The Resonance Potential of Trebly Ionised Bismuth

Total Page:16

File Type:pdf, Size:1020Kb

The Resonance Potential of Trebly Ionised Bismuth JUNE 6, 1931] NATURE 855 Fine Structure in the Arc Spectra of Bromine In a list of wave-length measurements of the and Iodine. vacuwn spark of bismuth in the Schwnann region, for which I am indebted to Dr. R. J. Lang, there are Bromine.-The fine structures of a nwnber of very strong lines at 75923 (:\1317·12 A.) and 114601 bromine arc lines have been previously reported by (X872·59 A.). If these are asswned to be the above­ Hori.l By asswning that the lines X:\6632, 6560, 6351, 3 1 mentioned combinations, then 686p P 1 - 686p P 1 6149 have identical structures, De Bruin 2 inferred would be 38678. A distinctive feature of the spectra that the nuclear spin is%. The fine structure measure­ Hg I, Tl II, and Pb III is the appearance with great ments have been considerably extended, using a high intensity of lines arising from intercombinations frequency ( 15 megacycles) electrodeless discharge in between singlet and triplet terms. One would there­ pure bromine vapour and a Fabry-Perot interfero­ fore expect to find the wave nwnber difference meter. All the observed structures arise from the 38678 recurring a nwnber of times in the Schwnann 4p45s electron configuration, as was to be expected. region. At least five pairs of lines with this difference Although the lines employed by De Bruin have not have been found in approximately the expected identical structures, as he supposed, the value of positions. However, in spite of this apparent cor­ i = has been confirmed. There is evidence that the roboration, I have been somewhat doubtful of the two isotopes of bromine (79, 81) have the same nuclear validity of the foregoing identification, because the spin. line 75923 had already been included by Lang' Iodine.-Fine structures have been previously re­ in a scheme for Bi III. In a recent paper 5 by corded only in the iodine spark lines,3 but by employ­ McLennan, McLay, and Crawford on the spark ing similar experimental arrangements to those used spectra of bismuth, the line 7 5923 finds no place in for bromine, fine structures have been observed in the the scheme for Bi II or for Bi III. region A4700-X8000. The arc lines are mostly regular Still more significant evidence that this line belongs quartets and sextets degrading to the violet in both 1 to Bi IV, and is in fact the resonance line 6s6s 8 0 - intensity and interval. The simple regularity of the 3 6s6p P 1, is to be found in the data given by Arvids­ structures is such that they are obviously characteristic son • in a recent letter to NATURE, in which it is of only one j term in each line. The observed struc­ reported that the line 75923 has been resolved into tures arise from the 5p46s electron configuration, that three components of relative intensities 6 : 5 : 5. If is, that corresponding to the 4p45s in bromine. This it is asswned that the nuclear quantwn nwnber is in agreement with the partial analysis of the 1 of bismuth is 9/2 and that the 6868 S 0 term is single, spectrum made here by S. F. Evans (unpublished). As then the theoretical relative intensities of the three 2i + 1 is the maximwn multiplicity attainable, the 3 components of the 6s68 IS0 - 686p P 1 combination existence of sextet terms proves that i is at least as calculated by the formulre given by Pauling and equal to t. which had been previously inferred from Goudsmit 7 is 6 : 5 : 4 in order of decreasing wave the absence of appreciable alternating intensities in number. This agrees very closely with the experi­ the absorption band lines of I 2• mental ratio. It therefore seems very probable that Since with j less than i the full multiplicity is not this is the resonance line of Bi IV, giving the value attained, the application of the interval rule must 9·36 volts for the resonance potential. decide the value of i (in the absence of Zeeman effect Some progress has been made in finding further measurements). The best line observed is :\4862, wave nwnber regularities in Bi IV, but the spectrwn which is a quartet and thus involves j = t in the is difficult to interpret because of the j j coupling 5p46s term (this is confirmed by the analysis). The of the two electrons. The work is still proceeding intervals are 123, 103, 83 (cm.-1 x 10·3 ), that is, and it is hoped that a detailed report will be made 6 x 20·5, 5 x 20·6, 4 x 20·7. A value of i = t must be elsewhere at a later date. invoked to fit these exact ratios (6 : 5 : 4), and this STANLEY SMITH. value is supported by the interval ratios in other lines. University of Alberta, The most probable values of i for the halogens are Edmonton, Canada, shown in the table below : April10. 1 Fowler, A.," Series in Line Spectra", p, 148 ; Fleetway Press (1g22). I Halogen . Fluorine. Chlorine. Bromine. Iodine. ' McLennan, J. C., McLay, A. B., Crawford, M. F., Trans. Roy. Soc., Canada, 22, p. 241; 1928. Smith, S., Proc. Nat . .Acad. Sci., 14, p. 951; Number of Protons 19 35 (37, 39) 79, 81 127 1928. ' Rao, K. R., Narayan, A. L., Rao, A. S., Indian Jour. Phys., 2, p, Nuclear Spin . t ' ' 467; 1928. Smith, S., Proc. Nat . .Acad. Sci., 14, p, 878; 1928. " ' ' Lang, R. J., Phys. Re·o., 32, p. 737; 1928. • McLennan, J. C., McLay, A. B., Crawford, M. F., Proc. Roy. Soc., No apparent regularity exists, but the large and small A, 129, p. 579 ; 1930. i values are associated with a single isotope. Full 1 Arvidsson, G., NATURE, 126, p, 566; 1930. 7 Pauling, L., and Goudsmit, S.," Structure of Line Spectra", p. 140 details of the fine structure measurements will be and p. 2U; McGraw Hill (1930). published elsewhere. S. TOLANSKY. Physics Department, Armstrong College Impact Figures on Polished Rock Salt Surfaces. (Newcastle-on-Tyne ), Durham University, May 5. IF a small steel ball is dropped from a height of a few inches on a polished rock salt surface, the imprint 1 Hori, Mem. Coll. Sci. Kyoto, vol. 9, p. 307; 1926. ' De Bruin, NATURE, Mar. 15., 1930, vol. 125, p. 414. of the ball on the crystal surface remains as a circular • Wood and Kimura, .Astroph. Jour., vol. 46, p. 181; 1917. depression of one or two millimetres in diameter. The surface is deformed, however, over a region many times the area of the circular depression. If an The Resonance Potential of Trebly Ionised Bismuth. optical test plane (a piece of ordinary plate-glass will UsiNG the known data of the spectra Hg I,l Tl II,' do) is placed on the crystal and the surface examined and Pb III,• and extrapolating by means of the in monochromatic light, the interference pattern irregular doublet law, the predicted values of the shows a nwnber of families of ' loops ' extending wave nwnbers of the important combinations away from the imprint of the ball. - 1 6s6s IS0 - 686p •P 1 and 6868 IS0 686p P 1 of Bi IV If the crystal surface approximates a 1, 0, 0 plane, are approximately 76,000 and 115,000. the depression will be surrounded by eight sets of No. 3214, VoL. 127] © 1931 Nature Publishing Group.
Recommended publications
  • Atmospheric Source Terms for the Idaho Chemical Processing Plant, 1957 – 1959
    FINAL ATMOSPHERIC SOURCE TERMS FOR THE IDAHO CHEMICAL PROCESSING PLANT, 1957–1959 Contract No. 200-2002-00367 Task Order No. 1, Subtask 1 A final report to the Centers for Disease Control and Prevention Atlanta, Georgia 30335 SC&A, Inc. 6858 Old Dominion Drive, Suite 301 McLean, Virginia 22101 SENES Oak Ridge, Inc. 102 Donner Drive Oak Ridge, Tennessee 37830 Authors: Robert P. Wichner, SENES Oak Ridge, Inc. John-Paul Renier, SENES Oak Ridge, Inc. A. Iulian Apostoaei, SENES Oak Ridge, Inc. July 2005 ICPP Source Terms July 2005 TABLE OF CONTENTS EXECUTIVE SUMMARY .......................................................................................................ES-1 1.0 SCOPE AND APPROACH ............................................................................................. 1-1 1.1 Scope .................................................................................................................. 1-1 1.2 Approach.............................................................................................................. 1-1 1.2.1 Operational RaLa Releases ...................................................................... 1-1 1.2.2 Idaho Chemical Processing Plant Criticality Approach........................... 1-2 2.0 THE RADIOACTIVE LANTHANUM (RaLa) PROCESS ............................................ 2-1 2.1 Background .......................................................................................................... 2-1 2.1.1 Requirement ............................................................................................
    [Show full text]
  • Cross Section Data for the Production of the Positron Emitting Niobium Isotope 90Nb Via the 90Zr(P, N)-Reaction
    Radiochim. Acta 90, 1–5 (2002) by Oldenbourg Wissenschaftsverlag, München Cross section data for the production of the positron emitting niobium isotope 90Nb via the 90Zr(p, n)-reaction By S. Busse1,2,F.Rösch1,∗ andS.M.Qaim2 1 Institut für Kernchemie, Johannes Gutenberg-Universität, D-55128 Mainz, Germany 2 Institut für Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany (Received April 19, 2001; accepted in revised form July 16, 2001) Positron emitter 90Nb / Nuclear reaction / (α, 3n)-reactions on natural yttrium. A medium-sized cy- Excitation function / Calculated integral yield / clotron would allow the production of 90Nb via the (p, n)-, Experimental thick target yield / Radionuclidic impurities (d, 2n)- or the (3He, 2n)-process. In fact even a small-sized cyclotron (Ep ≤ 16 MeV) should lead to sufficient quanti- ties of the radioisotope via the (p, n)-reaction. A few stud- Summary. The radioisotope 90Nb decays with a positron ies have shown that the (d, 2n)-reaction requires a deuteron + branching of 53% and a relatively low β -energy of energy of about 16 MeV [5–7], the (3He, 2n)-process a 3He- = . = . Emean 0 66 MeV and Emax 1 5 MeV. Its half-life of 14 6h energy of ≥ 30 MeV and the (α, 3n)-reaction an α-particle makes it especially promising for quantitative investigation energy of ≥ 45 MeV [8]. Furthermore, the systematics of of biological processes with slow distribution kinetics using (3He, 2n)- and (p, n)-reactions suggest that the production positron emission tomography. To optimise its production, 90 the excitation functions of 90Zr(p, xn)-processes were studied yield of Nb should be higher in the latter process.
    [Show full text]
  • Determining Atomic Mass Practice with Answers
    Determining Atomic Mass Practice with Answers Atomic Mass • Refers to the mass of an atom. • Number of protons and neutrons • Atoms are too small to mass so mass is determined by the relative mass of a standard atom. By international agreement (IUPAC), Carbon­12 is the chosen standard atom because of its abundance here on Earth. Atomic Mass Unit ­ defined is a mass exactly equal to 1/12th of one carbon­12 atom. 1 carbon­12 atom = 12 amu Determining Atomic Mass Practice with Answers Determine Atomic Mass Unit for Hydrogen Hydrogen ­ 1 as 1 proton and 0 neutrons 1/12 = .0833 x 100 = 8.33% So hydrogen is 8.33% of one atom of Carbon­12 Atomic Mass of Hydrogen = mass of 1 atom of Carbon ­12 x 8.33% = 12 x .0833 =.9996 = 1.0 amu Through different methods of experimental testing, chemists have more accurately determined the mass of hydrogen to be 1.008, which is more like 8.40%. Determining Atomic Mass Practice with Answers Determining Average Atomic Mass: Because element's usually have more than one isotope, which means their masses are different an average must be determine to reflect the mass of all an atom's isotopes. Example: A sample of cesium is 75% Cs-133, 20% Cs-132, and 5% Cs-134. What is the average atomic mass? ANSWER: .75 x 133 = 99.75 .20 x 132 = 26.4 .05 x 134 = 6.7 Total = 132.85 amu average atomic mass unit Determining Atomic Mass Practice with Answers Isotopes and Average Atomic Mass Iodine: 80% 127 I 17% 126 I 3% 128 I ANSWER: .80 x 127 = 101.6 .17 x 126 = 21.42 .03 x 128 = 3.84 Total = 126.86 amu Determining Atomic Mass Practice with Answers Determining Atomic Mass Practice with Answers Determining Atomic Mass Practice with Answers Determining Atomic Mass Practice with Answers Determining Atomic Mass Practice with Answers Determining Atomic Mass Practice with Answers Determining Atomic Mass Practice with Answers Determining Atomic Mass Practice with Answers Determining Atomic Mass Practice with Answers Determining Atomic Mass Practice with Answers Bromine which exists as a dark, red gas is Br2.
    [Show full text]
  • Isotopes of M&M-Ium
    Name _________________________________________________________________ Hour __________________ Isotopes of m&m-ium Elements commonly exist with differing numbers of neutrons. We call these elements isotopes and an example is Bromine-79 and Bromine-81. These isotopes are naturally occurring…but do not exist equally in nature. Br-79 is more common and occurs 55% of the time while Br-81 occurs 45% of the time. To calculate the average atomic mass (the weighted average of the masses of its isotopes) of bromine you need to take into account the relative abundance of each element. The average atomic mass = (% abundance of isotope 1)x(mass of isotope 1) + (% abundance of isotope 2)x(mass of isotope 2) (% should be expressed in decimals) Pre-Lab Questions: 1. Calculate the average atomic mass of Bromine using the % abundances above: 2. Carbon has 2 stable isotopes: C-12 with a natural abundance of 98.89% and C-14 at 1.11%. Calculate the average atomic mass of Carbon. m&mium, a recently discovered element from the chocolate mountains of Wonkaland, exits as two isotopes. m&mium has many different colors and your job is to find the average atomic mass of one color of m&mium. Safety Precautions: Never eat anything that has touched lab equipment! Use a baking cup so your group can eat the m&ms when you are done! Procedure: Show all work for all calculations. 1. Record the number of small m&m’s and large m&m’s you have (your color only) in the table. 2. Record the total number of m&m’s you have.
    [Show full text]
  • Discovery of the Bromium Isotopes
    Discovery of the Bromium Isotopes J. Kathawa, J. Claes, M. Thoennessen∗ National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA Abstract Twenty-eight bromium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented. ∗Corresponding author. Email address: [email protected] (M. Thoennessen) Preprint submitted to Atomic Data and Nuclear Data Tables April 28, 2010 Contents 1. Introduction . 2 2. Discovery of 70−97Br ................................................................................... 3 2.1. 70Br............................................................................................. 3 2.2. 71Br............................................................................................. 3 2.3. 72Br............................................................................................. 5 2.4. 73Br............................................................................................. 5 2.5. 74Br............................................................................................. 5 2.6. 75Br............................................................................................. 5 2.7. 76Br............................................................................................. 6 2.8. 77Br............................................................................................
    [Show full text]
  • Discovery of the Selenium Isotopes
    Discovery of the Selenium Isotopes J. Claes, J. Kathawa, M. Thoennessen∗ National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA Abstract Thirty-one selenium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented. ∗Corresponding author. Email address: [email protected] (M. Thoennessen) Preprint submitted to Atomic Data and Nuclear Data Tables April 28, 2010 Contents 1. Introduction . 3 2. Discovery of 64−94Se.................................................................................... 3 2.1. 64Se............................................................................................. 3 2.2. 65Se............................................................................................. 3 2.3. 66Se............................................................................................. 5 2.4. 67Se............................................................................................. 5 2.5. 68Se............................................................................................. 5 2.6. 69Se............................................................................................. 5 2.7. 70Se............................................................................................. 5 2.8. 71Se............................................................................................
    [Show full text]
  • Tail As the .:J:J Ref~ Ax; ¥10 'T:"-T Dfgtj..Tl ~ ,..U~ [.!Lt·V
    Anomalies in the Fermi Effect • ... be conbi~e~,.CL bjvsome as equally probable, or even more ~:Sa"b ~ s tfi:aR the fixst=aite"!'f'l'autive •. While we "ffhal.l ~ 4 ~ a.~.a,.fyf---c __.,. emphasize the pas si bili ty o 4his eeeond vie'fvj~we will · t.A----~ . (J ¢::6 d.t"ia: -; ~~.... ~. ,,-..A( ~ not discuss £? in ~ etail as the .:j:j rEf~ ax; ¥10 't:"-t dfGtJ..tL ~ ,..u~ [.!lt·v ...... ~YJ ~- ~. r/ ~ This unequal treatment is not due to a biased opinion in . ~,.,,,~ . ~ !-'. ' 'M·•/. favour of one of e ·· ' views, and seems -t;o-..b€ just'fied (/~A rt• f.-# £r.~- .-/ ~ e.e i.o I~,_,_ "-!- H . .t:/ ,d"~ t~t .vrlk t.~ 1 ~-.. a : . , . - · by t h e fact that the f1Fst VJ:ew- leads \ to a number of p otentially pas si ble ~l r ( • (-(;;-- -~~ "1:1 /experiments wnich may decide / 3:-rr~~~ , ·o-: a ~ n. ~ , I~ - "/Z,_ - /t , .y /I(, " ,. /.. ' . .... I /7<Vt.. (,_.1' ~~ whereas it se5!ms to be diffipul t to think of cn ~. t'- ,.. (, ...... 1 #t.r t~- ....-.~..., "'<../ t<t.,.-< ""'"' t t( /'l'n J ( "t·C experiments,. ~t'O a:mc t · decision o·n-~ a - - - "' ANOMALIB.S IN TilE FERMI EFFECT 1) Amaldi, D'Agostino and Segre have found that neutrons Which have been slowed down by paraffin wax induce in indium two radio­ active half-life periods (16 eea. and 54 min.). T.A. Cha~ers and 2) I have subsequently reported that indium can also be comparatively strongly activated with a third period of several hours if irradiated by neutrons from a radon alpha-particle beryllium source in the ab- sence of hydrogen-containing substances, and we raised the question whether its existence can be satisfactorily explained without a new assumption.
    [Show full text]
  • Crmsto)Jwrflnce ~
    UCRL 8730 ' ... UNIVERSITY OF CALIFORNIA CrmstO)jwrflnCe ~..... Ctdiation ... SPINS, MOMENTS, AND HYPERFINE STRUCTURES OF SOME BROMINE ISOTOPES 9 • 0 BERKELEY, CALIFORNIA r . ',,,, DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. UCRL-8730 Physics and Mathematics UNIVERSITY OF CALIFORNIA Lawrence Radiation Laboratory Berkeley. California Contract Noo W -7405-eng·-48 SPINS, MOMENTS, AND HYPERFINE STRUCTURES OF SOME BROMINE ISOTOPES Thomas Myer Green9 Ill (Thesis) June 1959 Printed for the U.S. Atomic Energy Commission • i.'"' • ., ' ·•·;- ... /~~ - .... ·-· Printed 1n USA. Price $2.50. Available from the Office of Techaical Services U. S. Department of Commerce Washington 25, D. C. -2- SPINS, MOMENTS, AND HYPERFINE STRUCTURES OF SOME BROMINE ISOTOPES Contents Abstract 3 I.
    [Show full text]
  • Availability of Enriched Stable Isotopes: Present Status and Future Prospects
    i UCRL- 94416 PREPRINT UCRL—94416 DE87 000886 THE AVAILABILITY OF ENRICHED STABLE ISOTOPES: PRESENT STATUS AND FUTURE PROSPECTS Richard W. Hoff tevsd by OSTl, OCT 2 2 1988, This document was prepared for presentation as an invited paper at the Eleventh International Conference on Electromagnetic Isotope Separators and Techniques Related to Their Applications, Los Alamos, New Mexico,..August 18-22, 1986. September 18, 1986 TMslaai t M ft |MptT MttaMM WF pHMKiMlaM M I jMMflM W pMCCMMfma BHKf ckaafta any at aMNttariart aaMlcatlaa, afe anariat b aamt anNaak «Hk •* aa- fenuaalaf mat k «« aai '« cttta ar nanam* wfcaaat a* amahtlaa af at aattwr. M-' OISIIWWIHM •* WIS *0ClflttVT « IMMMat DISCLAIMER This MCMKIM «n artaarrt as. in aecaant af vtark •aaasana' by in agency af the V*t;<4 StMte§ Cavtmateaf. NvilWr lb* Unilrd SUM Caveromcut Mr the Ualvenlty af California Mr any af lb*ir cmataym, aukes any warranty, cuarm ar latalM, or IMMMI any legal liability «r rwaaailalHiy far the accuracy, ranalctcam. ar atefal- ant af any iafarwaliaw, aaaaraiwt, arawxi, t prams eliaclaftW, t rearescati laat IM a*e IHU Ml Wriaay arttattfy award right*. Rrferrarf herrla la My aaerifir tawiirrial aratfam, aracrw, ar aervk* ay rraa> aamt, IraaVawrt, maafertamr. ar •Ikcrwisf, 4mn mi accnaarily caaattrale ar hafly H* ratfcnemeM, rw*a»awa4at(aa, ar favartag by tbe UaHH Sutw Cavenweal ar tfce University af CalKanrfa. The views tm4 aatnloas af aatbars nartiata* acrefa 4a Mai nccnaarily atllr ar reflect thase af the Unhea* Stale* Cavrraaiil ar Ibc Ualvmky af CaHfaraia, ud tbaM aat be asev lar aateftistag ae praaact aaaarsaaMM pnrpaaes* mm.
    [Show full text]
  • Arxiv:1012.2027V1 [Nucl-Ex] 9 Dec 2010
    Discovery of Zinc, Selenium, Bromine, and Neodymium Isotopes J. L. Gross, J. Claes, J. Kathawa, M. Thoennessen∗ National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA Abstract Currently, thirty-two zinc, thirty-two selenium, twenty-nine bromine and thirty-one neodymium isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented. arXiv:1012.2027v1 [nucl-ex] 9 Dec 2010 ∗Corresponding author. Email address: [email protected] (M. Thoennessen) Preprint submitted to Atomic Data and Nuclear Data Tables November 14, 2018 Contents 1. Introduction . 4 2. Discovery of 54−85Zn ................................................................................... 5 2.1. 54Zn ............................................................................................ 5 2.2. 55;56Zn .......................................................................................... 7 2.3. 57Zn ............................................................................................ 7 2.4. 58Zn ............................................................................................ 7 2.5. 59Zn ............................................................................................ 7 2.6. 60;61Zn .......................................................................................... 7 2.7. 62Zn ...........................................................................................
    [Show full text]
  • Regulatory Technology Development Plan Sodium Fast Reactor Mechanistic Source Term Development
    ANL$ART$'3' Regulatory Technology Development Plan Sodium Fast Reactor Mechanistic Source Term Development Nuclear Engineering Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. DOCUMENT AVAILABILITY Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free via DOE's SciTech Connect (http://www.osti.gov/scitech/) Reports not in digital format may be purchased by the public from the National Technical Information Service (NTIS): U.S. Department of Commerce National Technical Information Service 5301 Shawnee Rd Alexandra, VA 22312 www.ntis.gov Phone: (800) 553-NTIS (6847) or (703) 605-6000 Fax: (703) 605-6900 Email: [email protected] Reports not in digital format are available to DOE and DOE contractors from the Office of Scientific and Technical Information (OSTI): U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 www.osti.gov Phone: (865) 576-8401 Fax: (865) 576-5728 Email: [email protected] Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • Radiotracer Methodology in Biological Science
    AN ABSTRACT OF THE THESIS OF David Lee Willis for the Doctor of Philosophy in General Science (Name) (Degree) (Major) Date thesis is presented May 10, 1963 Title RADIOTRACER METHODOLOGY IN BIOLOGICAL SCIENCE Abstract approved (Major professor) The use of radioactive isotopes as tracers in biological sys- tems has become widespread since the close of World War II. Proper use of radiotracers requires a fundamental understanding of the physi- cal nature of radioactivity, the characteristics of ionizing radiation, and the various methods available for measuring radioactivity. More importantly, the investigator employing radioisotopic tracers must be familiar with the methodology involved in design of radio - tracer experiments, the preparation of radioactive samples for assay, and the problems inherent in analyzing data from radiotracer experi- ments. The purpose in the preparation of this thesis was to present a summary of the essential concepts and information needed by the biologist who desires to make use of radiotracer methods in his in- vestigations. The thesis is set forth in the form of an introductory text, suitable either for class or individual use. The presentation is divided into three major sections: (I) the text proper, covering the principles of radiotracer rnethodology, (?) a set of basic labora- tory exercises, intended to farniliarize the user with procedures in detecting and characterizing radioactivity, and (3) a selection of typical radiotracer experiments illustrating applications in varior.zs fields of biological science. This latter secti.on is thought to be parti- cularly valuable in that it furnishes step-by-step examples of design and execu.tion of typical radiotracer experirnents " In view of the fact that liquid sci.ntillation counting has recently come into widespread favor arnong biologists using tritium and carbon-14 labeled tracer compounds and yet no comprehensive moilo- graph is available on the subject, particular attention has been de- voted to this assay rnethod.
    [Show full text]