The Convalescent Sera Option for Containing COVID-19
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
10 Top Researchers at AECOM
TEN LEADING EINSTEIN RESEARCHERS AND THEIR ACCOMPLISHMENTS INFECTIOUS DISEASE John Blanchard, Ph.D., has identified a promising new treatment for extensively drug-resistant tuberculosis (XDR-TB), a dangerous form of the disease caused by strains of TB bacteria that have become resistant to virtually all antibiotics. In 2009, Dr. Blanchard reported that a combination of two drugs (clavulanate and meropenem) was highly effective in halting the growth of XDR-TB in John Blanchard, Ph.D. John Condeelis, Ph.D. Ekaterina Dadachova, Ph.D. laboratory culture. Since then, his drug combination has saved the lives of several patients with XDR-TB and will soon be formally evaluated in two human trials, in South Africa and Belgium. Dr. Blanchard is professor of biochemistry and the Dan Danciger Professor of Biochemistry. Arturo Casadevall, M.D., Ph.D., is one of the world’s leading microbiologists, well known for his diverse and innovative scientific inquiries. His work on Arturo Casadevall, M.D., Ph.D Vern Schramm, Ph.D. Joseph Sparano, M.D. fungal melanin, for example, has opened up the possibility of using this pigment in novel CANCER ways to protect against radiation exposure. Thanks to a highly John Condeelis, Ph.D., anatomy and structural biology Casadevall, M.D., Ph.D., Dr. productive research partnership is a leading expert on imaging department, scientific director of Dadachova developed radio- with colleague Ekaterina the tumor microenvironment— the analytical imaging facility, immunotherapy for metastatic Dadachova, Ph.D., he has the microscopic site where tumor co-director of the Gruss Lipper melanoma—a treatment developed a targeted therapy cells interact with surrounding Biophotonics Center, and the strategy that has shown promise for metastatic melanoma that cells. -
Anti-Thymocyte Globulin (Atg) and Ciclosporin (Csa)
Myeloid group ANTI-THYMOCYTE GLOBULIN (ATG) AND CICLOSPORIN (CSA) INDICATION ATG and CSA is indicated for patients who require treatment for aplastic anaemia (AA) but who are not eligible for sibling donor BMT. This includes (note references to severity are based on the modified Camitta criteria): Patients with non-severe aplastic anaemia who are dependent on red cell and/or platelet transfusions. Patients with severe aplastic anaemia (SAA) or very SAA who are > 35-50 years of age. Patients with SAA or very SAA disease who lack an HLA-compatible sibling donor. Protocol may be used in selected patients with hypoplastic marrow conditions. Patients with severe AA who are ≤ 35 years old and have a HLA identical sibling donor, should be treated with allogenic bone marrow transplantation as soon as possible after diagnosis. TREATMENT INTENT Prolong survival Provide a rapid (within 3 months) and sustained improvement in peripheral blood counts Restore haematopoiesis PRE-ASSESSMENT 1. ATG should only used by physicians familiar with administering ATG. Medical and nursing teams must be aware of the side effects and how to treat promptly and appropriately. 2. ATG is highly immunosuppressive - only use in centres with at least level 2 facilities. Patients should be nursed in a single or double isolation room, as an inpatient. 3. Risk of transfusion-associated GvHD following treatment with ATG is unclear, therefore irradiated blood components are currently recommended. It is not known how long the use of irradiated products This is a controlled document and therefore must not be changed Page 1 of 9 ML.2 ATG & CSA Authorised by Myeloid Lead Oct 2019 V.4.1 Prof Adam Mead Myeloid group should be continued, but it may be reasonable to continue while patients are still taking CSA following ATG therapy. -
Continuous Time Individual-Level Models of Infectious Disease: Epiilmct
Continuous Time Individual-Level Models of Infectious Disease: EpiILMCT Waleed Almutiry Vineetha Warriyar K V Rob Deardon Qassim University Uinversity of Calgary University of Calgary Abstract This paper describes the R package EpiILMCT, which allows users to study the spread of infectious disease using continuous time individual level models (ILMs). The package provides tools for simulation from continuous time ILMs that are based on either spatial demographic, contact network, or a combination of both of them, and for the graphical summarization of epidemics. Model fitting is carried out within a Bayesian Markov Chain Monte Carlo (MCMC) framework. The continuous time ILMs can be implemented within either susceptible-infected-removed (SIR) or susceptible- infected-notified-removed (SINR) compartmental frameworks. As infectious disease data is often partially observed, data uncertainties in the form of missing infection times - and in some situations missing removal times - are accounted for using data augmentation techniques. The package is illustrated using both simulated and an experimental data set on the spread of the tomato spotted wilt virus (TSWV) disease. Keywords: EpiILMCT, infectious disease, individual level modelling, spatial models, con- tact networks, R. 1. Introduction Innovative mathematical and mechanistic approaches to the modelling of infectious dis- eases are continuing to emerge in the literature. These can be used to understand the spread of disease through a population - whether homogeneous or heterogeneous - and enable researchers to construct predictive models to develop control strategies to disrupt arXiv:2006.00135v1 [stat.AP] 30 May 2020 disease transmission. For example, Deardon et al. (2010) introduced a class of discrete time individual-level models (ILMs) which incorporate population heterogeneities by modelling the transmission of disease given various individual-level risk factors. -
The Basic Reproduction Number As a Predictor for Epidemic Outbreaks in Temporal Networks
The basic reproduction number as a predictor for epidemic outbreaks in temporal networks Petter Holme1,2,3 and Naoki Masuda4 1Department of Energy Science, Sungkyunkwan University, 440-746 Suwon, Korea 2IceLab, Department of Physics, Umeå University, 90187 Umeå, Sweden 3Department of Sociology, Stockholm University, 10961 Stockholm, Sweden 4Department of Engineering Mathematics, University of Bristol, BS8 1UB, Bristol, UK E-mail address: [email protected] Abstract The basic reproduction number R₀—the number of individuals directly infected by an infectious person in an otherwise susceptible population—is arguably the most widely used estimator of how severe an epidemic outbreak can be. This severity can be more directly measured as the fraction people infected once the outbreak is over, Ω. In traditional mathematical epidemiology and common formulations of static network epidemiology, there is a deterministic relationship between R₀ and Ω. However, if one considers disease spreading on a temporal contact network—where one knows when contacts happen, not only between whom—then larger R₀ does not necessarily imply larger Ω. In this paper, we numerically investigate the relationship between R₀ and Ω for a set of empirical temporal networks of human contacts. Among 31 explanatory descriptors of temporal network structure, we identify those that make R₀ an imperfect predictor of Ω. We find that descriptors related to both temporal and topological aspects affect the relationship between R₀ and Ω, but in different ways. Introduction The interaction between medical and theoretical epidemiology of infectious diseases is probably not as strong as it should. Many results in the respective fields fail to migrate to the other. -
I Have Spots and My Skin Burns
I have spots and my skin burns Patient presentation History Differential diagnosis Examination Investigations Discussion Treatment Final Outcome References Evaluation - Questions & answers MCQs Patient presentation Peter, a 60 year-old Caucasian policeman, complains of a painful burning sensation in his lower extremities lasting for several months. Lower limbs petechiae (small purple/red hemorrhagic spots) appeared one week ago. Acknowledgement This case study was provided by Prof. Olivier Boyer (M.D., Ph.D., Head of the Department of Immunology and Biotherapy, Rouen University Hospital, France) and Dr. Maëlle Le Besnerais (M.D., Assistant Professor of Internal Medicine, Rouen University Hospital, France) of the Faculty of Medicine of Rouen, Normandy University, France. The authors would like to thank David Saadoun, Odile Goria, Lucie Guyant-Maréchal and Fabienne Jouen for their critical reading of this case study, Isabelle Duval for the development of pictures and Laetitia Demoulins for technical assistance. We are grateful to Nikki Sabourin-Gibbs, Rouen University Hospital, for her help in editing the manuscript. Immunopaedia.org.za History Peter complains of chronic fatigue and aching joints which started several months ago. He denies significant alcohol consumption and intravenous drug abuse. He received a blood transfusion after a gunshot injury to his arm 35 years ago. He reports distal paraesthesia (tingling or numbness) of both legs and painful burning in both feet which has progressed to the lower and upper limbs. Knee pain wakes him up at night. Past medical history None No allergies Surgical history Appendix removed at 10 years old Arm gunshot injury 35 years ago Family history His father has hypertension and type 2 diabetes Travel history He traveled to Thailand 25 years ago Social history Policeman, married, two children Medication None Differential diagnosis IgA vasculitis Polyarteritis nodosa ANCA-associated vasculitis (eg. -
Epidemic Models
Chapter 9 Epidemic Models 9.1 Introduction to Epidemic Models Communicable diseases such as measles, influenza, and tuberculosis are a fact of life. We will be concerned with both epidemics, which are sudden outbreaks of a disease, and endemic situations, in which a disease is always present. The AIDS epidemic, the recent SARS epidemic, recurring influenza pandemics, and outbursts of diseases such as the Ebola virus are events of concern and interest to many peo- ple. The prevalence and effects of many diseases in less-developed countries are probably not as well known but may be of even more importance. Every year mil- lions, of people die of measles, respiratory infections, diarrhea, and other diseases that are easily treated and not considered dangerous in the Western world. Diseases such as malaria, typhus, cholera, schistosomiasis, and sleeping sickness are endemic in many parts of the world. The effects of high disease mortality on mean life span and of disease debilitation and mortality on the economy in afflicted countries are considerable. We give a brief introduction to the modeling of epidemics; more thorough de- scriptions may be found in such references as [Anderson & May (1991), Diekmann & Heesterbeek (2000)]. This chapter will describe models for epidemics, and the next chapter will deal with models for endemic situations, but we begin with some general ideas about disease transmission. The idea of invisible living creatures as agents of disease goes back at least to the writings of Aristotle (384 BC–322 BC). It developed as a theory in the sixteenth century. The existence of microorganisms was demonstrated by van Leeuwenhoek (1632–1723) with the aid of the first microscopes. -
Commentary Inducing Autoimmune Disease to Treat Cancer
Proc. Natl. Acad. Sci. USA Vol. 96, pp. 5340–5342, May 1999 Commentary Inducing autoimmune disease to treat cancer Drew M. Pardoll Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196 For many years, visions for development of successful immu- colleagues (6) discovered that the target for a melanoma- notherapy of cancer revolved around the induction of immune specific CD81 T cell clone grown from a melanoma patient was responses against tumor-specific ‘‘neoantigens.’’ However, as wild-type tyrosinase, a melanosomal enzyme selectively ex- demonstrated in a recent paper in the Proceedings by Overwijk pressed in melanocytes and responsible for one of the steps in et al. (1), the generation of tissue-specific autoimmune re- melanin biosynthesis. Subsequently, a number of investigators sponses represents an approach to cancer immunotherapy that found that their melanoma-specific CD81 T cells indeed is gaining momentum. Thus, a new principle in cancer therapy recognized melanocyte-specific antigens rather than melano- states that the ability to induce tissue-specific autoimmunity ma-specific antigens (7–10). Most of these antigens appear to will allow for the treatment of many important cancers. be melanosomal proteins, and a number of them, including The original focus on tumor-specific neoantigens derived tyrosinase, TRP-1, TRP-2, and gp100, are involved in melanin from a number of findings. Vaccination-challenge experiments biosynthesis. Other melanosomal proteins such as MART1y performed between carcinogen-induced murine tumor models Melan A have no known function but are nonetheless mela- typically demonstrated that autologous tumors vaccinated nocyte-specific tissue differentiation antigens. -
Penicillin Allergy Guidance Document
Penicillin Allergy Guidance Document Key Points Background Careful evaluation of antibiotic allergy and prior tolerance history is essential to providing optimal treatment The true incidence of penicillin hypersensitivity amongst patients in the United States is less than 1% Alterations in antibiotic prescribing due to reported penicillin allergy has been shown to result in higher costs, increased risk of antibiotic resistance, and worse patient outcomes Cross-reactivity between truly penicillin allergic patients and later generation cephalosporins and/or carbapenems is rare Evaluation of Penicillin Allergy Obtain a detailed history of allergic reaction Classify the type and severity of the reaction paying particular attention to any IgE-mediated reactions (e.g., anaphylaxis, hives, angioedema, etc.) (Table 1) Evaluate prior tolerance of beta-lactam antibiotics utilizing patient interview or the electronic medical record Recommendations for Challenging Penicillin Allergic Patients See Figure 1 Follow-Up Document tolerance or intolerance in the patient’s allergy history Consider referring to allergy clinic for skin testing Created July 2017 by Macey Wolfe, PharmD; John Schoen, PharmD, BCPS; Scott Bergman, PharmD, BCPS; Sara May, MD; and Trevor Van Schooneveld, MD, FACP Disclaimer: This resource is intended for non-commercial educational and quality improvement purposes. Outside entities may utilize for these purposes, but must acknowledge the source. The guidance is intended to assist practitioners in managing a clinical situation but is not mandatory. The interprofessional group of authors have made considerable efforts to ensure the information upon which they are based is accurate and up to date. Any treatments have some inherent risk. Recommendations are meant to improve quality of patient care yet should not replace clinical judgment. -
Letters to the Editor
LETTERS TO THE EDITOR Complications of plasma exchange in after percutaneous insertion of a subclavian central ve- thrombotic thrombocytopenic nous catheter from pneumothorax and hemorrhage. Two purpura-hemolytic uremic syndrome: patients suffered cardiac arrest with pulseless electrical a study of 78 additional patients activity: one from an anaphylactic reaction to plasma and The frequency of patients treated with plasma exchange the other from pericardial hemorrhage and tamponade, (PE) for thrombotic thrombocytopenic purpura- presumably due to cardiac perforation by an internal hemolytic uremic syndrome (TTP-HUS) increased seven- jugular catheter insertion guidewire. fold from 1981 to 1997.1 Therefore, the morbidity and Other major catheter-related complications included mortality due to PE is an increasingly important consid- one patient with a retroperitoneal hemorrhage following eration in management decisions for patients with clini- femoral catheter insertion and seven patients with cath- cally suspected TTP-HUS. Some studies have described eter thrombosis that prevented PE and/or required place- few complications associated with PE,2 but our previous ment of a new central venous catheter; two of these seven report on 71 consecutive patients with clinically sus- patients had catheter-related venous thrombosis requir- pected TTP-HUS treated with PE from 1996 to 1999 dem- ing systemic anticoagulation. Ten patients developed sys- onstrated a major complication rate of 30 percent, in- temic infection: eight had blood cultures positive for the cluding two deaths.3 This report describes our experience presence of bacteria (Staphylococcus aureus [five], Staph- during the subsequent 3 years, 1999 to 2002, with 78 con- ylococcus epidermidis [three]); the two patients with secutive patients. -
Clustering of Susceptible Individuals Within Households Can Drive an Outbreak: an Individual-Based Model Exploration
medRxiv preprint doi: https://doi.org/10.1101/2019.12.10.19014282; this version posted December 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Clustering of susceptible individuals within households can drive an outbreak: an individual-based model exploration Elise Kuylen1,2,*, Lander Willem1, Jan Broeckhove3, Philippe Beutels1, and Niel Hens1,4 1Centre for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium 2Discipline Group Computer Sciences, Hasselt University, Hasselt, Belgium 3IDLab, Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium 4I-BioStat, Data Science Institute, Hasselt University, Hasselt, Belgium *[email protected] ABSTRACT When estimating important measures such as the herd immunity threshold, and the corresponding efforts required to eliminate measles, it is often assumed that susceptible individuals are uniformly distributed throughout populations. However, unvaccinated individuals may be clustered in a variety of ways, including by geographic location, by age, in schools, or in households. Here, we investigate to which extent different levels of within-household clustering of susceptible individuals may impact the risk and persistence of measles outbreaks. To this end, we apply an individual-based model, Stride, to a population of 600,000 individuals, using data from Flanders, Belgium. We compare realistic scenarios regarding the distribution of susceptible individuals within households in terms of their impact on epidemiological measures for outbreak risk and persistence. -
Lesson 1 Introduction to Epidemiology
Lesson 1 Introduction to Epidemiology Epidemiology is considered the basic science of public health, and with good reason. Epidemiology is: a) a quantitative basic science built on a working knowledge of probability, statistics, and sound research methods; b) a method of causal reasoning based on developing and testing hypotheses pertaining to occurrence and prevention of morbidity and mortality; and c) a tool for public health action to promote and protect the public’s health based on science, causal reasoning, and a dose of practical common sense (2). As a public health discipline, epidemiology is instilled with the spirit that epidemiologic information should be used to promote and protect the public’s health. Hence, epidemiology involves both science and public health practice. The term applied epidemiology is sometimes used to describe the application or practice of epidemiology to address public health issues. Examples of applied epidemiology include the following: • the monitoring of reports of communicable diseases in the community • the study of whether a particular dietary component influences your risk of developing cancer • evaluation of the effectiveness and impact of a cholesterol awareness program • analysis of historical trends and current data to project future public health resource needs Objectives After studying this lesson and answering the questions in the exercises, a student will be able to do the following: • Define epidemiology • Summarize the historical evolution of epidemiology • Describe the elements of a case -
Group Icon 2019 Speaker Biographies
A University Symposium: Promoting Credibility, Reproducibility and Integrity in Research March 29, 2019 | Columbia University | Speaker Biographies Speaker Biographies* Howard Bauchner, MD was appointed the 16th Editor in Chief of JAMA and The JAMA Network in 2011. Prior to coming to JAMA, Howard was a Professor of Pediatrics and Public Health at Boston University School of Medicine and Editor in Chief of Archives of Disease in Childhood (2003- 2011). At BUSM he was Vice-Chair of Research for the Department of Pediatrics and Chief, Division of General Pediatrics. He is a member of the National Academy of Medicine (formerly the Institute of Medicine) and an honorary fellow of the Royal College of Paediatrics and Child Health, United Kingdom. At JAMA Howard has focused on improving and expanding clinical content, using electronic/digital approaches to enhance communication, and ensuring a commitment to innovation. Since his arrival in 2011 followers on social medical (twitter and Facebook) have increased from 13,000 to approximately 700,000 and the electronic table of contents is now distributed to close to 750,000 individuals each week. In print, via eTOC, and social media JAMA now reaches over 1.5M physicians each week worldwide. Views (PDF and HTML) have increased from 10M in 2011 to 32M in 2017 (50% from outside the U.S.) and podcast downloads have increased from 300,000 in 2014 to 2.2M in 2017. The print journal was redesigned for the first time in over 20 years and website has been updated twice. All 9 of the specialty journals were renamed (Archives of Pediatrics became JAMA Pediatrics), and 3 new journals have been launched – JAMA Oncology (2015), JAMA Cardiology (2016), and JAMA Network Open (2018).