Computational Seismology

Total Page:16

File Type:pdf, Size:1020Kb

Computational Seismology COMPUTATIONAL SEISMOLOGY Computational Seismology A Practical Introduction Heiner Igel Department of Earth and Environmental Sciences, Ludwig-Maximilians-University of Munich 3 3 Great Clarendon Street, Oxford, OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries © Heiner Igel 2017 The moral rights of the author have been asserted First Edition published in 2017 Impression: 1 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this work in any other form and you must impose this same condition on any acquirer Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America British Library Cataloguing in Publication Data Data available Library of Congress Control Number: 2016940973 ISBN 978–0–19–871740–9 (hbk.) ISBN 978–0–19–871741–6 (pbk.) Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY Links to third party websites are provided by Oxford in good faith and for information only. Oxford disclaims any responsibility for the materials contained in any third party website referenced in this work. To M a r i a , and our wonderful kids Anna, Jonas, Lukas, and Clara. Thanks for always bringing me back to Earth. Preface When I was an undergraduate student in Scotland in the late eighties working on seismic anisotropy I was lucky to have been able to attend an international meet- ing that took place at the University of Berkeley, California. I saw a presentation of a Stanford PhD student showing 2D simulations of anisotropic wave propa- gation using the finite-difference method. I was totally struck by the beauty of the graphics, the ease with which one could develop intuition about wave phe- nomena, and the elegant and simple maths underlying the simulation method. This became what I wanted to learn, master, and apply! Luckily, later I was of- fered a PhD position in Paris, where the development of finite-difference-based simulation methods and their application to inverse problems became my topic. It is important to note that at the time (parallel) computer codes needed for our research were basically written from scratch. The primary goal was to en- sure that the codes were correct (rather than making them readable by others through heavy commenting). As computers grew larger and architectures became more complex, this heroic (unprofessional) coding style no longer worked. Today, parallel codes must have a different quality. To be able to obtain computational resources on large supercomputer facilities, one has to demonstrate proper par- allel scaling properties and in many cases this is not possible without interaction with computational scientists. This implies a paradigm shift in the approach to simulation technology. Today, the shortest time to results for students involves the use of community software provided by projects like CIG (<http://www.geodynamics.org>), individual re- searchers or groups (see appendix), or community platforms as developed within the VERCE project (<http://www.verce.eu>). This creates problems. Numerical methods are not necessarily featured with much detail in Earth science courses. On the other hand, it is usually straightforward to use community simulation tools and obtain synthetic seismograms. However, without experience, quality control is difficult. Not seldom am I presented with simulation results where there are obvious problems with the set-up. How can we fix this? Students and researchers should have at least a basic un- derstanding of what is under the bonnet of current simulation technologies used to solve interesting research problems. They should understand what problems to look out for, and how to properly design simulation tasks, and to ensure the results are correct. In addition, today there is a zoo of different methods, and it is difficult to choose the right method for a particular problem. In this volume I try to provide some guidelines. viii Preface The strategy is to keep the maths as simple as possible, extensively using graphics to illustrate concepts, while at the same time presenting the link between theory and computer program (using the Python language and Jupyter note- books). This concept should be beneficial to both students and lecturers. While it is advisable to write own codes as much as possible (and compare with the so- lutions presented here), lecturers can start right away using the supplementary electronic material and the online platform provided. This volume should be considered a starting point. There are many excellent books for each of the numerical methods presented in this text. These references should be consulted when more detail is required. The focus here is to present the fundamental concepts of the various methods, their inter-relations, and pros and cons for specific applications in seismology (and other fields). My hope is that you become equally excited about this fascinating field of Earth science, and use your knowledge to further our understanding of this amazing planet! Heiner Igel Munich, July 2016 Acknowledgements Thanks to Sonke Adlung from Oxford University Press for suggesting this project, to Ania Wronski and the production staff at Integra (Marie Felina Francois) for their help and support, and to Henry MacKeith for copy-editing. I would like to express my gratitude to those who helped me to get off the ground in science. Stuart Crampin of the University of Edinburgh, taught me to ‘think science’, and became a lifelong friend. This volume would never have been possible without the vision of Albert Tarantola and Peter Mora of the Institut de Physique du Globe Paris, who—decades ago—foresaw the impact of parallel computing in the Earth (and other) sciences. I consider myself very lucky having had these scientists as supervisors. The work presented in this volume benefitted from research projects funded by the German Research Foundation, the European Union, the European Re- search Council, the Bavarian Government, the German Ministry of Research, the Volkswagen Foundation, and the European Science Foundation. I gratefully ac- knowledge the strong support from the Leibniz Supercomputing Centre Munich. The concepts for this volume were born out of workshops organized dur- ing the SPICE and QUEST training networks funded by the European Union between 2003 and 2013. The people who invented the training network fund- ing instruments should be awarded! We learned so much through these projects on both seismic forward and inverse modelling, which pushed the limits in seismology substantially, and at the same time shaped careers for dozens of young scientists who today are scattered around the world, many in senior positions. Preface ix Infinite thanks to the principal investigators and associates of the SPICE and QUEST projects—they were so much fun: Chris Bean, Lapo Boschi, Jo- hana Brokesova, Michel Campillo, Torsten Dahm, Ana Ferreira, Domenico Giardini, Alex Goertz, Matthias Holschneider, Raul Madariaga, Martin Mai, Valerie Maupin, Peter Moczo, Jean-Paul Montagner, Andrea Morelli, Tarje Nissen-Meyer, Guust Nolet, Johan Robertsson, Barbara Romanowicz, Malcolm Sambridge, Geza Seriani, Karin Sigloch, Eleonore Stutzmann, Jeannot Trampert, Colin Thomson, Jeroen Tromp, Jean-Pierre Vilotte, Jean Virieux, John Wood- house, Aldo Zollo, and many others; the enthusiastic administrators Erika Vye and Greta Küppers; and all doctoral and postdoctoral researchers involved. Part of the material benefitted enormously from other people’s work; for exam- ple, Bernhard Schuberth’s diploma thesis, course material by Martin Käser, and Andreas Fichtner’s book on modelling and inversion. Thanks to Peter Shearer and Cambridge University Press for giving permission to use some of the graph- ics from Peter’s excellent introductory work in seismology. I also want to thank Wolfgang Bangerth who introduced me to the finite-element method many years ago using just the blackboard and a pen. This volume got started during the phenomenal RHUM-RUM cruise in the Indian Ocean in autumn 2013, coordinated by Karin Sigloch and Guilhem Bar- ruol. Thanks to Yann Capdeville with whom I shared many day and night shifts. He helped me a lot with the spectral-element method. According to him I was his worst student ever. Thanks to Florian Wölfl, who helped tremendously getting the Latex project started. Sebastian Anger, Bryant Chow, Jonas Igel, Lion Krischer, David Vargas, and Moritz Goll helped with the graphics, slide material, and the notebooks. Special thanks to Stephanie Wollherr: her mathematical skills and good humour helped substantially in getting the finite-volume and discontinuous Galerkin chap- ters (and the codes) in shape. Sujana Talavera provided great comments on these parts, too. I am also grateful to Matthias and Thomas Meschede for creating the graphics for the title page. Thanks to all the participants of the Munich Earth Skience School 2015 (<http://www.geophysik.lmu.de/MESS>) in Sudelfeld, Christine Thomas for col- lecting all the comments and the staff Renate and Winfried Löffler and Michael Sponi for always creating a wonderful atmosphere over the years. Thanks to the participants of the 2015 seminar on computational seismology and all their com- ments and suggestions on the draft: Michael Bader, Esteban Bedoya, Christoph Heidelmann, Eduard Kharitonov, Jiunn Lin, Martin Mai, Sneha Singh, Taufiq Taufiqurrahman, Tushar Upadhyay, Vasco Varduhn, and Donata Wardani.
Recommended publications
  • Application of Variational Methods and Galerkin Method in Solving Engineering Problems Represented by Ordinary Differential Equations
    International Journal of Mechanical And Production Engineering, ISSN: 2320-2092, Volume- 4, Issue-4, Apr.-2016 APPLICATION OF VARIATIONAL METHODS AND GALERKIN METHOD IN SOLVING ENGINEERING PROBLEMS REPRESENTED BY ORDINARY DIFFERENTIAL EQUATIONS 1B.V. SIVA PRASAD REDDY, 2K. RAJESH BABU 1,2Department of Mechanical Engineering, Sri Venkateswara University college of Engineering, Tirupati, India E-mail: [email protected], [email protected]; Abstract – Nowadays the accuracy of problem solving is very important. In olden days the Variational methods were used to solve all engineering problems like structural, heat transfer and fluid mechanics problems. With the emergence of Finite Element Method (FEM) those methods are become less important, although FEM is also an approximate method of numerical technique. The concept of variational methods is inducted to solve majority of engineering problems, which gives more accurate results than any other type of approximate methods. The engineering problems like uniform bar, beams, heat transfer and fluid flow problems are used in our daily life and they play an important role in the development of our society. To achieve drastic development in the society, it is a must to focus on adopting approximation methods that improve the accuracy of engineering solution. Of all the methods, Galerkin method is emerging as an alternative and more accurate method than those of Ritz, Rayleigh – Ritz methods. Any physical problem in nature can be transformed into an equivalent mathematical model by idealization process and describing its behavior by a suitable governing equation with associated boundary conditions. Against this backdrop, the present work focuses on application of different variational methods in solving ordinary differential equations.
    [Show full text]
  • Biodata Dr. JS
    Biodata Dr. J. S. Rao CEO, Innovative Engineering Designs and Simulation Global Solutions President, The Vibration Institute of India Chief Editor, Journal Vibration Engineering and Technologies 1039, 2nd Cross, BEL Layout, Block II Bangalore 560097 +91 98453 46503 [email protected] Also Chief Science Officer (consulting) Altair Engineering India Pvt. Ltd., Bangalore 560103 Contents Title Page Number 1. Experience 2 2. Education 2 3. Memberships of Scientific Bodies 3 4. Contributions to Scientific Community 3 5. Research Areas 5 6. Doctoral Theses 5 7. Review Work 6 8. Industrial Consultancy and Sponsored Work 6 9. Books 9 10. Awards 10 11. Congresses and Schools 11 12. National and International Seminars 14 13. Five Decades of Research Work 18 14. Journal Papers 31 15. Conference Papers 38 16. Contributions as Science Counselor 53 1 Dr. J.S. Rao 1. EXPERIENCE President Kumaraguru College of Technology, Coimbatore 2012-2016 Protem Chancellor K L University, Vijayawada 2011-2012 Director GMR Energy Ltd., Bangalore 2000-2012 CEO, Dynaspede Integrated Systems, Bangalore 2004-2005 Chief Technology Officer, QuEST, Bangalore 2001-2004 Professor of Mechanical Engineering The University of New South Wales, Sydney, Australia 1996 NSC Research Chair Professor National Chung Cheng University, Chia-Yi, Taiwan 1994-96 Professor of Mechanical Engineering Inst. fur Mech., Gesamthochschule, Kassel, Germany 1988 Sr. Technical Consultant, Stress Technology Inc., Adjunct Professor Mechanical Engineering Rochester Institute of Technology, Rochester, NY, USA 1980-81 Professor of Mechanical Engineering Concordia University, Montreal, Canada 1980 Professor of Mechanical Engineering Inst. Nationale des Sciences Appliquees, Lyon, France 1980 Science Counselor Indian Embassy, Washington DC 1984-89 Indian Institute of Technology, Delhi Professor of Mechanical Engineering 1975-2000 Faculty 1960-70 Professor of Mechanical Engineering Indian Institute of Technology, Kharagpur 1970-75 Post-Doctoral Commonwealth Fellow University of Surrey, Guildford, England 1968-70 2 Dr.
    [Show full text]
  • Professor Ilya Yakovich Shtaerman (1891-1962)
    Professor Ilya Yakovich Shtaerman (1891-1962) I.Y. Shtaerman (1891-1962) - Ph.D., professor, an expert in the field of mechanics, corresponding member of the USSR Academy of Sciences (1939). The scientific activity of I.Y. Shtaerman was formed under the leadership of Professor of Mechanics University of Kiev: P.V. Voronets. Main areas of research I.Y. Shtaerman were devoted to the study of problems of the theory of elasticity, structural mechanics and mathematics. Ilya Shtaerman was born April 19, 1891 in the city of Mogilev-Podolsky; in 1910 - graduated from high school in Kamenetz-Podolsk and in 1915 - graduated from the Faculty of Physics and Mathematics of Kiev University. He published "Differential equations of the plate, rolling without slipping on a fixed surface," which has developed some of the provisions of the master's thesis of his teacher, P.V.Voronets. In 1918 he graduated from the Faculty of Engineering KPI; 1918 - 1941 he worked in the KPI and taught at the Kiev Institute of Public Education; 1920-1934 - member of Applied Mechanics committee, Academy of Sciences of the Ukrainian SSR; 1924-1941r. - Professor, Head of Department of Theoretical Mechanics KPI. In 1930 he defended his doctoral thesis "On the integration of the differential equations of equilibrium of elastic shells." 1934-1943 - Researcher, Institute of Mathematics, Ukrainian Academy of Sciences; 1943 - Professor of the Moscow Institute of Civil Engineering. I.Y. Shtaerman developed a number of methods for solving the complex problems of the theory of elasticity. It was the first major study of this issue, as set out in Russian.
    [Show full text]
  • Time Spectral Methods - Towards Plasma Turbulence Modelling
    kth royal institute of technology Doctoral Thesis in Electrical Engineering Time Spectral Methods - Towards Plasma Turbulence Modelling KRISTOFFER LINDVALL Stockholm, Sweden 2021 Time Spectral Methods - Towards Plasma Turbulence Modelling KRISTOFFER LINDVALL Academic Dissertation which, with due permission of the KTH Royal Institute of Technology, is submitted for public defence for the Degree of Doctor of Philosophy on Thursday, February 18, 2021, at 3:00 p.m. in F3, Lindstedsvägen 26, Stockholm. Doctoral Thesis in Electrical Engineering KTH Royal Institute of Technology Stockholm, Sweden 2021 © Kristoffer Lindvall © Jan Scheffel ISBN: 978-91-7873-759-8 TRITA-EECS-AVL-2021:7 Printed by: Universitetsservice US-AB, Sweden 2021 i Abstract Energy comes in two forms; potential energy and kinetic energy. Energy is stored as potential energy and released in the form of kinetic energy. This process of storage and release is the basic strategy of all energy alternatives in use today. This applies to solar, wind, fossil fuels, and the list goes on. Most of these come in diluted and scarce forms allowing only a portion of the energy to be used, which has prompted the quest for the original source, the Sun. As early as 1905 in the work by Albert Einstein on the connection between mass and energy, it has been seen theoretically that energy can be extracted from the process of fusing lighter elements into heavier elements. Later, this process of fusion was discovered to be the very source powering the Sun. Almost a century later, the work continues to make thermonuclear fusion energy a reality. Looking closer at the Sun, we see that it consists of a hot burning gas subject to electromagnetic fields, i.e.
    [Show full text]
  • Solomon Grigoryevich Mikhlin (1908-1990)
    Solomon Grigoryevich Mikhlin (1908-1990) S.G. Mikhlin was born in Kholmech, a Belorussian village, into a Jewish family of modest means: his real name was Zalman Girshevich Mikhlin, and he was the youngest of five children. He graduated from a secondary school in Gomel (Belorussia) in 1923 and entered the Leningrad State Pedagogical Institute, named after Herzen, in 1925. In January 1927 he became a second year student in the Department of Mathematics and Mechanics (MatMekh) of Leningrad State University after passing all the first year examinations without attending any lectures. Sergey Lvovich Sobolev studied in the same class as Mikhlin. Among their university professors were Nikolai Maximovich Günther and Vladimir Ivanovich Smirnov. The latter became Mikhlin's master thesis supervisor: the topic of the thesis, defended in 1929, was the convergence of double power series. In 1930 Mikhlin started his teaching career, working for short periods in several Leningrad institutes. In 1932 he obtained a position at the Seismological Institute of the USSR Academy of Sciences, where he worked till 1941. He was awarded the degree of "Doktor nauk" in Mathematics and Physics in 1935 (equivalent to the Doctor of Science), without having to earn the "Kandidat nauk" degree (equivalent to a Ph.D.), and finally in 1937 he was promoted to the rank of professor. During World War II he was a professor at the State Alma Ata University. In 1944 Mikhlin returned to Leningrad State University as full professor. From 1964 to 1986 he headed the Laboratory of Numerical Methods at the Research Institute of Mathematics and Mechanics of the same university.
    [Show full text]
  • A Non-Standard Finite Element Method Using Boundary Integral Operators
    JOHANNES KEPLER UNIVERSITAT¨ LINZ JKU Technisch-Naturwissenschaftliche Fakult¨at A Non-standard Finite Element Method using Boundary Integral Operators DISSERTATION zur Erlangung des akademischen Grades Doktor im Doktoratsstudium der Technischen Wissenschaften Eingereicht von: DI Clemens Hofreither Angefertigt am: Doktoratskolleg Computational Mathematics Beurteilung: O.Univ.-Prof. Dipl.-Ing. Dr. Ulrich Langer (Betreuung) Prof. Dr. Sergej Rjasanow Linz, Oktober, 2012 Acknowledgments This thesis was created during my employment at the Doctoral Program “Computational Mathematics” (W1214) at the Johannes Kepler University in Linz. First of all I would like to thank my advisor, Prof. Ulrich Langer, for interesting me in the research topic treated in this thesis, for giving me the chance to work on it within the framework of the Doctoral Program, and for his guidance and advice during my work on the thesis. Even before, during my graduate studies and supervising my diploma thesis, he has taught me a lot and shaped my academic career in a significant way. Furthermore, I am very grateful to Clemens Pechstein for the countless hours he has invested in the past four years into discussions which have deepened my insight into many topics. Without him, many results of this thesis would not have been possible. I want to thank all the other past and present students at the Doctoral Program for creating a very pleasant environment in which to discuss and work, as well as for the friendships which have developed during my time at the Program, making this time not only a productive, but also a highly enjoyable one. Furthermore, the director of the Doctoral Program, Prof.
    [Show full text]
  • University of Texas at Arlington Dissertation Template
    BUCKLING ANALYSIS OF THIN PLATES WITH OR WITHOUT A HOLE UNDER ARBITRARY BOUNDARY CONDITIONS USING THE GALERKIN METHOD by SRIDER THIRUPACHOOR COMERICA Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN MECHANICAL ENGINEERING THE UNIVERSITY OF TEXAS AT ARLINGTON DECEMBER 2011 Copyright © by Srider Thirupachoor Comerica 2011 All Rights Reserved ACKNOWLEDGEMENTS I am deeply indebted to my supervising professor, Dr. Seiichi Nomura for his guidance, patience, and motivation. I would like to sincerely thank him for his help and guidance throughout my thesis work. I would also like to thank Dr. Dereje Agonafer and Dr. A. Haji-Sheikh for serving on my thesis committee. Finally, I would like to thank my parents, sisters, and all my friends for their immense support and encouragement throughout my Master’s program. November 16, 2011 iii ABSTRACT BUCKLING ANALYSIS OF THIN PLATES WITH OR WITHOUT A HOLE UNDER ARBITRARY BOUNDARY CONDITIONS USING THE GALERKIN METHOD Srider Thirupachoor Comerica, M.S. The University of Texas at Arlington, 2011 Supervising Professor: Dr. Seiichi Nomura This thesis demonstrates how to find the critical buckling load value of thin plates with or without a hole under different boundary conditions using the Galerkin method. The use of symbolic software is essential due to the lengthy computations involved because of the complexity of the problems. Firstly, the lateral deflection of the plate is expressed in a series of polynomials each of which satisfies the given boundary conditions. Then by using the Galerkin method, the coefficients of these polynomials are found and with the help of symbolic algebra system, the matrices for the corresponding eigenvalue problem are built from which the buckling loads (eigenvalues) are determined.
    [Show full text]
  • A Brief Introduction to Pseudo-Spectral Methods: Application to Diffusion Problems Denys Dutykh
    A brief introduction to pseudo-spectral methods: application to diffusion problems Denys Dutykh To cite this version: Denys Dutykh. A brief introduction to pseudo-spectral methods: application to diffusion problems. Doctoral. Curitiba, Brazil. 2016, pp.55. cel-01256472v3 HAL Id: cel-01256472 https://cel.archives-ouvertes.fr/cel-01256472v3 Submitted on 17 Jun 2016 (v3), last revised 13 Feb 2019 (v4) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License Denys Dutykh CNRS–LAMA, Université Savoie Mont Blanc, France A brief introduction to pseudo-spectral methods: application to diffusion problems arXiv.org / hal Last modified: June 17, 2016 A brief introduction to pseudo-spectral methods: application to diffusion problems Denys Dutykh∗ Abstract. The topic of these notes could be easily expanded into a full one-semester course. Nevertheless we shall try to give some flavour along with theoretical bases of spec- tral and pseudo-spectral methods. The main focus is made on Fourier-type discretiza- tions, even if some indications on how to handle non-periodic problems via Tchebyshev and Legendre approaches are made as well.
    [Show full text]
  • Symmetric Galerkin Boundary Element Method Alok Sutradhar · Glaucio H
    Symmetric Galerkin Boundary Element Method Alok Sutradhar · Glaucio H. Paulino · Leonard J. Gray Symmetric Galerkin Boundary Element Method 123 Alok Sutradhar Prof. Glaucio H. Paulino Ohio State University University of Illinois at Department of Surgery Urbana-Champaign 410 W 10th Ave, Columbus OH Newmark Laboratory USA 205 North Mathews Avenue [email protected] Urbana IL 61801-2352 USA [email protected] Leonard J. Gray Oak Ridge National Laboratory POB 2008, Bldg 6012 MS 6367 Oak Ridge TN 37831-6367 [email protected] ISBN: 978-3-540-68770-2 e-ISBN: 978-3-540-68772-6 Library of Congress Control Number: 2008928276 c 2008 Springer-Verlag Berlin Heidelberg This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Printed on acid-free paper 987654321 springer.com
    [Show full text]
  • The History of Theoretical, Material and Computational Mechanics - Mathematics Meets Mechanics and Engineering Lecture Notes in Applied Mathematics and Mechanics
    Lecture Notes in Applied Mathematics and Mechanics 1 Erwin Stein Editor The History of Theoretical, Material and Computational Mechanics - Mathematics Meets Mechanics and Engineering Lecture Notes in Applied Mathematics and Mechanics Volume 1 Series Editors Alexander Mielke, Humboldt-Universität zu Berlin, Berlin, Germany e-mail: [email protected] Bob Svendsen, RWTH Aachen University, Aachen, Germany e-mail: [email protected] For further volumes: http://www.springer.com/series/11915 About this Series The Lecture Notes in Applied Mathematics and Mechanics LAMM are intended for an interdisciplinary readership in the fields of applied mathematics and mechan- ics. This series is published under the auspices of the International Association of Applied Mathematics and Mechanics (IAAMM; German GAMM). Topics of interest include for example focus areas of the IAAMM such as: foun- dations of mechanics, thermodynamics, material theory and modeling, multibody dynamics, structural mechanics, solid mechanics, biomechanics, damage, fracture, multiscale modeling and homogenization, fluid mechanics, gas dynamics, laminar flows and transition, turbulence and reactive flows, interface flows, acoustics, waves, applied analysis, mathematical modeling, calculus of variations, variational princi- ples applied operator theory, evolutionary equations, applied stochastics, systems with uncertainty, dynamical systems, control theory, optimization, applied and nu- merical linear algebra, analysis and numerics of ordinary and partial differential equations. Each contribution to the series is intended to be accessible to researchers in math- ematics and mechanics and is written in English. The aim of the series is to provide introductory texts for modern developments in applied mathematics and mechan- ics contributing to cross-fertilization. The Lecture Notes are aimed at researchers as well as advanced masters and PhD students in both mechanics and mathematics.
    [Show full text]
  • Computational Framework for Particle and Spin Simulations Based on the Stochastic Galerkin Method
    PHYSICAL REVIEW E 96, 063301 (2017) Computational framework for particle and spin simulations based on the stochastic Galerkin method J. Slim,1 F. Rathmann,2,* and D. Heberling1,3 1Institut für Hochfrequenztechnik, RWTH Aachen University, 52056 Aachen, Germany 2Institut für Kernphysik, Forschungszentrum Jülich, 52425 Jülich, Germany 3JARA–FAME (Forces and Matter Experiments), Forschungszentrum Jülich and RWTH Aachen University, Aachen, Germany (Received 3 September 2017; published 4 December 2017) An implementation of the polynomial chaos expansion is introduced as a fast solver of the equations of beam and spin motion of charged particles in electromagnetic fields. We show that, based on the stochastic Galerkin method, our computational framework substantially reduces the required number of tracking calculations compared to the widely used Monte Carlo method. DOI: 10.1103/PhysRevE.96.063301 I. INTRODUCTION AND MOTIVATION mechanical uncertainties [11]. This investigation made use of the so-called polynomial chaos expansion (PCE) [12]asan The aim of the JEDI1 collaboration is to measure the electric efficient and yet accurate alternative to the MC method. dipole moment (EDM) of charged hadronic particles, such as In this paper, we describe a computational framework deuterons and protons. In the near future, a first direct EDM based on the stochastic Galerkin method to determine the measurement of the deuteron [1,2] will be carried out at the solutions of the equations of beam and spin motion. This COoler SYnchrotron COSY [3,4]. Toward that end, an RF approach substantially reduces the required number of tracking Wien filter [5] has recently been installed, which is operated simulations, but we still arrive at the same result as that of a at some harmonic of the spin precession frequency, whereby standard MC simulation.
    [Show full text]
  • A New Computational Framework for Particle and Spin Simulations Based
    Draft for PRE September 15, 2018 A new computational framework for particle and spin simulations based on the stochastic Galerkin method J. Slim,1 F. Rathmann,2, ∗ and D. Heberling1, 3 1Institut für Hochfrequenztechnik, RWTH Aachen University, 52056 Aachen, Germany 2Institut für Kernphysik, Forschungszentrum Jülich, 52425 Jülich, Germany 3JARA–FAME (Forces and Matter Experiments), Forschungszentrum Jülich and RWTH Aachen University, Germany An implementation of the Polynomial Chaos Expansion is introduced here as a fast solver of the equations of beam and spin motion inside an RF Wien filter. The device shall be used to search for the deuteron electric dipole moment in the COSY storage ring. The new approach is based on the stochastic Galerkin method, and it is shown that this constitutes a new and very powerful alternative to the commonly used Monte-Carlo methods. I. INTRODUCTION AND MOTIVATION the electromagnetic performance of the above mentioned RF Wien filter under mechanical uncertainties [3]. This The JEDI1 collaboration aims at a measurement of the investigation made use of the so-called Polynomial Chaos electric dipole moment (EDM) of charged hadronic par- Expansion (PCE) [4], as an efficient and yet accurate al- ticles, such as deuterons and protons. In the near future, ternative to the MC method. a first direct EDM measurement of the deuteron will be In this paper, we present a computational framework carried out at the COoler SYnchrotron COSY, a conven- to further reduce the complexity of the problem in terms tional magnetic storage ring. To this end, an RF Wien of the required number of tracking simulations.
    [Show full text]