A Quality Metric for Symmetric Graph Drawings

Total Page:16

File Type:pdf, Size:1020Kb

A Quality Metric for Symmetric Graph Drawings A Quality Metric for Symmetric Graph Drawings Amyra Meidiana* Seok-Hee Hong† Peter Eades‡ Daniel Keim§ University of Sydney University of Sydney University of Sydney University of Konstanz ABSTRACT It is important to ensure that a symmetric graph drawing accu- Symmetry is an important aesthetic criteria in graph drawing and rately represent the automorphisms of the underlying graph to the network visualisation. Symmetric graph drawings aim to faithfully greatest extent possible. However, existing symmetry detection and represent automorphisms of graphs as geometric symmetries in a quality metrics for graph drawings do not focus on this comparison drawing. between detected geometric symmetry in a graph drawing and the In this paper, we design and implement a framework for quality automorphisms of the graph. metrics that measure symmetry, that is, how faithfully a drawing In this paper, we design and implement a framework for quality of a graph displays automorphisms as geometric symmetries. The metrics for graph drawings that measure symmetry, that is, how quality metrics are based on geometry (i.e. Euclidean distance) as faithfully a drawing of a graph displays automorphisms as geometric well as mathematical group theory (i.e. orbits of automorphisms). symmetries. The quality metrics are based on geometry (i.e., Eu- More specifically, we define two varieties of symmetry quality clidean distance) as well as mathematical group theory (i.e., orbits metrics: (1) for displaying a single automorphism as a symmetry of automorphisms). (axial or rotational) and (2) for displaying a group of automorphisms More specifically, we present the following contributions: (cyclic or dihedral). We also present algorithms to compute the symmetric quality metrics in O(nlogn) time for rotational symmetry 1. We design and implement a framework for a quality metric and axial symmetry. for symmetric graph drawing, which measures the symmetry We validate our symmetry quality metrics using deformation quality of a drawing of a graph based on the comparison be- experiments. We then use the metrics to evaluate a number of tween the symmetry of the drawing and the automorphism of established graph drawing layouts to compare how faithfully they the graph. We define two varieties of the symmetry quality display automorphisms of a graph as geometric symmetries. metrics, one to measure how well a graph drawing displays a single automorphism as a symmetry (rotational or axial) and Index Terms: Human-centered computing [Visualization]: Visual- one to measure how well a graph drawing displays a group of ization design and evaluation methods automorphism simultaneously (cyclic or dihedral groups). 1 INTRODUCTION 2. We present algorithms to compute the symmetry quality met- rics in O(nlogn) time for rotational and axial symmetry and Graph drawing aims to construct a visually-informative drawing O(knlogn) for automorphism groups, where n is the number of an abstract graph in the plane. Symmetry is one of the most of vertices in the graph and k is the size of the automorphism important aesthetic criteria that represent the structure and properties group. of a graph visually [3]. Symmetric graph drawings aim to faithfully represent automorphisms of graphs as geometric symmetries in 3. We validate the single automorphism detection version of the the drawing. Also, a symmetric drawing of a graph enables an symmetry quality metrics through deformation experiments understanding of the entire graph to be built up from that of a smaller of graph drawings, showing that the scores computed by our subgraph. metric decrease when the drawings are distorted further from Symmetric drawings of a graph G are clearly related to the exact symmetry. automorphisms of G, and algorithms for constructing symmetric drawings have two steps: 4. We validate the automorphism group detection version of the symmetry quality metrics through comparing drawings dis- Step 1. Find the “appropriate” automorphisms, and playing different groups of automorphisms, showing that our Step 2. Draw the graph displaying these automorphisms as metric effectively captures the difference in symmetry quality symmetries. between drawings that display different numbers of automor- phisms as symmetries. arXiv:1910.04974v1 [cs.DS] 11 Oct 2019 The problem of determining whether a graph has a nontrivial automorphism is automorphism complete [19]. However, the prob- 5. We use our metric to compare a number of established graph lem of determining whether a graph has a nontrivial geometric drawing layouts to compare how faithfully they display auto- automorphism is NP-complete [23]. Linear time algorithms to con- morphisms of a graph as geometric symmetries. We confirm struct symmetric drawings for restricted classes of graphs exists (e.g. the effectiveness of the concentric circles layout in displaying trees [21], outerplanar graphs [22], series-parallel digraphs [15]), a graph’s automorphisms as symmetries. and planar graphs [12–14,16]. For general graphs, heuristics [7,18] and exact algorithms are available [1, 5]. 2 RELATED WORKS 2.1 Symmetries and geometric automorphisms *e-mail: [email protected] †e-mail: [email protected] An automorphism of a graph is a permutation of the vertices that ‡e-mail: [email protected] preserves the adjacency of each vertex. Suppose that a permutation §e-mail: [email protected] group A acts on a set V. We say that f 2 A fixes v 2 V if f(v) = v; if f fixes v for every f 2 A then A fixes v. If V 0 ⊆ V and f(v0) 2 V 0 for all v0 2 V 0 then f fixes V 0 (setwise). A subset V 0 of V is an orbit of A if, for each u;v 2 V 0, there is f 2 A such that f(u) = v, and V 0 does not contain a nonempty subset with this property. It is important to use a rigorous model, introduced by Eades and symmetry). However, these algorithms only give a binary answer Lin [9], for the intuitive concept of symmetry display. to whether a point set displays a symmetry and are not suitable to The symmetries of a set of points in the plane (such as a two quantify the approximate symmetry of a point set. dimensional graph drawing) form a group called the symmetry group Zabrodsky et al [27] introduces the symmetry distance method, of the set. A symmetry s of a drawing D of a graph G induces providing another method to quantify the approximate symmetry an automorphism of G, in that the restriction of s to the points of a geometric object. This method takes as input a point set P and representing vertices of G is an automorphism of G. A drawing D a symmetry s to be checked and computes a symmetric point set of a graph G displays an automorphism f of G if there is symmetry Ps realizing the input symmetry. This is done through a “folding” s of D which induces f. The symmetry group of a graph drawing transform method that “folds” points in the same orbit, averages induces an automorphism group of the graph. An automorphism their positions, and “unfolds” them into a symmetric configuration. group A of a graph G is a geometric automorphism group if there is This method minimizes the Euclidean distance between each point a drawing of G which displays every element of A. in P and its image in Ps , and the symmetry distance is given as the A non-trivial symmetry of a finite set of points in the plane is average of these Euclidean distances for every point in P. either a rotation about a point or a reflection about a line. A ge- ometric automorphism is a rotational automorphism (respectively 3 SYMMETRY QUALITY METRIC FRAMEWORK relectional/axial automorphism) if it is induced by a rotation (respec- We propose a new quality metric for graph visualization, the symme- tively reflection). Eades and Lin [9] showed that that a nontrivial try quality metric, for measuring how well the drawing of a graph geometric automorphism group is one of three kinds: displays selected geometric automorphisms of the underlying graph. Our metric is a faithfulness metric comparing the geometric symme- 1. a group of size 2 generated by an axial automorphism; try detected in a drawing of a graph with the graph’s automorphisms, the ground truth information, unlike existing metrics which only attempts to detect symmetry from the drawing. Figure 1 summarizes cyclic group k 2. a of size generated by a rotational automor- the framework used for our proposed metric. phism; 3. a dihedral group of size 2k generated by a rotational automorphism of order k and an axial automorphism. 2.2 Symmetric Graph Drawing In general, determining whether a graph can be drawn symmetrically in two dimensions is NP-complete [19]. Exact algorithms based on Branch and Cut [5] and group theory [1] are available. Linear-time algorithms are available for symmetric drawings of limited classes of graphs, such as trees [21], outerplanar graphs [22], and series-parallel digraphs [15]. Linear-time algorithms have also been presented for maximally symmetric drawings of tricon- nected [16], biconnected [12], oneconnected [13], and disconnected Figure 1: Framework for the symmetry quality metric. planar graphs [14]. For a survey on symmetric drawings of graphs in two dimensions, see [8]. Let G be a graph and f be a automorphism of G. It is important that f be a geometric automorphism of G, as otherwise it is 2.3 Graph Drawing Symmetry Quality Metrics impossible to display it as a symmetry of a drawing of G [9]. Purchase [24] defined a metric measuring the symmetry of a graph The framework computes the symmetry quality score using the drawing by checking, for each pair of vertices, whether there is a following steps: symmetric subgraph around the pair, calculating a weighted sym- metry value of the symmetric subgraph if it exists, and adding the Framework: Symmetry Quality Metric weighted symmetry value of all symmetric subgraphs.
Recommended publications
  • TETRAVALENT SYMMETRIC GRAPHS of ORDER 9P
    J. Korean Math. Soc. 49 (2012), No. 6, pp. 1111–1121 http://dx.doi.org/10.4134/JKMS.2012.49.6.1111 TETRAVALENT SYMMETRIC GRAPHS OF ORDER 9p Song-Tao Guo and Yan-Quan Feng Abstract. A graph is symmetric if its automorphism group acts transi- tively on the set of arcs of the graph. In this paper, we classify tetravalent symmetric graphs of order 9p for each prime p. 1. Introduction Let G be a permutation group on a set Ω and α ∈ Ω. Denote by Gα the stabilizer of α in G, that is, the subgroup of G fixing the point α. We say that G is semiregular on Ω if Gα = 1 for every α ∈ Ω and regular if G is transitive and semiregular. Throughout this paper, we consider undirected finite connected graphs without loops or multiple edges. For a graph X we use V (X), E(X) and Aut(X) to denote its vertex set, edge set, and automorphism group, respectively. For u , v ∈ V (X), denote by {u , v} the edge incident to u and v in X. A graph X is said to be vertex-transitive if Aut(X) acts transitively on V (X). An s-arc in a graph is an ordered (s + 1)-tuple (v0, v1,...,vs−1, vs) of vertices of the graph X such that vi−1 is adjacent to vi for 1 ≤ i ≤ s, and vi−1 = vi+1 for 1 ≤ i ≤ s − 1. In particular, a 1-arc is called an arc for short and a 0-arc is a vertex.
    [Show full text]
  • Cores of Vertex-Transitive Graphs
    Cores of Vertex-Transitive Graphs Ricky Rotheram Submitted in total fulfilment of the requirements of the degree of Master of Philosophy October 2013 Department of Mathematics and Statistics The University of Melbourne Parkville, VIC 3010, Australia Produced on archival quality paper Abstract The core of a graph Γ is the smallest graph Γ∗ for which there exist graph homomor- phisms Γ ! Γ∗ and Γ∗ ! Γ. Thus cores are fundamental to our understanding of general graph homomorphisms. It is known that for a vertex-transitive graph Γ, Γ∗ is vertex-transitive, and that jV (Γ∗)j divides jV (Γ)j. The purpose of this thesis is to determine the cores of various families of vertex-transitive and symmetric graphs. We focus primarily on finding the cores of imprimitive symmetric graphs of order pq, where p < q are primes. We choose to investigate these graphs because their cores must be symmetric graphs with jV (Γ∗)j = p or q. These graphs have been completely classified, and are split into three broad families, namely the circulants, the incidence graphs and the Maruˇsiˇc-Scapellato graphs. We use this classification to determine the cores of all imprimitive symmetric graphs of order pq, using differ- ent approaches for the circulants, the incidence graphs and the Maruˇsiˇc-Scapellato graphs. Circulant graphs are examples of Cayley graphs of abelian groups. Thus, we generalise the approach used to determine the cores of the symmetric circulants of order pq, and apply it to other Cayley graphs of abelian groups. Doing this, we show that if Γ is a Cayley graph of an abelian group, then Aut(Γ∗) contains a transitive subgroup generated by semiregular automorphisms, and either Γ∗ is an odd cycle or girth(Γ∗) ≤ 4.
    [Show full text]
  • Trivalent Orbit Polynomial Graphs* Robert A. Beezer Department Of
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Trivalent Orbit Polynomial Graphs* Robert A. Beezer Department of Mathematics & Computer Science University of Puget Sound Tacoma, Washington 98416 Submittedby Richard A. Brualdi ABSTRACT We introduce orbit polynomial graphs, and discuss their connections with dis- tance-transitive, distance-regular, and distance polynomial graphs. After some general results, we classify all of the nonsymmetric trivalent orbit polynomial graphs. 1. INTRODUCTION Given a finite, undirected graph I with no loops or multiple edges, there are many connections between its automorphism group, adjacency algebra, eigenvalues, and distance structure. We will introduce the notion of an orbit polynomial graph, and discuss its relationship to distance-transitive, distance- regular, and distance polynomial graphs. Then we will find all of the nonsymmetric trivalent orbit polynomial graphs. For a graph I, the adjacency matrix A( I) = (a i j) is given by 1 if {vi,vj}EEI, aij = 0 otherwise. The adjacency algebra of I, st( I), is the algebra of all polynomials in A( I). The eigenvalues of I are the eigenvalues of A(I), and the number of distinct eigenvalues of I will be denoted here as e(I). Because A(T) is a real symmetric matrix, e(I) equals the dimension of Q(r). *This work was supportedin part by the Research Board of the University of Illinois at Urbana-Champaign. LINEAR ALGEBRA AND ITS APPLZCATZONS 73:133-146 (1986) 133 0 Elsevier Science Publishing Co., Inc., 1986 52 Vanderbilt Ave., New York, NY 10017 00243795/86/$3.50 134 ROBERT A.
    [Show full text]
  • An Introduction to Algebraic Graph Theory
    An Introduction to Algebraic Graph Theory Cesar O. Aguilar Department of Mathematics State University of New York at Geneseo Last Update: March 25, 2021 Contents 1 Graphs 1 1.1 What is a graph? ......................... 1 1.1.1 Exercises .......................... 3 1.2 The rudiments of graph theory .................. 4 1.2.1 Exercises .......................... 10 1.3 Permutations ........................... 13 1.3.1 Exercises .......................... 19 1.4 Graph isomorphisms ....................... 21 1.4.1 Exercises .......................... 30 1.5 Special graphs and graph operations .............. 32 1.5.1 Exercises .......................... 37 1.6 Trees ................................ 41 1.6.1 Exercises .......................... 45 2 The Adjacency Matrix 47 2.1 The Adjacency Matrix ...................... 48 2.1.1 Exercises .......................... 53 2.2 The coefficients and roots of a polynomial ........... 55 2.2.1 Exercises .......................... 62 2.3 The characteristic polynomial and spectrum of a graph .... 63 2.3.1 Exercises .......................... 70 2.4 Cospectral graphs ......................... 73 2.4.1 Exercises .......................... 84 3 2.5 Bipartite Graphs ......................... 84 3 Graph Colorings 89 3.1 The basics ............................. 89 3.2 Bounds on the chromatic number ................ 91 3.3 The Chromatic Polynomial .................... 98 3.3.1 Exercises ..........................108 4 Laplacian Matrices 111 4.1 The Laplacian and Signless Laplacian Matrices .........111 4.1.1
    [Show full text]
  • On a Class of Finite Symmetric Graphs
    ARTICLE IN PRESS European Journal of Combinatorics ( ) – www.elsevier.com/locate/ejc On a class of finite symmetric graphs Sanming Zhou1 Department of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia Received 15 March 2006; accepted 2 April 2007 Dedicated to Professor Yixun Lin with best wishes on the occasion of his 70th birthday Abstract Let Γ be a G-symmetric graph, and let B be a nontrivial G-invariant partition of the vertex set of Γ . This paper aims to characterize (Γ , G) under the conditions that the quotient graph ΓB is (G, 2)-arc transitive and the induced subgraph between two adjacent blocks is 2 · K2 or K2,2. The results answer two questions about the relationship between Γ and ΓB for this class of graphs. c 2007 Elsevier Ltd. All rights reserved. 1. Introduction The purpose of this paper is to answer two questions [8] regarding 2-arc transitivity of quotient graphs for a class of finite symmetric graphs. Let Γ = (V (Γ ), E(Γ )) be a finite graph. For an integer s ≥ 1, an s-arc of Γ is an (s+1)-tuple (α0, α1, . , αs) of vertices of Γ such that αi , αi+1 are adjacent for i = 0,..., s − 1 and αi−1 6= αi+1 for i = 1,..., s −1. We will use Arcs(Γ ) to denote the set of s-arcs of Γ , and Arc(Γ ) in place of Arc1(Γ ). Γ is said to admit a group G as a group of automorphisms if G acts on V (Γ ) and preserves the adjacency of Γ , that is, for any α, β ∈ V (Γ ) and g ∈ G, α and β are adjacent in Γ if and only if αg and βg are adjacent in Γ .
    [Show full text]
  • Symmetric Graph Properties Have Independent Edges
    Symmetric Graph Properties Have Independent Edges Dimitris Achlioptasa,b,1,2, Paris Siminelakisc,1,3,∗ aDepartment of Computer Science University of California, Santa Cruz bDepartment of Informatics & Telecommunications, University of Athens cDepartment of Electrical Engineering, Stanford University Abstract In the study of random structures we often face a trade-off between realism and tractability, the latter typically enabled by independence assumptions. In this work we initiate an effort to bridge this gap by developing tools that allow us to work with independence without assuming it. Let Gn be the set of all graphs on n vertices and let S be an arbitrary subset of Gn, e.g., the set of all graphs with m edges. The study of random networks can be seen as the study of properties that are true for most elements of S, i.e., that are true with high probability for a uniformly random element of S. With this in mind, we pursue the following question: What are general sufficient conditions for the uniform measure on a set of graphs S ⊆ Gn to be well- approximable by a product measure on the set of all possible edges? Keywords: Random Graphs, Symmetric Graph Properties Concentration of Measure, Approximate Independence ∗Corresponding author Email addresses: [email protected] (Dimitris Achlioptas), [email protected] (Paris Siminelakis) 1Research supported by ERC Starting Grant StG-210743. 2Research supported by NSF Grant CCF-1514128, an Alfred P. Sloan Fellowship, the European Union (European Social Fund ESF) and Greek national funds through the Op- erational Program \Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: ARISTEIA II.
    [Show full text]
  • A Class of Vertex-Transitive Digraphs the Graphs We Consider
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF COMBINATORIAL THEORY (B), 14, 246-255 (1973) A Class of Vertex-Transitive Digraphs CHONG-YUN CHAO University of Pittsburgh, Pittsburgh, Pennsylvania 15213 AND JACQUELINEG. WELLS Pennsylvania State University, McKeesport, Pennsylvania 15132 Communicated by W. T. Tutte ReceivedJune 6, 1972 1. We determineall the symmetricdigraphs with a prime number,p, of vertices.We alsodetermine the structureof their groups.Our resultsare similar to the caseof undirectedgraphs. But someof the proofsare simpler. 2. The isomorphicclasses of the vertex-transitivedigraphs with p vertices are enumerated. 3. We statean algorithmfor obtainingthe group of any givenvertex-transi- tive digraphwith p vertices.The algorithmgives a partial answerfor the open problem2 on page301 in [7]. 1. INTRODUCTION The graphs we consider here are finite and simple digraphs (directed graphs) without loops. A digraph X is said to be vertex-transitive if its group of automorphisms, G(X), is transitive on its vertices V(X). X is said to be edge-transitive if G(X) is transitive on its edges E(X). X is said to be a symmetric graph if it is both vertex-transitive and edge-transitive. In [3], one of us classified all symmetric undirected graphs with a prime number, p, of vertices. Since undirected graphs may be considered as a special case of digraphs, here we generalize the results in [3] to digraphs, and present an algorithm for obtaining the group of automorphisms of a given vertex- transitive digraph with p vertices, i.e., in Section 2, we show that, besides non-complete and non-null digraphs with p vertices, there exists a sym- metric digraph withp vertices and degree m, 1 < m < p - 1, if and only if m divides p - 1.
    [Show full text]
  • Distance-Transitive Graphs
    Distance-Transitive Graphs Submitted for the module MATH4081 Robert F. Bailey (4MH) Supervisor: Prof. H.D. Macpherson May 10, 2002 2 Robert Bailey Department of Pure Mathematics University of Leeds Leeds, LS2 9JT May 10, 2002 The cover illustration is a diagram of the Biggs-Smith graph, a distance-transitive graph described in section 11.2. Foreword A graph is distance-transitive if, for any two arbitrarily-chosen pairs of vertices at the same distance, there is some automorphism of the graph taking the first pair onto the second. This project studies some of the properties of these graphs, beginning with some relatively simple combinatorial properties (chapter 2), and moving on to dis- cuss more advanced ones, such as the adjacency algebra (chapter 7), and Smith’s Theorem on primitive and imprimitive graphs (chapter 8). We describe four infinite families of distance-transitive graphs, these being the Johnson graphs, odd graphs (chapter 3), Hamming graphs (chapter 5) and Grass- mann graphs (chapter 6). Some group theory used in describing the last two of these families is developed in chapter 4. There is a chapter (chapter 9) on methods for constructing a new graph from an existing one; this concentrates mainly on line graphs and their properties. Finally (chapter 10), we demonstrate some of the ideas used in proving that for a given integer k > 2, there are only finitely many distance-transitive graphs of valency k, concentrating in particular on the cases k = 3 and k = 4. We also (chapter 11) present complete classifications of all distance-transitive graphs with these specific valencies.
    [Show full text]
  • Symmetry and Chirality in Discrete Structures
    Symmetry and chirality in discrete structures Marston Conder University of Auckland, New Zealamd UW Math Day, Seattle, March 2013 Where is New Zealand? What is New Zealand famous for? • Great place to live (South Pacific) • Multi-cultural (European, Maori/Polynesian, Asian ...) • Beautiful scenery (beaches, volcanoes, lakes, mountains) • Kiwis (strange little birds), kiwi fruit (strange little fruit) • Dairy produce (milk, butter, cheese, etc.) • Film sites (Lord of the Rings, The Hobbit, Narnia, etc.) • Rugby football • Extreme sports (bungy-jumping, white-water rafting, etc.) What is symmetry? Symmetry can mean many different things, such as balance, uniform proportion, harmony, or congruence Generally, an object has symmetry if it can be transformed in way that leaves it looking the same as it did originally. Symmetry can be reflective: ... or rotational: ... or translational: ... or a combination of these types Examples of these kinds of symmetry abound in nature ... but have also been manufactured by human fascination and enterprise e.g. the Platonic solids (c. 360BC) or earlier ... the `Neolithic Scots' (c. 2000BC) ... as publicised by Atiyah and Sutcliffe (2003) ... but unfortunately a hoax! The claim that the Scots knew about these five regular solids over 1000 years before Plato was based on the above five `Scottish stones' at the Ashmolean Museum in Oxford | but one has 14 faces, and none of them is an icosahedron [See John Baez's website for the full story] Tilings at the Alhambra Palace { on its walls, floors, ceilings, and even some of the furniture { amazingly exhibit all of the 17 \wallpaper symmetries" (in two dimensions) [Rafael P´erezG´omezand Jos´eMara Montesinos, 1980s] Symmetry can induce strength and stability: ..
    [Show full text]
  • Classifying Semisymmetric Cubic Graphs of Order 20P
    Turk J Math () : { ⃝c TUB¨ ITAK_ doi:10.3906/mat- 1 Classifying semisymmetric cubic graphs of order 20p 1 2∗ 2 Mohsen SHAHSAVARAN , Mohammad Reza DARAFSHEH (1) School of Mathematics, Statistics, and Computer Science, College of Science, University of Tehran, Tehran, Iran, ORCID iD: https://orcid.org/0000-0002-1416-1388 (2) School of Mathematics, Statistics, and Computer Science, College of Science, University of Tehran, Tehran, Iran, ORCID iD: https://orcid.org/0000-0002-5539-4989 Received: .201 • Accepted/Published Online: .201 • Final Version: ..201 3 4 Abstract: A simple graph is called semisymmetric if it is regular and edge transitive but not vertex transitive. In this 5 paper we classify all connected cubic semisymmetric graphs of order 20p, p prime. 6 Key words: Edge-transitive graph, vertex-transitive graph, semisymmetric graph, order of a graph, classification of 7 cubic semisymmetric graphs 8 1. Introduction 9 In this paper all graphs are finite, undirected and simple, i.e. without loops and multiple edges. A graph is 10 called semisymmetric if it is regular and edge-transitive but not vertex-transitive. 11 The class of semisymmetric graphs was first studied by Folkman [9], who found several infinite families 12 of such graphs and posed eight open problems. 13 An interesting research problem is to classify connected cubic semisymmetric graphs of various types of 2 14 orders. In [9], Folkman proved that there are no semisymmetric graphs of order 2p or 2p for any prime p. 15 The classification of semisymmetric graphs of order 2pq , where p and q are distinct primes, was given in [7].
    [Show full text]
  • A More Detailed Classification of Symmetric Cubic Graphs 1 Introduction
    A more detailed classification of symmetric cubic graphs Marston Conder1 Roman Nedela2 Department of Mathematics Mathematical Institute University of Auckland Slovak Academy of Sciences Private Bag 92019 Auckland 975 49 Bansk´aBystrica New Zealand Slovakia Email: [email protected] Email: [email protected] Abstract A graph Γ is symmetric if its automorphism group acts transitively on the arcs of Γ, and s-regular if its automorphism group acts regularly on the set of s-arcs of Γ. Tutte (1947, 1959) showed that every cubic finite symmetric cubic graph is s-regular for some s ≤ 5. Djokoviˇcand Miller (1980) proved that there are seven types of arc-transitive group action on finite cubic graphs, characterised by the stabilisers of a vertex and an edge. A given finite symmetric cubic graph, however, may admit more than one type of arc-transitive group action. In this paper we determine exactly which combinations of types are possible. Some combinations are easily eliminated by existing theory, and others can be eliminated by elementary extensions of that theory. The remaining combinations give 17 classes of finite symmetric cubic graph, and for each of these, we prove the class is infinite, and determine at least one representative. For at least 14 of these 17 classes the representative we give has the minimum possible number of vertices (and we show that in two of these 14 cases every graph in the class is a cover of the smallest representative), while for the other three classes, we give the smallest examples known to us. In an Appendix, we give a table showing the class of every symmetric cubic graph on up to 768 vertices.
    [Show full text]
  • PROJECT DETAILS - Department of Mathematics (Sf) - III UG
    PROJECT DETAILS - Department of Mathematics (sf) - III UG Name of the Guide with S.No Reg.No Name of the Student Department Title of the Project designation 1 15BM4423 K.N. Abiyurekha B.Sc Mathematics (SF) 2 15BM4429 S. Divya B.Sc Mathematics (SF) Dr. Mrs. A. Anis Fathima, Bellman Ford Algorithm in 3 15BM4431 K. Jaya Alamelu B.Sc Mathematics (SF) M.Sc., M.Phil., PGDCA., Graph Theory 4 15BM4456 J. Powmiya B.Sc Mathematics (SF) Ph.D., 5 15BM4464 R. Sumithra B.Sc Mathematics (SF) 6 15BM4445 P. Manimekalai B.Sc Mathematics (SF) 7 15BM4446 B. Muthukavitha B.Sc Mathematics (SF) Dr. Mrs. A. Anis Fathima, Ford Fulkerson Algorithm in 8 15BM4451 G. Naveena B.Sc Mathematics (SF) M.Sc., M.Phil., PGDCA., Graph Theory 9 15BM4453 S. Pavithra(15/7/98) B.Sc Mathematics (SF) Ph.D., 10 15BM4462 R. Sneha B.Sc Mathematics (SF) 11 15BM4426 D. Baby sudha B.Sc Mathematics (SF) 12 15BM4428 A. Devipriya B.Sc Mathematics (SF) Distance Regular and Distance Ms.J.Priyadharshini,M.Sc.,M. 13 15BM4435 S. Karthika B.Sc Mathematics (SF) Transitive Graphs in Graph Phil., 14 15BM4444 G. Maheshwari B.Sc Mathematics (SF) Theory 15 15BM4460 M. Santhiya B.Sc Mathematics (SF) 16 15BM4422 S. Abinaya B.Sc Mathematics (SF) 17 15BM4427 T. Chellam Rajalakshmi B.Sc Mathematics (SF) Vector Calculs in three Ms.J.Priyadharshini,M.Sc.,M. 18 15BM4436 K. Kavibharathi B.Sc Mathematics (SF) dimensional space Phil., 19 15BM4450 S. Nandhini B.Sc Mathematics (SF) 20 15BM4468 J. Vinothini B.Sc Mathematics (SF) 21 15BM4425 B.
    [Show full text]