Criticality of the Rare Earth Elements: Current and Future Sources and Recycling
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mineral of the Month Club January 2016
Mineral of the Month Club January 2016 HALITE This month our featured mineral is halite, or common salt, from Searles Lake, California. Our write-up explains halite’s mineralogy and many uses, and how its high solubility accounts for its occurrence as an evaporite mineral and its distinctive taste. In the special section of our write-up we visit a European salt mine that is a world-class cultural and heritage site. OVERVIEW PHYSICAL PROPERTIES Chemistry: NaCl Sodium Chloride, often containing some potassium Class: Halides Group: Halite Crystal System: Isometric (Cubic) Crystal Habits: Cubic, rarely octahedral; usually occurs as masses of interlocking cubic crystals with corners sometimes truncated into small, octahedral faces; skeletal forms and receded hopper-type faces are common. Also occurs in massive, fibrous, granular, compact, stalactitic, and incrustation forms. Color: Most often light gray, colorless or white; also pale shades of yellow, red, pink, blue, and purple; blue and purple hues are sometimes intense. Luster: Vitreous Transparency: Transparent to translucent Streak: White Cleavage: Perfect in three directions Fracture/Tenacity: Conchoidal; brittle. Hardness: 2.0 Specific Gravity: 2.17 Luminescence: Often fluorescent Refractive Index: 1.544 Distinctive Features and Tests: Best field indicators are distinctive “table-salt” taste, cubic crystal form, perfect three-dimensional cleavage, and occurrence in evaporite- type deposits. Halite can be confused with sylvite [potassium chloride, KCl], which is similar in crystal form, but has a more astringent taste. Dana Classification Number: 9.1.1.1 NAME: The word “halite,” pronounced HAY-lite (rhymes with “daylight”), is derived from the Greek hals, meaning “salt,” and “lithos,” or stone. -
Preprint 15-084
SME Annual Meeting Feb. 15 - 18, 2015, Denver, CO Preprint 15-084 MINERAL DEPOSITS ASSOCIATED WITH TERTIARY ALKALINE IGNEOUS ROCKS IN NEW MEXICO V. T. McLemore, New Mexico Bureau of Geology and Mineral Resources, Socorro, NM ABSTRACT related mineral deposits in New Mexico, (2) discuss the age and formation of these deposits, and (3) comment on the future economic Lindgren (1933) defined a belt of alkaline-igneous rocks associated potential of mineral deposits in New Mexico. This work is part of with large quantities of gold and rare earth elements (REE) that extends ongoing studies of mineral deposits in New Mexico and includes from Alaska and British Columbia southward into New Mexico, Texas and updates and revisions of prior work by North and McLemore (1986, eastern Mexico. The North American Cordilleran alkaline-igneous belt 1988) and McLemore (1996, 2001). Some of the data referred to in this since has been exploited for numerous types of mineral deposits. In New paper is unpublished but available upon request. Mexico, Mid-Tertiary alkaline to calc-alkaline rocks are found with seven types of deposits in these districts: (1) polymetallic epithermal/mesothermal veins, (2) gold-bearing breccias/quartz veins, (3) Cu-Au, Au and Mo porphyry deposits, (4) skarns and carbonate- hosted deposits, (5) iron skarns and replacement bodies (with some gold), (6) gold placers, and (7) Th-REE (with some U, Nb) epithermal veins. Some of New Mexico’s largest gold and REE deposits are found within this belt. Their origin is not well understood, but a compilation of new data (age dates, isotopic and chemical analyses) allows for a better understanding. -
Warren and Taylor-2014-In Tog-The Moon-'Author's Personal Copy'.Pdf
This article was originally published in Treatise on Geochemistry, Second Edition published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non- commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial Warren P.H., and Taylor G.J. (2014) The Moon. In: Holland H.D. and Turekian K.K. (eds.) Treatise on Geochemistry, Second Edition, vol. 2, pp. 213-250. Oxford: Elsevier. © 2014 Elsevier Ltd. All rights reserved. Author's personal copy 2.9 The Moon PH Warren, University of California, Los Angeles, CA, USA GJ Taylor, University of Hawai‘i, Honolulu, HI, USA ã 2014 Elsevier Ltd. All rights reserved. This article is a revision of the previous edition article by P. H. Warren, volume 1, pp. 559–599, © 2003, Elsevier Ltd. 2.9.1 Introduction: The Lunar Context 213 2.9.2 The Lunar Geochemical Database 214 2.9.2.1 Artificially Acquired Samples 214 2.9.2.2 Lunar Meteorites 214 2.9.2.3 Remote-Sensing Data 215 2.9.3 Mare Volcanism -
Mars, the Nearest Habitable World – a Comprehensive Program for Future Mars Exploration
Mars, the Nearest Habitable World – A Comprehensive Program for Future Mars Exploration Report by the NASA Mars Architecture Strategy Working Group (MASWG) November 2020 Front Cover: Artist Concepts Top (Artist concepts, left to right): Early Mars1; Molecules in Space2; Astronaut and Rover on Mars1; Exo-Planet System1. Bottom: Pillinger Point, Endeavour Crater, as imaged by the Opportunity rover1. Credits: 1NASA; 2Discovery Magazine Citation: Mars Architecture Strategy Working Group (MASWG), Jakosky, B. M., et al. (2020). Mars, the Nearest Habitable World—A Comprehensive Program for Future Mars Exploration. MASWG Members • Bruce Jakosky, University of Colorado (chair) • Richard Zurek, Mars Program Office, JPL (co-chair) • Shane Byrne, University of Arizona • Wendy Calvin, University of Nevada, Reno • Shannon Curry, University of California, Berkeley • Bethany Ehlmann, California Institute of Technology • Jennifer Eigenbrode, NASA/Goddard Space Flight Center • Tori Hoehler, NASA/Ames Research Center • Briony Horgan, Purdue University • Scott Hubbard, Stanford University • Tom McCollom, University of Colorado • John Mustard, Brown University • Nathaniel Putzig, Planetary Science Institute • Michelle Rucker, NASA/JSC • Michael Wolff, Space Science Institute • Robin Wordsworth, Harvard University Ex Officio • Michael Meyer, NASA Headquarters ii Mars, the Nearest Habitable World October 2020 MASWG Table of Contents Mars, the Nearest Habitable World – A Comprehensive Program for Future Mars Exploration Table of Contents EXECUTIVE SUMMARY .......................................................................................................................... -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
A Proposed Low Distortion Projection for the City of Las Cruces and Dona Ana County Scott Farnham, PE, PS City Surveyor, City of Las Cruces NM October 2020
A Proposed Low Distortion Projection for the City of Las Cruces and Dona Ana County Scott Farnham, PE, PS City Surveyor, City of Las Cruces NM October 2020 Introduction As part of the ongoing modernization of the U.S. National Spatial Reference System (NSRS), the National Geodetic Survey (NGS) will replace our horizontal and vertical datums (NAD83 and NAVD88) with new geometric datums assigned in the North American Terrestrial Reference Frame of 2022 (NATRF2022). The City of Las Cruces / Dona Ana County and the City of Albuquerque / Bernalillo County submitted proposals to NGS to incorporate Low Distortion Projections (LDP) as part of the New Mexico State Plane Coordinate Systems. Approval by NGS was obtained on June 17, 2019 for the proposed systems (see approval notice). Design of the LDP is the responsibility of the submitting agencies and must be submitted to NGS on or prior to March 31, 2021. Mark Marrujo1 with NMDOT is submitting final LDP design forms to NGS for the State of New Mexico. The City of Las Cruces (City) is designing a new Low Distortion Projection for Public Works Department, Engineering and Architecture projects to NGS criteria. To meet NGS LDP minimum size and shape criterion, the LDP area extends to Dona Ana County (County) boundary lines. This report presents design analysis and conclusions of the proposed City / County local NGS LDP system for stakeholders’ review prior to NGS final design submittal. NGS NM SPCS2022 Zones and Stakeholder Organizations NGS is designing new State Plane Coordinate Systems (SPCS2022) for New Mexico. The default SPCS2022 designs for the State are a statewide single zone and the three State Plane Zones: West, Central, and East. -
Instrumentation for Geological Field Work on the Moon
Earth, Moon, and Planets (2005) Ó Springer 2005 DOI 10.1007/s11038-005-9013-2 INSTRUMENTATION FOR GEOLOGICAL FIELD WORK ON THE MOON D. L. TALBOYS, G. W. FRASER, R. M. AMBROSI, N. NELMS N. P. BANNISTER, M. R. SIMS, D. PULLAN and J. HOLT Space Research Centre, University of Leicester, University Road, Leicester, LE2 7RHUK (E-mail: [email protected]) (Accepted 26 May 2005) Abstract. A human return to the Moon will require that astronauts are well equipped with instrumen- tation to aid their investigations during geological field work. Two instruments are described in detail. The first is a portable X-ray Spectrometer, which can provide rapid geochemical analyses of rocks and soils, identify lunar resources and aid selection of samples for return to Earth. The second instrument is the Geological and Radiation environment package (GEORAD). This is an instrument package, mounted on a rover, to perform in-situ measurements on the lunar surface. It can be used for bulk geochemical measurements of rocks and soils (particularly identifying KREEP-enriched rocks), prospect for ice in shadowed areas of craters at the poles and characterise the lunar radiation environment. 1. Introduction Future exploration of the Moon will involve astronauts conducting field work to address the outstanding questions in lunar geology (Crawford, 2004). Spudis and Taylor (1990) identified two types of geological investigations in a plane- tary context: reconnaissance and field work. Reconnaissance provides a ‘‘broad characterisation of the geological features and processes on a planetary body’’. This has been accomplished in the past by robotic missions, such as the un- manned Soviet Luna 21 Lunokhod rover on the floor of Le Monier crater (Florensky et al., 1978). -
Why NASA Consistently Fails at Congress
W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 6-2013 The Wrong Right Stuff: Why NASA Consistently Fails at Congress Andrew Follett College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Political Science Commons Recommended Citation Follett, Andrew, "The Wrong Right Stuff: Why NASA Consistently Fails at Congress" (2013). Undergraduate Honors Theses. Paper 584. https://scholarworks.wm.edu/honorstheses/584 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. The Wrong Right Stuff: Why NASA Consistently Fails at Congress A thesis submitted in partial fulfillment of the requirement for the degree of Bachelors of Arts in Government from The College of William and Mary by Andrew Follett Accepted for . John Gilmour, Director . Sophia Hart . Rowan Lockwood Williamsburg, VA May 3, 2013 1 Table of Contents: Acknowledgements 3 Part 1: Introduction and Background 4 Pre Soviet Collapse: Early American Failures in Space 13 Pre Soviet Collapse: The Successful Mercury, Gemini, and Apollo Programs 17 Pre Soviet Collapse: The Quasi-Successful Shuttle Program 22 Part 2: The Thin Years, Repeated Failure in NASA in the Post-Soviet Era 27 The Failure of the Space Exploration Initiative 28 The Failed Vision for Space Exploration 30 The Success of Unmanned Space Flight 32 Part 3: Why NASA Fails 37 Part 4: Putting this to the Test 87 Part 5: Changing the Method. -
The Effect of Sub-Surface Strontium Depletion on Oxygen Diffusion In
Journal of Materials Chemistry A View Article Online PAPER View Journal | View Issue The effect of sub-surface strontium depletion on oxygen diffusion in La Sr Co Fe O Àd† Cite this: J. Mater. Chem. A, 2020, 8, 0.6 0.4 0.2 0.8 3 19414 Mathew A. R. Niania, *a Andrew K. Rossall, b Jaap A. Van den Berg b and John A. Kilner a The immediate surface and sub-surface composition of heat treated La0.6Sr0.4Co0.2Fe0.8O3Àd samples was measured by ion beam analysis and compared to oxygen transport properties over the same depth scale. Consistent with the literature, strontium segregation was observed for samples that received thermal treatments with the formation of an Sr–O based monolayer at the surface. Just below this, a sub-surface strontium depletion region over a depth scale of approximately 2–15 nm was seen. In this sub-surface region, a depletion of lanthanum was also observed. Oxygen transport properties were measured using isotopic labelling techniques and showed that, despite large changes in composition, the transport Received 18th June 2020 properties remain largely unchanged. Because strontium diffusion is slow in the bulk and grain Accepted 2nd September 2020 boundaries only account for 0.03% of the material (due to large grains), it is suggested that 2D defects Creative Commons Attribution-NonCommercial 3.0 Unported Licence. DOI: 10.1039/d0ta06058e (such as dislocations and twins) can act as fast diffusion pathways for the strontium to account for the Sr rsc.li/materials-a depletion region observed below the surface. -
Monazite Trumps Zircon: Applying SHRIMP U–Pb Geochronology To
Contrib Mineral Petrol (2017) 172:63 DOI 10.1007/s00410-017-1386-5 ORIGINAL PAPER Monazite trumps zircon: applying SHRIMP U–Pb geochronology to systematically evaluate emplacement ages of leucocratic, low-temperature granites in a complex Precambrian orogen Agnieszka M. Piechocka1 · Courtney J. Gregory1 · Jian-Wei Zi1 · Stephen Sheppard1 · Michael T. D. Wingate2 · Birger Rasmussen1 Received: 13 January 2017 / Accepted: 24 June 2017 / Published online: 7 July 2017 © The Author(s) 2017. This article is an open access publication Abstract Although zircon is the most widely used geochro- U–Pb zircon dating of these leucocratic granites either yielded nometer to determine the crystallisation ages of granites, it can ages that were inconclusive (e.g., multiple concordant ages) or be unreliable for low-temperature melts because they may not incompatible with other geochronological data. To overcome crystallise new zircon. For leucocratic granites U–Pb zircon this we used SHRIMP U–Th–Pb monazite geochronology to dates, therefore, may refect the ages of the source rocks rather obtain igneous crystallisation ages that are consistent with the than the igneous crystallisation age. In the Proterozoic Cap- geological and geochronological framework of the orogen. ricorn Orogen of Western Australia, leucocratic granites are The U–Th–Pb monazite geochronology has resolved the time associated with several pulses of intracontinental magmatism interval over which two granitic supersuites were emplaced; a spanning ~800 million years. In several instances, SHRIMP Paleoproterozoic supersuite thought to span ~80 million years was emplaced in less than half that time (1688–1659 Ma) and a small Meso- to Neoproterozoic supersuite considered to Communicated by Franck Poitrasson. -
Llallagua Tin Ore Deposit (Bolivia)
resources Article Speculations Linking Monazite Compositions to Origin: Llallagua Tin Ore Deposit (Bolivia) Elizabeth J. Catlos * and Nathan R. Miller Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, 1 University Sta. C9000, EPS 1.130, Austin, TX 78712, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-512-471-4762 Received: 3 May 2017; Accepted: 25 July 2017; Published: 29 July 2017 Abstract: Monazite [(Ce,Th)PO4] from the Llallagua tin ore deposit in Bolivia is characterized by low radiogenic element contents. Previously reported field evidence and mineral associations suggest the mineral formed via direct precipitation from hydrothermal fluids. Monazite compositions thus may provide insight into characteristics of the fluids from which it formed. Chemical compositions of three Llallagua monazite grains were obtained using Electron Probe Microanalysis (EPMA, n = 64) and laser ablation mass spectrometry (LA-ICP-MS, n = 56). The mineral has higher amounts of U (123 ± 17 ppm) than Th (39 ± 20 ppm) (LA-ICP-MS, ±1σ). Grains have the highest amounts of fluorine ever reported for monazite (0.88 ± 0.10 wt %, EPMA, ±1σ), and F-rich fluids are effective mobilizers of rare earth elements (REEs), Y, and Th. The monazite has high Eu contents and positive Eu anomalies, consistent with formation in a highly-reducing back-arc environment. We speculate that F, Ca, Si and REE may have been supplied via dissolution of pre-existing fluorapatite. Llallagua monazite oscillatory zoning is controlled by an interplay of low (P + Ca + Si + Y) and high atomic number (REE) elements. -
JOHN HENNI Nevjvian the O Rigins and a P P Licatio N of H Is E Ducational Ideas Ph.D. T Hesis 1968 JOHN JACKSON
JOHN HENNI NEVJvIAN The Origins and Application of his Educational Id eas Ph.D. Thesis 1968 JOHN JACKSON ProQuest Number: U622466 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U622466 Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 CONTENTS C hapter Page One Introduction • • • 1 Two The impact of his family 16 Three The impact of Ealing School .. 31 Four The impact of Oxford University 52 Five His early ventures 71 Six His work in Ireland 84 Seven How he established the Oratory School 120 Eight How he saved the Oratory School 149 Nine His work as headmaster of the Oratory School 193 Ten His abortive plans to return to Oxford 234 Eleven His reaction to Manning’s Kensington scheme 241 Twelve Conclusion 245 Appendices 258 Bibliography 280 CHAPTER ONE INTHODUCTION 1. CHAPTER ONE INTRODUCTION When he wrote his memoirs, Newman declared that **from first to last education in the large sense of the word has been my line," (1 ) ( 2) By this he meant that his educational ideas 'were an integral part of his philosophical and spiritual thinking, that they were basic to the most fundamental and personal of his beliefs, and had been acquired gradually over the years.