Full Randomness from Arbitrarily Deterministic Events

Total Page:16

File Type:pdf, Size:1020Kb

Full Randomness from Arbitrarily Deterministic Events ARTICLE Received 21 Nov 2012 | Accepted 22 Sep 2013 | Published 30 Oct 2013 DOI: 10.1038/ncomms3654 Full randomness from arbitrarily deterministic events Rodrigo Gallego1,2, Lluis Masanes1, Gonzalo De La Torre1, Chirag Dhara1, Leandro Aolita1,2 & Antonio Acı´n1,3 Do completely unpredictable events exist? Classical physics excludes fundamental randomness. Although quantum theory makes probabilistic predictions, this does not imply that nature is random, as randomness should be certified without relying on the complete structure of the theory being used. Bell tests approach the question from this perspective. However, they require prior perfect randomness, falling into a circular reasoning. A Bell test that generates perfect random bits from bits possessing high—but less than perfect— randomness has recently been obtained. Yet, the main question remained open: does any initial randomness suffice to certify perfect randomness? Here we show that this is indeed the case. We provide a Bell test that uses arbitrarily imperfect random bits to produce bits that are, under the non-signalling principle assumption, perfectly random. This provides the first protocol attaining full randomness amplification. Our results have strong implications onto the debate of whether there exist events that are fully random. 1 ICFO-Institut de Cie`ncies Foto`niques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain. 2 Dahlem Center for Complex Quantum Systems, Freie Universita¨t Berlin, 14195 Berlin, Germany. 3 ICREA-Institucio´ Catalana de Recerca i Estudis Avanc¸ats, Lluı´s Companys 23, 08010 Barcelona, Spain. Correspondence and requests for materials should be addressed to A.A. (email: [email protected]). NATURE COMMUNICATIONS | 4:2654 | DOI: 10.1038/ncomms3654 | www.nature.com/naturecommunications 1 & 2013 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3654 nderstanding whether nature is deterministically prede- Here, we show that this is the case for a very general, and termined or there are intrinsically random processes is a physically meaningful, set of randomness sources. This includes Ufundamental question that has attracted the interest of subsets of the well-known Santha–Vazirani sources5 as particular multiple thinkers, ranging from philosophers and mathematicians cases. Besides the philosophical and physics-foundational to physicists or neuroscientists. Nowadays, this question is also implications, our results provide a protocol for full randomness important from a practical perspective, as random bits constitute amplification using quantum non-locality. Randomness a valuable resource for applications such as cryptographic amplification is an information-theoretic task whose goal is to protocols, gambling or the numerical simulation of physical use an input source of imperfectly random bits to produce perfect and biological systems. random bits. Santha and Vazirani5 proved that randomness Classical physics is a deterministic theory. Perfect knowledge of amplification is impossible using classical resources. This is in a the positions and velocities of a system of classical particles at a sense intuitive, in view of the absence of any intrinsic randomness given time, as well as of their interactions, allows one to predict in classical physics. In the quantum regime, randomness their future (and also past) behaviour with total certainty1. Thus, amplification has been recently studied by Colbeck and any randomness observed in classical systems is not intrinsic to Renner6. They proved how input bits with very high initial the theory but just a manifestation of our imperfect description of randomness can be mapped into arbitrarily pure random bits, the system. and conjectured that randomness amplification should be The advent of quantum physics put into question this possible for any initial randomness6. Our results also solve this deterministic viewpoint, as there exist experimental situations conjecture, as we show that quantum non-locality can be for which quantum theory gives predictions only in probabilistic exploited to attain full randomness amplification. terms, even if one has a perfect description of the preparation and interactions of the system. A possible solution to this classically counterintuitive fact was proposed in the early days of quantum Results physics: quantum mechanics had to be incomplete2 and there Previous work. Before presenting our results, it is worth com- should be a complete theory capable of providing deterministic menting on previous works on randomness in connection with predictions for all conceivable experiments. There would thus be quantum non-locality. In the study by Pironio et al.7, it was no room for intrinsic randomness and any apparent randomness shown how to bound the intrinsic randomness generated in a would again be a consequence of our lack of control over Bell test. These bounds can be used for device-independent hypothetical ‘hidden variables’ not contemplated by the quantum randomness expansion, following a proposal by Colbeck8, formalism. and to achieve a quadratic expansion of the amount of random Bell’s no-go theorem3, however, implies that local hidden- bits (see refs 9–12 for further works on device-independent variable theories are inconsistent with quantum mechanics. randomness expansion). Note however that, in randomness Therefore, none of these could ever render a deterministic expansion, one assumes instead, from the very beginning, the completion to the quantum formalism. More precisely, all existence of an input seed of free random bits, and the main goal hidden-variable theories compatible with a local causal is to expand this into a larger sequence. The figure of merit is the structure predict that any correlations among space-like ratio between the length of the final and initial strings of free separated events satisfy a series of inequalities, known as Bell random bits. Finally, other recent works have analysed how a lack inequalities. Bell inequalities, in turn, are violated by some of randomness in the measurement choices affects a Bell test13–15 correlations among quantum particles. This form of correlations and the randomness generated in it16. defines the phenomenon of quantum non-locality. Now, it turns out that quantum non-locality does not necessarily imply the existence of fully unpredictable processes Definition of the scenario. From an information perspective, our in nature. The reasons behind this are subtle. First of all, goal is to construct a protocol for full randomness amplification unpredictable processes could be certified only if the no-signalling based on quantum non-locality. In randomness amplification, principle holds. This states that no instantaneous communication one aims at producing arbitrarily free random bits from many is possible, which in turn imposes a local causal structure on uses of an input source S of imperfectly random bits. events, as in Einstein’s special relativity. In fact, Bohm’s theory is A random bit b is said to be free if it is uncorrelated from any both deterministic and able to reproduce all quantum predic- classical variables e generated outside the future light-cone of b tions4, but it is incompatible with no-signalling at the level of the (of course, the bit b can be arbitrarily correlated with any event hidden variables. Thus, we assume throughout the validity of the inside its future light-cone). This requirement formalizes the no-signalling principle. Yet, even within the no-signalling intuition that the only systems that may share some correlation framework, it is still not possible to infer the existence of fully with b are the ones that are influenced by b. Note also that this random processes only from the mere observation of non-local definition of randomness is strictly stronger than the demand that correlations. This is due to the fact that Bell tests require b is uncorrelated with any classical variable generated in the past measurement settings chosen at random, but the actual light-cone of the process. This is crucial if the variables e and b are randomness in such choices can never be certified. The generated by measuring on a correlated quantum system. In this extremal example is given when the settings are determined in case, even if both systems interacted somewhere in the past light- advance. Then, any Bell violation can easily be explained in terms cone of b, the variable e is not produced until the measurement is of deterministic models. As a matter of fact, super-deterministic performed, possibly outside both past and future light-cones. models, which postulate that all phenomena in the universe, Furthermore, we say that a random bit is E-free if any correlations including our own mental processes, are fully predetermined, are with events outside its future light-cone are bounded by E,as by definition impossible to rule out. These considerations imply explained in what follows. that the strongest result on the existence of randomness one can Source S produces a sequence of bits x1,x2,yxj,y, with xj ¼ 0 hope for using quantum non-locality is stated by the following or 1 for all j, see Fig. 1, which are E-free. More precisely, each bit j possibility: given a source that produces an arbitrarily small but contains some randomness, in the sense that the probability non-zero amount of randomness, can one still certify the P(xj|all other bits, e) that it takes a given value xj, conditioned on existence of completely random processes? the values of
Recommended publications
  • Wavelet Entropy Energy Measure (WEEM): a Multiscale Measure to Grade a Geophysical System's Predictability
    EGU21-703, updated on 28 Sep 2021 https://doi.org/10.5194/egusphere-egu21-703 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Wavelet Entropy Energy Measure (WEEM): A multiscale measure to grade a geophysical system's predictability Ravi Kumar Guntu and Ankit Agarwal Indian Institute of Technology Roorkee, Hydrology, Roorkee, India ([email protected]) Model-free gradation of predictability of a geophysical system is essential to quantify how much inherent information is contained within the system and evaluate different forecasting methods' performance to get the best possible prediction. We conjecture that Multiscale Information enclosed in a given geophysical time series is the only input source for any forecast model. In the literature, established entropic measures dealing with grading the predictability of a time series at multiple time scales are limited. Therefore, we need an additional measure to quantify the information at multiple time scales, thereby grading the predictability level. This study introduces a novel measure, Wavelet Entropy Energy Measure (WEEM), based on Wavelet entropy to investigate a time series's energy distribution. From the WEEM analysis, predictability can be graded low to high. The difference between the entropy of a wavelet energy distribution of a time series and entropy of wavelet energy of white noise is the basis for gradation. The metric quantifies the proportion of the deterministic component of a time series in terms of energy concentration, and its range varies from zero to one. One corresponds to high predictable due to its high energy concentration and zero representing a process similar to the white noise process having scattered energy distribution.
    [Show full text]
  • Biostatistics for Oral Healthcare
    Biostatistics for Oral Healthcare Jay S. Kim, Ph.D. Loma Linda University School of Dentistry Loma Linda, California 92350 Ronald J. Dailey, Ph.D. Loma Linda University School of Dentistry Loma Linda, California 92350 Biostatistics for Oral Healthcare Biostatistics for Oral Healthcare Jay S. Kim, Ph.D. Loma Linda University School of Dentistry Loma Linda, California 92350 Ronald J. Dailey, Ph.D. Loma Linda University School of Dentistry Loma Linda, California 92350 JayS.Kim, PhD, is Professor of Biostatistics at Loma Linda University, CA. A specialist in this area, he has been teaching biostatistics since 1997 to students in public health, medical school, and dental school. Currently his primary responsibility is teaching biostatistics courses to hygiene students, predoctoral dental students, and dental residents. He also collaborates with the faculty members on a variety of research projects. Ronald J. Dailey is the Associate Dean for Academic Affairs at Loma Linda and an active member of American Dental Educational Association. C 2008 by Blackwell Munksgaard, a Blackwell Publishing Company Editorial Offices: Blackwell Publishing Professional, 2121 State Avenue, Ames, Iowa 50014-8300, USA Tel: +1 515 292 0140 9600 Garsington Road, Oxford OX4 2DQ Tel: 01865 776868 Blackwell Publishing Asia Pty Ltd, 550 Swanston Street, Carlton South, Victoria 3053, Australia Tel: +61 (0)3 9347 0300 Blackwell Wissenschafts Verlag, Kurf¨urstendamm57, 10707 Berlin, Germany Tel: +49 (0)30 32 79 060 The right of the Author to be identified as the Author of this Work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.
    [Show full text]
  • Big Data for Reliability Engineering: Threat and Opportunity
    Reliability, February 2016 Big Data for Reliability Engineering: Threat and Opportunity Vitali Volovoi Independent Consultant [email protected] more recently, analytics). It shares with the rest of the fields Abstract - The confluence of several technologies promises under this umbrella the need to abstract away most stormy waters ahead for reliability engineering. News reports domain-specific information, and to use tools that are mainly are full of buzzwords relevant to the future of the field—Big domain-independent1. As a result, it increasingly shares the Data, the Internet of Things, predictive and prescriptive lingua franca of modern systems engineering—probability and analytics—the sexier sisters of reliability engineering, both statistics that are required to balance the otherwise orderly and exciting and threatening. Can we reliability engineers join the deterministic engineering world. party and suddenly become popular (and better paid), or are And yet, reliability engineering does not wear the fancy we at risk of being superseded and driven into obsolescence? clothes of its sisters. There is nothing privileged about it. It is This article argues that“big-picture” thinking, which is at the rarely studied in engineering schools, and it is definitely not core of the concept of the System of Systems, is key for a studied in business schools! Instead, it is perceived as a bright future for reliability engineering. necessary evil (especially if the reliability issues in question are safety-related). The community of reliability engineers Keywords - System of Systems, complex systems, Big Data, consists of engineers from other fields who were mainly Internet of Things, industrial internet, predictive analytics, trained on the job (instead of receiving formal degrees in the prescriptive analytics field).
    [Show full text]
  • Volatility Estimation of Stock Prices Using Garch Method
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals European Journal of Business and Management www.iiste.org ISSN 2222-1905 (Paper) ISSN 2222-2839 (Online) Vol.7, No.19, 2015 Volatility Estimation of Stock Prices using Garch Method Koima, J.K, Mwita, P.N Nassiuma, D.K Kabarak University Abstract Economic decisions are modeled based on perceived distribution of the random variables in the future, assessment and measurement of the variance which has a significant impact on the future profit or losses of particular portfolio. The ability to accurately measure and predict the stock market volatility has a wide spread implications. Volatility plays a very significant role in many financial decisions. The main purpose of this study is to examine the nature and the characteristics of stock market volatility of Kenyan stock markets and its stylized facts using GARCH models. Symmetric volatility model namly GARCH model was used to estimate volatility of stock returns. GARCH (1, 1) explains volatility of Kenyan stock markets and its stylized facts including volatility clustering, fat tails and mean reverting more satisfactorily.The results indicates the evidence of time varying stock return volatility over the sampled period of time. In conclusion it follows that in a financial crisis; the negative returns shocks have higher volatility than positive returns shocks. Keywords: GARCH, Stylized facts, Volatility clustering INTRODUCTION Volatility forecasting in financial market is very significant particularly in Investment, financial risk management and monetory policy making Poon and Granger (2003).Because of the link between volatility and risk,volatility can form a basis for efficient price discovery.Volatility implying predictability is very important phenomenon for traders and medium term - investors.
    [Show full text]
  • A Python Library for Neuroimaging Based Machine Learning
    Brain Predictability toolbox: a Python library for neuroimaging based machine learning 1 1 2 1 1 1 Hahn, S. ,​ Yuan, D.K. ,​ Thompson, W.K. ,​ Owens, M. ,​ Allgaier, N .​ and Garavan, H ​ ​ ​ ​ ​ ​ 1. Departments of Psychiatry and Complex Systems, University of Vermont, Burlington, VT 05401, USA 2. Division of Biostatistics, Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093, USA Abstract Summary Brain Predictability toolbox (BPt) represents a unified framework of machine learning (ML) tools designed to work with both tabulated data (in particular brain, psychiatric, behavioral, and physiological variables) and neuroimaging specific derived data (e.g., brain volumes and surfaces). This package is suitable for investigating a wide range of different neuroimaging based ML questions, in particular, those queried from large human datasets. Availability and Implementation BPt has been developed as an open-source Python 3.6+ package hosted at https://github.com/sahahn/BPt under MIT License, with documentation provided at ​ https://bpt.readthedocs.io/en/latest/, and continues to be actively developed. The project can be ​ downloaded through the github link provided. A web GUI interface based on the same code is currently under development and can be set up through docker with instructions at https://github.com/sahahn/BPt_app. ​ Contact Please contact Sage Hahn at [email protected] ​ Main Text 1 Introduction Large datasets in all domains are becoming increasingly prevalent as data from smaller existing studies are pooled and larger studies are funded. This increase in available data offers an unprecedented opportunity for researchers interested in applying machine learning (ML) based methodologies, especially those working in domains such as neuroimaging where data collection is quite expensive.
    [Show full text]
  • BIOSTATS Documentation
    BIOSTATS Documentation BIOSTATS is a collection of R functions written to aid in the statistical analysis of ecological data sets using both univariate and multivariate procedures. All of these functions make use of existing R functions and many are simply convenience wrappers for functions contained in other popular libraries, such as VEGAN and LABDSV for multivariate statistics, however others are custom functions written using functions in the base or stats libraries. Author: Kevin McGarigal, Professor Department of Environmental Conservation University of Massachusetts, Amherst Date Last Updated: 9 November 2016 Functions: all.subsets.gam.. 3 all.subsets.glm. 6 box.plots. 12 by.names. 14 ci.lines. 16 class.monte. 17 clus.composite.. 19 clus.stats. 21 cohen.kappa. 23 col.summary. 25 commission.mc. 27 concordance. 29 contrast.matrix. 33 cov.test. 35 data.dist. 37 data.stand. 41 data.trans. 44 dist.plots. 48 distributions. 50 drop.var. 53 edf.plots.. 55 ecdf.plots. 57 foa.plots.. 59 hclus.cophenetic. 62 hclus.scree. 64 hclus.table. 66 hist.plots. 68 intrasetcor. 70 Biostats Library 2 kappa.mc. 72 lda.structure.. 74 mantel2. 76 mantel.part. 78 mrpp2. 82 mv.outliers.. 84 nhclus.scree. 87 nmds.monte. 89 nmds.scree.. 91 norm.test. 93 ordi.monte.. 95 ordi.overlay. 97 ordi.part.. 99 ordi.scree. 105 pca.communality. 107 pca.eigenval. 109 pca.eigenvec. 111 pca.structure. 113 plot.anosim. 115 plot.mantel. 117 plot.mrpp.. 119 plot.ordi.part. 121 qqnorm.plots.. 123 ran.split. ..
    [Show full text]
  • Public Health & Intelligence
    Public Health & Intelligence PHI Trend Analysis Guidance Document Control Version Version 1.5 Date Issued March 2017 Author Róisín Farrell, David Walker / HI Team Comments to [email protected] Version Date Comment Author Version 1.0 July 2016 1st version of paper David Walker, Róisín Farrell Version 1.1 August Amending format; adding Róisín Farrell 2016 sections Version 1.2 November Adding content to sections Róisín Farrell, Lee 2016 1 and 2 Barnsdale Version 1.3 November Amending as per Róisín Farrell 2016 suggestions from SAG Version 1.4 December Structural changes Róisín Farrell, Lee 2016 Barnsdale Version 1.5 March 2017 Amending as per Róisín Farrell, Lee suggestions from SAG Barnsdale Contents 1. Introduction ........................................................................................................................................... 1 2. Understanding trend data for descriptive analysis ................................................................................. 1 3. Descriptive analysis of time trends ......................................................................................................... 2 3.1 Smoothing ................................................................................................................................................ 2 3.1.1 Simple smoothing ............................................................................................................................ 2 3.1.2 Median smoothing ..........................................................................................................................
    [Show full text]
  • Measuring Predictability: Theory and Macroeconomic Applications," Journal of Applied Econometrics, 16, 657-669
    Diebold, F.X. and Kilian, L. (2001), "Measuring Predictability: Theory and Macroeconomic Applications," Journal of Applied Econometrics, 16, 657-669. Measuring Predictability: Theory and Macroeconomic Applications Francis X. Diebold Department of Finance, Stern School of Business, New York University, New York, NY 10012- 1126, USA, and NBER. Lutz Kilian Department of Economics, University of Michigan, Ann Arbor, MI 48109-1220, USA, and CEPR. SUMMARY We propose a measure of predictability based on the ratio of the expected loss of a short-run forecast to the expected loss of a long-run forecast. This predictability measure can be tailored to the forecast horizons of interest, and it allows for general loss functions, univariate or multivariate information sets, and covariance stationary or difference stationary processes. We propose a simple estimator, and we suggest resampling methods for inference. We then provide several macroeconomic applications. First, we illustrate the implementation of predictability measures based on fitted parametric models for several U.S. macroeconomic time series. Second, we analyze the internal propagation mechanism of a standard dynamic macroeconomic model by comparing the predictability of model inputs and model outputs. Third, we use predictability as a metric for assessing the similarity of data simulated from the model and actual data. Finally, we outline several nonparametric extensions of our approach. Correspondence to: F.X. Diebold, Department of Finance, Suite 9-190, Stern School of Business, New York University, New York, NY 10012-1126, USA. E-mail: [email protected]. 1. INTRODUCTION It is natural and informative to judge forecasts by their accuracy. However, actual and forecasted values will differ, even for very good forecasts.
    [Show full text]
  • Central Limit Theorems When Data Are Dependent: Addressing the Pedagogical Gaps
    Institute for Empirical Research in Economics University of Zurich Working Paper Series ISSN 1424-0459 Working Paper No. 480 Central Limit Theorems When Data Are Dependent: Addressing the Pedagogical Gaps Timothy Falcon Crack and Olivier Ledoit February 2010 Central Limit Theorems When Data Are Dependent: Addressing the Pedagogical Gaps Timothy Falcon Crack1 University of Otago Olivier Ledoit2 University of Zurich Version: August 18, 2009 1Corresponding author, Professor of Finance, University of Otago, Department of Finance and Quantitative Analysis, PO Box 56, Dunedin, New Zealand, [email protected] 2Research Associate, Institute for Empirical Research in Economics, University of Zurich, [email protected] Central Limit Theorems When Data Are Dependent: Addressing the Pedagogical Gaps ABSTRACT Although dependence in financial data is pervasive, standard doctoral-level econometrics texts do not make clear that the common central limit theorems (CLTs) contained therein fail when applied to dependent data. More advanced books that are clear in their CLT assumptions do not contain any worked examples of CLTs that apply to dependent data. We address these pedagogical gaps by discussing dependence in financial data and dependence assumptions in CLTs and by giving a worked example of the application of a CLT for dependent data to the case of the derivation of the asymptotic distribution of the sample variance of a Gaussian AR(1). We also provide code and the results for a Monte-Carlo simulation used to check the results of the derivation. INTRODUCTION Financial data exhibit dependence. This dependence invalidates the assumptions of common central limit theorems (CLTs). Although dependence in financial data has been a high- profile research area for over 70 years, standard doctoral-level econometrics texts are not always clear about the dependence assumptions needed for common CLTs.
    [Show full text]
  • Measuring Complexity and Predictability of Time Series with Flexible Multiscale Entropy for Sensor Networks
    Article Measuring Complexity and Predictability of Time Series with Flexible Multiscale Entropy for Sensor Networks Renjie Zhou 1,2, Chen Yang 1,2, Jian Wan 1,2,*, Wei Zhang 1,2, Bo Guan 3,*, Naixue Xiong 4,* 1 School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China; [email protected] (R.Z.); [email protected] (C.Y.); [email protected] (W.Z.) 2 Key Laboratory of Complex Systems Modeling and Simulation of Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China 3 School of Electronic and Information Engineer, Ningbo University of Technology, Ningbo 315211, China 4 Department of Mathematics and Computer Science, Northeastern State University, Tahlequah, OK 74464, USA * Correspondence: [email protected] (J.W.); [email protected] (B.G.); [email protected] (N.X.) Tel.: +1-404-645-4067 (N.X.) Academic Editor: Mohamed F. Younis Received: 15 November 2016; Accepted: 24 March 2017; Published: 6 April 2017 Abstract: Measurement of time series complexity and predictability is sometimes the cornerstone for proposing solutions to topology and congestion control problems in sensor networks. As a method of measuring time series complexity and predictability, multiscale entropy (MSE) has been widely applied in many fields. However, sample entropy, which is the fundamental component of MSE, measures the similarity of two subsequences of a time series with either zero or one, but without in-between values, which causes sudden changes of entropy values even if the time series embraces small changes. This problem becomes especially severe when the length of time series is getting short. For solving such the problem, we propose flexible multiscale entropy (FMSE), which introduces a novel similarity function measuring the similarity of two subsequences with full-range values from zero to one, and thus increases the reliability and stability of measuring time series complexity.
    [Show full text]
  • Incubation Periods Impact the Spatial Predictability of Cholera and Ebola Outbreaks in Sierra Leone
    Incubation periods impact the spatial predictability of cholera and Ebola outbreaks in Sierra Leone Rebecca Kahna,1, Corey M. Peaka,1, Juan Fernández-Graciaa,b, Alexandra Hillc, Amara Jambaid, Louisa Gandae, Marcia C. Castrof, and Caroline O. Buckeea,2 aCenter for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115; bInstitute for Cross-Disciplinary Physics and Complex Systems, Universitat de les Illes Balears - Consell Superior d’Investigacions Científiques, E-07122 Palma de Mallorca, Spain; cDisease Control in Humanitarian Emergencies, World Health Organization, CH-1211 Geneva 27, Switzerland; dDisease Control and Prevention, Sierra Leone Ministry of Health and Sanitation, Freetown, Sierra Leone FPGG+89; eCountry Office, World Health Organization, Freetown, Sierra Leone FPGG+89; and fDepartment of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA 02115 Edited by Burton H. Singer, University of Florida, Gainesville, FL, and approved January 22, 2020 (received for review July 29, 2019) Forecasting the spatiotemporal spread of infectious diseases during total number of secondary infections by an infectious individual in an outbreak is an important component of epidemic response. a completely susceptible population (i.e., R0) (13, 14). Indeed, the However, it remains challenging both methodologically and with basis of contact tracing protocols during an outbreak reflects the respect to data requirements, as disease spread is influenced by need to identify and contain individuals during the incubation numerous factors, including the pathogen’s underlying transmission period, and the relative effectiveness of interventions such as parameters and epidemiological dynamics, social networks and pop- symptom monitoring or quarantine significantly depends on the ulation connectivity, and environmental conditions.
    [Show full text]
  • Understanding Predictability
    Understanding Predictability Lior Menzly University of Southern California Tano Santos Columbia University and NBER Pietro Veronesi University of Chicago, CEPR and NBER Abstract We propose a general equilibrium model with multiple securities in which in- vestors’ risk preferences and expectations of dividend growth are time vary- ing. While time varying risk preferences induce the standard positive relation between the dividend yield and expected returns, time varying expected div- idend growth induces a negative relation between them. These o¤setting e¤ects reduce the ability of the dividend yield to forecast returns and elim- inate its ability to forecast dividend growth, as observed in the data. The model links the predictability of returns to that of dividend growth, suggest- ing speci…c changes to standard linear predictive regressions for both. The model’s predictions are con…rmed empirically. Acknowledgements Di¤erent versions of the framework advanced in this paper have been pre- sented at workshops at the University of Texas at Austin, NYU, University of Illinois at Urbana-Champaign, McGill, MIT, Columbia University, North- western University, University of California at Berkely, Dartmouth College, University of Iowa, and the University of Chicago. We thank Andrew Ang, John Cochrane, George Constantinides, Kent Daniel, Harry DeAngelo, Lars Hansen, John Heaton, Bob Hodrick, Martin Lettau, Toby Moskowitz, Ruy Ribeiro, and Jessica Wachter for their comments. I. INTRODUCTION The predictability of stock market returns at long horizons has been at the center of much empirical and theoretical research in …nance in the last decade. For the market as a whole, high prices, normalized by dividends for example, forecast low future re- turns, whereas they do not predict high future dividend growth.
    [Show full text]