reticulum, structure and function 6. Ribosomes, their structure and function 7. Golgi complex, its structure, metabolic and distributional function 8. Lysosomes, peroxisomes, proteasomes and their function 9. Function and biogenesis mitochondria, characteristics of its genome 10. Functional organization of the cytoskeleton (microtubules, microfillaments) 11. Centromere, kinetochore, system permitting movement of chromosomes in cell division 12. Mitosis as a part of cell cycle 13. Cell cycle - phases, regulatory molecules, check points 14. Processes taking part in cell cycle regulation, examples 15. G1 check point of cell cycle, factors ruling transfer G1/S in cell cycle 16. G2 check point of cell cycle, factors ruling transfer G2/M in cell cycle 17. Mitotic check point, molecular mechanism of its regulation 18. Relation protooncogene – oncogene in regulation of cell cycle 19. Oncogenesis, molecular characteristics of malignant transformation of cell 20. Types of oncogenes, mechanisms changing protooncogene to oncogene 21. Mechanisms of protooncogens participation in deregulation of cell cycle 22. Nucleus, its structure and function 23. Totipotence of cells, stem cells, tissue engineering and regenerative medicine 24. Alternative usage of genetic information in differentiation of cell 25. Apoptosis - programmed cell death (telomeric sequences) 26. Mechanism of activation of apoptosis through ”death“ receptors 27. Mechanism of activation of apoptosis through mitochondrial pathway 28.
    [Show full text]
  • Cell Growth and Reproduction Lesson 6.2: Chromosomes and DNA Replication
    Chapter 6: Cell Growth and Reproduction Lesson 6.2: Chromosomes and DNA Replication Cell reproduction involves a series of steps that always begin with the processes of interphase. During interphase the cell’s genetic information which is stored in its nucleus in the form of chromatin, composed of both mitotic and interphase chromosomes molecules of protein complexes and DNA strands that are loosely coiled winds tightly to be replicated. It is estimated that the DNA in human cells consists of approximately three billion nucleotides. If a DNA molecule was stretched out it would measure over 20 miles in length and all of it is stored in the microscopic nuclei of human cells. This lesson will help you to understand how such an enormous amount of DNA is coiled and packed in a complicated yet organized manner. During cell reproduction as a cell gets ready to divide the DNA coils even more into tightly compact structures. Lesson Objectives • Describe the coiled structure of chromosomes. • Understand that chromosomes are coiled structures made of DNA and proteins. They form after DNA replicates and are the form in which the genetic material goes through cell division. • Discover that DNA replication is semi-conservative; half of the parent DNA molecule is conserved in each of the two daughter DNA molecules. • Outline discoveries that led to knowledge of DNA’s structure and function. • Examine the processes of DNA replication. Vocabulary • centromere • double helix • Chargaff’s rules • histones • chromatid • nucleosomes • chromatin • semi-conservative DNA replication • chromosome • sister chromatids • DNA replication • transformation Introduction In eukaryotic cells, the nucleus divides before the cell itself divides.
    [Show full text]
  • Haplotype-Aware Inference of Human Chromosome Abnormalities Daniel Ariad 1*, Stephanie M
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.18.444721; this version posted May 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Ariad et al. Haplotype-aware inference of human chromosome abnormalities Daniel Ariad 1*, Stephanie M. Yan 1, Andrea R. Victor2,FrankL.Barnes2, Christo G. Zouves2, Manuel Viotti 3 and Rajiv C. McCoy 1* Abstract Extra or missing chromosomes—a phenomenon termed aneuploidy—frequently arises during human meiosis and embryonic mitosis and is the leading cause of pregnancy loss, including in the context of in vitro fertilization (IVF). While meiotic aneuploidies a↵ect all cells and are deleterious, mitotic errors generate mosaicism, which may be compatible with healthy live birth. Large-scale abnormalities such as triploidy and haploidy also contribute to adverse pregnancy outcomes, but remain hidden from standard sequencing-based approaches to preimplantation genetic testing (PGT-A). The ability to reliably distinguish meiotic and mitotic aneuploidies, as well as abnormalities in genome-wide ploidy may thus prove valuable for enhancing IVF outcomes. Here, we describe a statistical method for distinguishing these forms of aneuploidy based on analysis of low-coverage whole-genome sequencing data, which is the current standard in the field. Our approach overcomes the sparse nature of the data by leveraging allele frequencies and linkage disequilibrium (LD) measured in a population reference panel. The method, which we term LD-informed PGT-A (LD-PGTA), retains high accuracy down to coverage as low as 0.05 and at higher coverage can also distinguish between meiosis I and meiosis II errors based on signatures⇥ spanning the centromeres.
    [Show full text]