Engineering of Tools for De Novo Assembly of Human Cells by Chung-Yun (George) Chao B.S

Total Page:16

File Type:pdf, Size:1020Kb

Engineering of Tools for De Novo Assembly of Human Cells by Chung-Yun (George) Chao B.S Engineering of Tools for De Novo Assembly of Human Cells By Chung-Yun (George) Chao B.S. Genetics, Cell Biology, and Development, University of Minnesota – Twin Cities, 2013 B.S. Computer Science, University of Minnesota – Twin Cities, 2013 SUBMITTED TO THE HARVARD-MIT PROGRAM IN HEALTH SCIENCES AND TECHNOLOGY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN MEDICAL ENGINEERING AND MEDICAL PHYSICS AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY SEPTEMBER 2020 ©2020 George Chao. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author: ____________________________________________________________ Harvard-MIT Program in Health Sciences and Technology September 10, 2020 Certified by: ___________________________________________________________________ George M. Church, Ph.D. Professor of Genetics, Harvard Medical School Thesis Supervisor Accepted by: __________________________________________________________________ Emery N. Brown, M.D., Ph.D. Director, Harvard-MIT Program in Health Sciences and Technology Professor of Computational Neuroscience and Health Sciences and Technology, MIT Page Intentionally Left Black for Double-Sided Printing 2 Engineering of Tools for De Novo Assembly of Human Cells By Chung-Yun (George) Chao Submitted to the Department of Health Sciences and Technology on September 10, 2020 in Partial Fulfillment of the requirements for the degree of Doctor of Philosophy in Medical Engineering and Medical Physics ABSTRACT Organs for transplantation has continuously been in short supply and, given COVID-19’s propensity to adversely impact solid organs, the shortage will likely become exacerbated. For decades, the field of tissue engineering has developed innovative methods to generate model tissues de novo. Top-down approaches, such as microfluidics and 3D bioprinting, provide spatial control by patterning cell types with high resolution, but face challenges in reproducing physiologically accurate cell types and interactions. Bottom-up methods, such as organoids, induce pluripotent cells to differentiate into aggregates that resemble their in vivo counterparts, yet the size and complexity of these structures are limited by nutrient diffusion and the morphology cannot be controlled. An ideal system would allow for high spatial control while retaining native cell-cell interactions formed through developmental progression. To approach this capability, we aimed to create a sequential gene expression system that programmatically aggregate and differentiate cells, merging both top-down and bottom-up characteristics. First, we curated and characterized 28 recombinases to determine efficiency and pairwise compatibility for use in mammalian recombinase genetic circuits (RGC). From this set, we designed an RGC capable of expressing 12 genes in sequence, providing a framework for simulating the gene expression cascades of development. To elucidate the temporal dynamics of recombinase action in mammalian cells, we formulated a mathematical model for recombinase expression and catalysis and validated it with experimental data. We found that recombinases have variable expression levels, catalytic rates, and binding affinities, which should be accounted for when designing RGCs. Separately, we designed a platform for engineering novel membrane proteins for inducing specific cell-cell interactions using coiled-coils, called helixCAM. We demonstrated that helixCAMs are capable of inducing patterned cell binding in E. coli, yeast, and human cells, and further utilized a library-on-library approach to engineer new helixCAM-optimized coiled- coils. Taken together, the genetic tools described in this thesis establish groundwork towards hybrid tissue engineering strategies capable of high-resolution patterning while enabling endogenous cell differentiation and cell-cell interactions to form, ultimately serving as a template for engineering large-scale tissue and organs de novo. Thesis Supervisor: Dr. George M. Church Title: Professor of Genetics, Harvard Medical School 3 Page Intentionally Left Black for Double-Sided Printing 4 This thesis is dedicated to the people fighting to maintain truth in a dark era. It is on their shoulders that science can exist. 5 Page Intentionally Left Black for Double-Sided Printing 6 Acknowledgements I still remember my goals from when I first joined the HST Program in 2013: to develop a novel, groundbreaking technology on my own, and to obtain my PhD in 4 years. Here I am, 7 years later, having achieved neither, but certainly better for it. Like it or not, completing a PhD in health sciences is a marathon, a team sport, and a lifestyle. The path to building a body of work is long and cannot be sprinted. Contemporary science is best done collaboratively, sharing expertise and passion. Finally, multiple years of solely performing research is no way to live life, and finding interests outside of the lab, such as traveling and social dancing for me, paradoxically improves productivity within it. Of course, you cannot start a fire without a spark, and, likewise my passion for science can be directly attributed to a nurturing environment from my parents, teachers, and professors along the way who went above and beyond to encourage my curiosity and interests. As such, I would like to thank my teachers and professors who believed in me and nudged me in the right path during my academic journey. Thank you to Mrs. Keshvala, one of my first teachers when we immigrated to the U.S. and perhaps the first teacher I enjoyed learning from. She emphasized the importance of having sound mathematic and scientific foundations, and the impact she had on me by screening Gattaca and October’s Sky in class cannot be overstated. Thank you to Mrs. Roberts, who directed my love for math and engineering towards biological applications and opened my eyes to collaborating with diverse teams. Taking a step back, I would like to thank the all of the WFBHS and NCHS teachers I had the pleasure of learning from, who saw something in me and never provided me with anything less than their full support in my academic pursuits. My confidence in my academic pursuits are to your credit. Throughout my college career at the University of Minnesota – Twin Cities, I had the great fortune to be mentored by incredibly intelligent and caring faculty. The biggest call-out has to be to Dr. Thomas Neufeld, who opened his lab to a freshman even before he took his first class. To this day, I am not sure that was a strategically sound decision, but from that kindness, I was able to learn about the lab environment and become knowledgeable in Drosophila genetics. Through this experience, I was also able to meet Dr. Nakato and through that, have the opportunity to be a visiting researcher at the lab of Dr. Takashi Adachi-Yamada at Gakushuin University in Japan. I also have to thank Dr. Jeffery Gralnick, who is the epitome of the “chill professor.” The research directions that I developed during his class, Engineering Living Systems, have had an outsized impact in defining my future in research (as reflected in this thesis work). He also advised my 2012 iGEM team, hosting us in his lab, helping us fundraise, and bringing us to the iGEM Jamboree East in Pittsburgh. I am proud to have Dr. G. as a colleague and a friend to this day. I would be remiss not to thank Dr. David Matthes for his enthusiasm for science and support for my more ambitious ideas. I am not sure if he remembers this, but his short advice on the value of creating platform technologies when I ran into him outside of Moos Tower, about to bike home, remains with me to this day. I would like to thank Dr. Chad Myers for opening my eyes to how computer science can be applied to intimately understand biology – I still use the concepts and algorithms from his Functional Genomics and Bioinformatics course to this day. Thank you to Dr. Daniel Keefe, who gave me a look into a what “pure” computer 7 science research is like. I would like to thank some of my wonderful administrators from the U. Dean Robert Elde, who made time to meet directly with students, had multiple coffees with me, and even wrote me a letter of recommendation. Sarah Corrigan, my academic advisor, always allowed me to take the courses I wanted and found a way to make it all work. Thank you to Meaghan Stein and Nikki Shultz for the Dean’s Scholars leadership training curriculum. To be honest, I was not expecting the experience to be used so soon, but time and again I find myself breaking out the DiSC assessment, icebreakers, and introspective leadership tools as I work with teams from small to large. Last but not least, an undying gratitude to the Barry Goldwater Scholarship and Excellence in Education Foundation for opening countless doors in my life. I would also like to thank my amazing host family in Japan. Yoshihiro, Etsuko, Yusuke, Sousuke, and Kaoru Fujita. Thank you to all of you opening your door to me and taking much better care of me than I do myself. I will always consider you my family. Also, a big thanks to my CIEE friends, Jaren Shigeta, Korin Redig, and my Aikido friends Kyohei Tada and Chiemi Enomoto. I would like to thank the two professors that opened their door for me to rotate in at the beginning of my PhD journey: Dr. Tim Lu and Dr. Tina Stankovic. From both labs, I took away invaluable knowledge and experience. I would also like to thank Dr. Rick Mitchell and Dr. Bobby Padera for their infectious enthusiasm in teaching the Human Pathology course, which is truly a life changing experience for HST M.D. and PhD students alike. Also, a big thank-you to Dr. Pete Szolovitz for his wonderful course, Medical Informatics, and to Dr. Randy Gollub and Dr.
Recommended publications
  • 844222-1.Pdf
    Eindhoven University of Technology MASTER Unraveling single-bond kinetics in tethered particle motion experiments using molecular dynamics simulations Merkus, K.E. Award date: 2015 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain Eindhoven University of Technology Department of Applied Physics Theory of polymers and soft matter Unraveling single-bond kinetics in tethered particle motion experiments using molecular dynamics simulations K.E. Merkus July 2015 Under supervision of dr. C. Storm Abstract Tethered particle motion (TPM), the motion of a micro- or nanobead tethered to a substrate by a macromolecule, is widely studied to understand various properties related to the tether. However, we propose a whole new way of looking at TPM: TPM as a probe for secondary bonds.
    [Show full text]
  • Optical Methods to Study Protein-DNA Interactions in Vitro and in Living Cells at the Single-Molecule Level
    Int. J. Mol. Sci. 2013, 14, 3961-3992; doi:10.3390/ijms14023961 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Optical Methods to Study Protein-DNA Interactions in Vitro and in Living Cells at the Single-Molecule Level Carina Monico 1,*, Marco Capitanio 1,2, Gionata Belcastro 1, Francesco Vanzi 1,3 and Francesco S. Pavone 1,2,4,5 1 European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy; E-Mails: [email protected] (M.C.); [email protected] (G.B.); [email protected] (F.V.); [email protected] (F.S.P.) 2 Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino (FI), Italy 3 Department of Evolutionary Biology “Leo Pardi”, University of Florence, Via Romana 17, 50125 Florence, Italy 4 National Institute of Optics–National Research Council, Largo Fermi 6, 50125 Florence, Italy 5 International Center of Computational Neurophotonics, Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-055-457-2475; Fax: +39-055-457-2451. Received: 15 December 2012; in revised form: 13 January 2013 / Accepted: 4 February 2013 / Published: 18 February 2013 Abstract: The maintenance of intact genetic information, as well as the deployment of transcription for specific sets of genes, critically rely on a family of proteins interacting with DNA and recognizing specific sequences or features. The mechanisms by which these proteins search for target DNA are the subject of intense investigations employing a variety of methods in biology.
    [Show full text]
  • Eindhoven University of Technology BACHELOR Assay Optimization for Single DNA Tethered Particle Motion Hoeven, F.J.P
    Eindhoven University of Technology BACHELOR Assay optimization for single DNA tethered particle motion Hoeven, F.J.P. Award date: 2014 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain Assay optimization for single DNA tethered particle motion Frank Hoeven MBx 2014-04 Supervisors: E.W.A. Visser and L.J. van IJzendoorn Eindhoven University of Technology Group Molecular Biosensors for Medical Diagnostics April-July 2014 TNO 3rd floor Abstract In this report research is described to investigate the possibility to apply Tethered Particle Motion (TPM) in an immunoassay. A magnetic particle binds a target molecule in a sandwich assay, where the magnetic particle and the target molecule bind via a biotin streptavidin bond and the target molecule binds to a surface with an antigen-antibody bond.
    [Show full text]
  • Analysis of DNA Looping Kinetics in Tethered Particle Motion Experiments the Fragile X Mental Retardation-1 (Fmr1) Gene
    418a Tuesday, February 5, 2013 to O1, O2, and O3 operators in the lac operon. Specifically, we demonstrated that the Brownian motion of beads tethered to a microscope cover slip. The Brow- LacI kept two supercoils within the 401 bp DNA-loop between O1 and O2 op- nian motion changes when a protein binds to and deforms the DNA ’leash’, for erators. Additionally, We carried out time course studies to determine the stabil- example in the formation of a DNA loop. A complicating factor in the interpre- ity of the topological barriers that are produced by the different LacI-operator tation of TPM data is that the number of observable states, corresponding to complexes. Our results showed that the stability of the topological barriers cor- different conformations of the DNA-protein complex, is often not known in ad- relates with the DNA-binding affinity of LacI to the different operators i.e., O1, vance. Moreover, conformational transitions that occur on time scales compa- O2, O3, and Os operators. Furthermore, we confirmed our previous observation rable to the diffusive motion of the bead are difficult to extract from the data. in which LacI is able to ‘‘keep’’ certain superhelical energy to stabilize LacI- We present an analysis method for TPM data that overcomes these limitations in lacO1 complexes. Our results can be explained by a model in which LacI be- existing approaches. Our method relies on variational Bayesian inference on a var- haves as a topological barrier in the lac operon to regulate the expression of lac- iantofthe Hidden Markov model.
    [Show full text]
  • Calibration of Tethered Particle Motion Experiments
    CALIBRATION OF TETHERED PARTICLE MOTION EXPERIMENTS LIN HAN∗, BERTRAND LUI∗†, SETH BLUMBERG∗‡, JOHN F. BEAUSANG§, PHILIP C. NELSON§ , AND ROB PHILLIPS∗¶ Abstract. The Tethered Particle Motion (TPM) method has been used to observe and characterize a variety of protein-DNA interactions including DNA looping and tran- scription. TPM experiments exploit the Brownian motion of a DNA-tethered bead to probe biologically relevant conformational changes of the tether. In these experiments, a change in the extent of the bead’s random motion is used as a reporter of the underlying macromolecular dynamics and is often deemed sufficient for TPM analysis. However, a complete understanding of how the motion depends on the physical properties of the tethered particle complex would permit more quantitative and accurate evaluation of TPM data. For instance, such understanding can help extract details about a looped complex geometry (or multiple coexisting geometries) from TPM data. To better char- acterize the measurement capabilities of TPM experiments involving DNA tethers, we have carried out a detailed calibration of TPM magnitude as a function of DNA length and particle size. We also explore how experimental parameters such as acquisition time and exposure time affect the apparent motion of the tethered particle. We vary the DNA length from 200 bp to 2.6 kbp and consider particle diameters of 200, 490 and 970 nm. We also present a systematic comparison between measured particle excursions and theoretical expectations, which helps clarify both the experiments and models of DNA conformation. Key words. Tethered particle; DNA; Brownian motion; calibration; single molecule AMS(MOS) subject classifications.
    [Show full text]
  • 1 Probing a Label-Free Local Bend in Dna by Single
    PROBING A LABEL-FREE LOCAL BEND IN DNA BY SINGLE MOLECULE TETHERED PARTICLE MOTION 1,2,3,4,+ 3,4,+ 1,2 1,2 Annaël Brunet , Sébastien Chevalier , Nicolas Destainville , Manoel Manghi , Philippe Rousseau5,6, Maya Salhi5,6, Laurence Salomé3,4, Catherine Tardin3,4,*. 1 CNRS ; LPT (Laboratoire de Physique Théorique), UMR UPS-CNRS 5152, 118 route de Narbonne, F-31062 Toulouse, France. 2 Université de Toulouse, UPS; LPT, F-31062 Toulouse, France 3 CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale), UMR UPS-CNRS 5089, 205 route de Narbonne, F-31077 Toulouse, France 4 Université de Toulouse, UPS ; IPBS , F-31077 Toulouse, France 5 CNRS ; LMGM (Laboratoire de Microbiologie et Génétique Moléculaires), UMR CNRS-UPS 5100, 118 route de Narbonne, F-31062 Toulouse; France 6 Université de Toulouse ; UPS; LMGM; F-31062 Toulouse; France * To whom correspondence should be addressed. Tel: +33 561175468; Fax: +33 561175994; Email: [email protected] + The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors. 1 ABSTRACT: Being capable of characterizing DNA local bending is essential to understand thoroughly many biological processes because they involve a local bending of the double helix axis, either intrinsic to the sequence or induced by the binding of proteins. Developing a method to measure DNA bend angles that does not perturb the conformation of the DNA itself or the DNA-protein complex is a challenging task. Here, we propose a joint theory-experiment high throughput approach to rigorously measure such bend angles using the Tethered Particle Motion (TPM) technique.
    [Show full text]
  • Biosensing Based on Tethered Particle Motion
    Biosensing based on tethered particle motion Citation for published version (APA): Visser, E. W. A. (2017). Biosensing based on tethered particle motion. Technische Universiteit Eindhoven. Document status and date: Published: 19/04/2017 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim.
    [Show full text]
  • Quantitative Study of Polymer Conformation and Dynamics by Single-Particle Tracking
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector 1598 Biophysical Journal Volume 76 March 1999 1598–1605 Quantitative Study of Polymer Conformation and Dynamics by Single-Particle Tracking Hong Qian* and Elliot L. Elson# *Department of Applied Mathematics, University of Washington, Seattle, Washington 98195, and #Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110 USA ABSTRACT We present a new method for analyzing the dynamics of conformational fluctuations of individual flexible polymer molecules. In single-particle tracking (SPT), one end of the polymer molecule is tethered to an immobile substratum. A microsphere attached to the other end serves as an optical marker. The conformational fluctuations of the polymer molecule can be measured by optical microscopy via the motion of the microsphere. The bead-and-spring theory for polymer dynamics is further developed to account for the microsphere, and together the measurement and the theory yield quantitative information about molecular conformations and dynamics under nonperturbing conditions. Applying the method to mea- surements carried out on DNA molecules provides information complementary to recent studies of single DNA molecules under extensional force. Combining high precision measurements with the theoretical analysis presented here creates a powerful tool for studying conformational dynamics of biological and synthetic macromolecules at the single-molecule level. INTRODUCTION The theory of polymer dynamics is one of the most elegant molecule is anchored to a substratum. A microsphere bound and cogent subjects in macromolecular science (Doi and to the other end as an optical marker is tracked using Edwards, 1986).
    [Show full text]
  • Colloidal Particle Motion As a Diagnostic of DNA Conformational
    Colloidal particle motion as a diagnostic of DNA conformational transitions Philip C. Nelson Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA [email protected] voice: +1-215-898-7001; fax: +1-215-898-2010 November 20, 2018 Abstract Tethered particle motion is an experimental technique to monitor conformational changes in single moleculesof DNA in real time, by observingthe position fluctuations of a micrometer- size particle attached to the DNA. This article reviews some recent work on theoretical prob- lems inherent in the interpretation of TPM experiments, both in equilibrium and dynamical aspects. Keywords: Tethered motion; Hidden Markov; DNA conformation; DNA looping; single- arXiv:0710.1048v1 [q-bio.QM] 4 Oct 2007 particle tracking 1 Introduction Molecular biophysics attempts to explain life processes by understanding the behavior of individ- ual macromolecules. Broadly speaking, past work has relied on (a) traditional light microscopy, which can discern the actions of individual objects, in physiological conditions and in real time, but is limited to scales bigger than half a micrometer, (b) electron microscopy and x-ray diffraction, which resolve fractions of a nanometer but give little information about dynamics, and (c) elec- 1 trophysiology, which gives detailed dynamic information but with an indirect readout, applicable mainly to one class of molecular device. The recent rise of single molecule biophysics has comple- mented these approaches, in some ways combining their strengths. Working at the single molecule level allows us to see differences in behavior between different molecules, as well as making it possible to extract detailed kinetic information. Tethered particle motion (TPM) is an experimental technique to monitor conformational changes in single molecules of DNA in real time.
    [Show full text]
  • Enhanced Tethered-Particle Motion Analysis Reveals Viscous Effects
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biophysical Journal Volume 106 January 2014 399–409 399 Enhanced Tethered-Particle Motion Analysis Reveals Viscous Effects Sandip Kumar,† Carlo Manzo,‡ Chiara Zurla,§ Suleyman Ucuncuoglu,‡ Laura Finzi,‡ and David Dunlap†* † ‡ § Department of Cell Biology and Department of Physics, Emory University, Atlanta, Georgia; and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia ABSTRACT Tethered-particle motion experiments do not require expensive or technically complex hardware, and increasing numbers of researchers are adopting this methodology to investigate the topological effects of agents that act on the tethering polymer or the characteristics of the polymer itself. These investigations depend on accurate measurement and interpretation of changes in the effective length of the tethering polymer (often DNA). However, the bead size, tether length, and buffer affect the confined diffusion of the bead in this experimental system. To evaluate the effects of these factors, improved measurements to calibrate the two-dimensional range of motion (excursion) versus DNA length were carried out. Microspheres of 160 or 240 nm in radius were tethered by DNA molecules ranging from 225 to 3477 basepairs in length in aqueous buffers containing 100 mM potassium glutamate and 8 mM MgCl2 or 10 mM Tris-HCl and 200 mM KCl, with or without 0.5% Tween added to the buffer, and the motion was recorded. Different buffers altered the excursion of beads on identical DNA tethers. Buffer with only 10 mM NaCl and >5 mM magnesium greatly reduced excursion.
    [Show full text]
  • Tethered Particle Motion As a Diagnostic of DNA Tether Length
    University of Pennsylvania ScholarlyCommons Department of Physics Papers Department of Physics 8-2006 Tethered Particle Motion as a Diagnostic of DNA Tether Length Philip C. Nelson University of Pennsylvania, [email protected] Chiara Zurla Doriano Brogioli John F. Beausang Laura Finzi See next page for additional authors Follow this and additional works at: https://repository.upenn.edu/physics_papers Part of the Physics Commons Recommended Citation Nelson, P. C., Zurla, C., Brogioli, D., Beausang, J. F., Finzi, L., & Dunlap, D. (2006). Tethered Particle Motion as a Diagnostic of DNA Tether Length. The Journal of Physical Chemistry Part B, 110 (24), 17260-17267. http://dx.doi.org/10.1021/jp0630673 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/physics_papers/515 For more information, please contact [email protected]. Tethered Particle Motion as a Diagnostic of DNA Tether Length Abstract The tethered particle motion (TPM) technique involves an analysis of the Brownian motion of a bead tethered to a slide by a single DNA molecule. We describe an improved experimental protocol with which to form the tethers, an algorithm for analyzing bead motion visualized using differential interference contrast microscopy, and a physical model with which we have successfully simulated such DNA tethers. Both experiment and theory show that the statistics of the bead motion are quite different from those of a free semiflexible polymer. Our experimental data for chain extension versus tether length fit our model over a range of tether lengths from 109 to 3477 base pairs, using a value for the DNA persistence length that is consistent with those obtained under similar solution conditions by other methods.
    [Show full text]
  • 3D Tethered Particle Motion (TPM) Using Metallic Nano Particles
    3D3D TetheredTethered ParticleParticle MotionMotion (TPM)(TPM) usingusing metallicmetallic nananono particlesparticles MosheMoshe Lindner,Lindner, GuyGuy NirNir && YuvalYuval GariniGarini DepartmentDepartment ofof Physics,Physics, BarBar IlanIlan InstituteInstitute ofof NanotechnologyNanotechnology && AdvancedAdvanced MaterialsMaterials Introduction:Introduction: Protein-DNA and protein-RNA interactions are among the most interesting interactions that can be studied. These include mechanisms that are crucial for cellular activities, including DNA polymerases, packaging proteins (such as histones) etc. In order to understand those interactions properly, Single Molecule Detection methods should be used. Here we present an improvement to one of the common methods, Tethered Particle Motion (TPM), by applying it in three dimensions (3D). The method allows to track the studied molecule by following the position of it in 3D with high precision of few nanometers. Therefore, more biophysical information can be extracted. TetheredTethered ParticleParticle MotionMotion (TPM):(TPM): DataData analysis:analysis: A small bead is linked to one end of the sample molecule (DNA or RNA), while the other The distribution function of the bead position is the distribution of “random-walk”, and end is linked to the glass surface. The bead diffuses in a physiological solution, and its by fitting the measured data to the theoretical distribution function, the persistence position are detected by an optical microscope. length of the DNA is extracted. The finite exposure time of the camera implies an error By analyzing the statistics of r(t), one can find the molecule characteristics, such as (the variation of the measured data seemed narrower than the actual one). We persistence length and DNA spring constant. Measurements of the interacting system therefore use a correction function in order to calculate the persistence length.
    [Show full text]