Root Water Uptake and Transport: Using Physiological Processes in Global Predictions

Total Page:16

File Type:pdf, Size:1020Kb

Root Water Uptake and Transport: Using Physiological Processes in Global Predictions trends in plant science Perspectives with cDNA from the Arabidopsis aquaporin Root water uptake and AthPIP1a gene, an abundant transcript fluctu- ated in a pattern that closely resembled the diurnal variation in root hydraulic conductiv- transport: using physiological ity12. Studies of the importance of aquaporins for whole-plant water transport are needed, especially for woody plants, but it is clear that processes in global aquaporins help to orchestrate water move- ment within the plant and that they might determine the balance between apoplastic and predictions symplastic (cell-to-cell) water movement. Many other potential roles remain untested Robert B. Jackson, John S. Sperry and Todd E. Dawson (e.g. whether they facilitate embolism repair13). A second application is a new ability to Plant water loss, regulated by stomata and driven by atmospheric demand, identify roots in the field using molecular cannot exceed the maximum steady-state supply through roots. Just as an tools9–11. Unlike shoots, which can easily be electric circuit breaks when carrying excess current, the soil–plant continuum matched to a specific plant, roots growing in breaks if forced to transport water beyond its capacity. Exciting new molecular, a community are difficult to identify at any biophysical and ecological research suggests that roots are the weakest link taxonomic level, especially fine roots that take along this hydraulic flow path. We attempt here to predict rooting depth and water up water. A new method (Fig. 1) overcomes uptake using the hydraulic properties of plants and the soil, and also to suggest this long-standing limitation by using DNA how new physiological tools might contribute to larger-scale studies of hydraulic sequence variation of the internal transcribed lift, the water balance and biosphere–atmosphere interactions. spacer (ITS), the 18S–26S nuclear ribosomal repeat. The ITS region can be amplified in all lants use water in biochemical reactions, controls of water loss. We examine new mol- plants by using PCR and a set of universal as a solvent and to maintain turgor, but ecular and physiological tools that should help primers14. It evolves fairly rapidly and there- Pmost of the water taken up by plants is to predict the quantity and depth of water use fore can be used to distinguish genera and, transpired to the atmosphere. Globally, plants at larger scales, present a set of predictions for often, species. Such identifications are needed recycle more than half of the ~110 000 km3 yr21 rooting depth that can be tested at scales from for in situ physiological studies and for deter- of precipitation that falls on land each year1. the individual site to the globe, and discuss mining belowground community structure Transpired water moves from soil to plant to potential links between plant biology and the and water uptake at depth9. GenBank now has atmosphere along a continuum of increasingly physical sciences using new global datasets. .9000 ITS sequences online and is growing negative water potential (c), flowing ‘down- rapidly. Extensions of these techniques are hill’ thermodynamically but ‘uphill’ physi- Applying molecular tools to a global also being made for fingerprinting roots (to cally from root to shoot. problem distinguish individual plants within a commu- Plant water loss is a function of stomatal Two recent applications of molecular biology nity). Candidates include randomly amplified conductance and atmospheric demand but, to should contribute to a better understanding of polymorphic DNA, inter-simple-sequence avoid desiccation, it also cannot exceed the rooting depth and water transport: molecular repeats and amplified fragment-length poly- maximum supply rate through roots. In the- studies of plant aquaporins7,8 and the use of morphisms. Such molecular tools should be ory, maximum steady-state supply rates can molecular tools for identifying and studying useful in determining the zone of water uptake be predicted from field data and from trans- roots in the field9–11. Aquaporins are mem- for individual plants and species. They also port models that incorporate soil porosity, pro- brane water-channel proteins that facilitate open new possibilities for in situ studies of files of soil moisture and root density, and the water movement along a passive gradient in c plant physiological and community processes. relationship between whole-plant hydraulic (Ref. 8). In Arabidopsis, .30 genes code for conductance (K) and c (Ref. 2). In practice, aquaporin homologs and cells generally Hydraulic architecture and water flux in such supply rates are difficult to estimate express several different aquaporins at a time. stems and roots because of the challenges of sampling roots Although aquaporins are undoubtedly impor- Stomata are the pressure regulators of the and the soil at depth, and of measuring in situ tant for cytosolic osmoregulation, inhibition plant: they prevent xylem pressure and tissue root activity. New advances are helping to studies in vivo and studies with antisense water status from reaching damaging values integrate the above- and below-ground func- mutants indicate that they are also important by regulating water flow through the tioning of plants (e.g. determining hydraulic for bulk water flow. soil–plant continuum. For this reason, factors limitations along the entire plant flow path and Arabidopsis plants transformed with an that influence the hydraulic conductance of signals that coordinate hydraulic supply3), and antisense construct of the aquaporin PIP1b the continuum (‘hydraulic architecture’) also to understand biosphere–atmosphere interac- gene (one of a class of plasma membrane influence stomatal conductance and transpi- tions (e.g. feedbacks between vegetation and intrinsic proteins) had reduced steady-state ration. This is true regardless of the mecha- climate through water uptake, transpiration levels of PIP1b, water permeability coeffi- nism by which stomata sense water status, a and latent heat fluxes4–6). cients that were three times lower than in con- subject of continued investigation involving This article highlights recent progress in trol plants and five times more root biomass the hormone abscisic acid (ABA) and other understanding the movement of water in the than control plants to compensate for reduced messengers15. Recent studies highlight the soil–plant–atmosphere continuum at a range aquaporin abundance (shoot biomass and importance of xylem cavitation, xylem anatomy of increasing scales. We emphasize root water morphology were unchanged)7. In studies and the architecture of the root system in influ- uptake and transport as the gateway for plant with Lotus japonicus, root hydraulic conduc- encing leaf water supply and plant water use. water supply, complementing traditional tivity varied fivefold during day–night cycles. According to the cohesion–tension theory, emphases on shoot processes and stomatal When mRNAs from the roots were probed capillary forces generated by evaporation 482 November 2000, Vol. 5, No. 11 1360 - 1385/00/$ – see front matter © 2000 Elsevier Science Ltd. All rights reserved. PII: S01360-1385(00)01766-0 trends in plant science Perspectives Roots from 7 m depth showed approximately one-third cavitation at 22 MPa, but the same Identifying roots using ITS ...GATTACA... degree of cavitation did not occur until approximately 26 MPa in shallow roots and ITS library 210 MPa in shoots (Fig. 2d). Differences in ...TTGTGAC...* vulnerability to cavitation were accompanied ...TTGTGAC... by gradients in xylem tracheid diameters. Mean conduit diameters were more than four ...AGAGACC... times as large in deep roots as in stems of sim- ilar size and were intermediate in shallow n o g i t n roots (Fig. 2e). Such studies illustrate the con- i a c c i tribution that deep roots can make to whole- n f i e l u plant water use and highlight the need to p q m e integrate physiological limits along the entire a s plant flow path. The results also emphasize the R S C T I importance of root hydraulic architecture for P d n water uptake at a range of depths. a DNA extraction Linking plant, soil and climate using transport models In the same way that the specifications of an Unknown root electronic device must match those of the incoming current for optimal performance, the hydraulic properties of a plant should be com- patible with the soil properties to optimize Fig. 1. Identification of roots to species using DNA sequences from the internal transcribed 2,25 spacer (ITS) region of the 18S–26S nuclear ribosomal DNA repeat9,11. The asterisk desig- water use and resource allocation . Process nates a correct match between a root ITS sequence and a shoot sequence for a candidate models of the soil–plant–atmosphere contin- species in the reference database. Extensions of such molecular techniques to distinguish uum can integrate plant architectural and roots of individual plants are also expected. This technique has been used to study plant hydraulic properties with soil properties to community structure and water uptake to 25 m depth9 . predict these optimal combinations and the actual water use for various plant functional types and soils4. from leaves move water from soil to root to radius of xylem conduits19. Flow is generally We illustrate this approach here, using a leaf under increasingly negative pressures. more efficient in longer conduits because model that is unusual because it incorporates However, because xylem water is under ten- water passes through fewer pit membranes, variable K properties within both plant and sion, conduits can cavitate (fill with air). which restrict flow. Studies comparing xylem soil25,26. At each time step, the model deter- Recent studies comparing the vulnerability of anatomy in roots and shoots have shown that mines the gradient in c along the flow path roots and shoots have shown that roots (espe- roots typically have longer and larger con- from bulk soil to leaves and c-dependent cially small roots) are typically more vulner- duits20. Although little is known about the changes in K.
Recommended publications
  • Converging Patterns of Uptake and Hydraulic Redistribution of Soil Water in Contrasting Woody Vegetation Types
    Tree Physiology 24, 919–928 © 2004 Heron Publishing—Victoria, Canada Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types F. C. MEINZER,1,2 J. R. BROOKS,3 S. BUCCI,4 G. GOLDSTEIN,4 F. G. SCHOLZ 5 and J. M. WARREN1 1 USDA Forest Service, Forestry Sciences Laboratory, 3200 SW Jefferson Way, Corvallis, OR 97331-4401, USA 2 Corresponding author ([email protected]) 3 US EPA/NHEERL, Western Ecology Division, Corvallis, OR 97333, USA 4 Department of Biology, University of Miami, Coral Gables, FL 33124, USA 5 Laboratorio de Ecología Funcional, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, Buenos Aires, Argentina Received April 1, 2003; accepted September 13, 2003; published online June 1, 2004 Summary We used concurrent measurements of soil wa- Introduction Ψ ter content and soil water potential ( soil) to assess the effects Plant root systems not only extract water from the soil to sup- Ψ of soil on uptake and hydraulic redistribution (HR) of soil wa- ply the shoot, but also passively redistribute water within the ter by roots during seasonal drought cycles at six sites charac- soil profile according to gradients of soil water potential (Cal- terized by differences in the types and amounts of woody vege- dwell et al. 1998). The passive movement of water upward tation and in climate. The six sites included a semi-arid old- from moist to drier portions of the soil profile was originally growth ponderosa pine (Pinus ponderosa Dougl. ex P.
    [Show full text]
  • Contribution of Hydraulically Lifted Deep Moisture to the Water Budget in a Southern California Mixed Forest Kuni Kitajima,1 Michael F
    JOURNAL OF GEOPHYSICAL RESEARCH: BIOGEOSCIENCES, VOL. 118, 1561–1572, doi:10.1002/2012JG002255, 2013 Contribution of hydraulically lifted deep moisture to the water budget in a Southern California mixed forest Kuni Kitajima,1 Michael F. Allen,1 and Michael L. Goulden 2 Received 3 December 2012; revised 15 October 2013; accepted 18 October 2013; published 25 November 2013. [1] Trees and shrubs growing in California’s mountains rely on deep roots to survive the hot and dry Mediterranean climate summer. The shallow montane soil cannot hold enough water to support summer transpiration, and plants must access deeper moisture from the weathered bedrock. We used the HYDRUS-1D model to simulate the moisture flux through the soil-plant continuum in Southern California’s San Jacinto Mountains. The mechanisms facilitating deep water access are poorly understood, and it is possible that either or both hydraulic lift and capillary rise contribute to the survival and activity of trees and soil microorganisms. We modified HYDRUS to incorporate hydraulic lift and drove it with meteorological and physiological data. The modeled quantity of water lifted hydraulically ranged from near zero during the wet months to ~28 mm monthÀ1 in midsummer. Likewise, modeled capillary rise was negligible during the winter and averaged ~15 mm monthÀ1 during June through November. Both mechanisms provided water to support evapotranspiration during the dry months. Isotopic measurements of xylem water for eight shrub and tree species confirmed the importance of a deep source of water. Conventional and automated minirhizotron observations showed that fine-root and rhizomorph biomass remained relatively constant year-round, while mycorrhizal hyphae biomass varied markedly, peaking in the wet season and declining by ~70% in the dry season.
    [Show full text]
  • Nutrient Uptake As a Contributing Explanation for Deep Rooting in Arid and Semi-Arid Ecosystems
    Oecologia (2004) 141: 620–628 DOI 10.1007/s00442-004-1687-z ECOSYSTEM ECOLOGY R. L. McCulley . E. G. Jobbágy . W. T. Pockman . R. B. Jackson Nutrient uptake as a contributing explanation for deep rooting in arid and semi-arid ecosystems Received: 17 February 2004 / Accepted: 14 July 2004 / Published online: 19 August 2004 # Springer-Verlag 2004 Abstract Explanations for the occurrence of deep-rooted the surface. The prevalence of such deep resource pools, plants in arid and semi-arid ecosystems have traditionally and our evidence for cation uptake from them, suggest emphasized the uptake of relatively deep soil water. nutrient uptake as a complementary explanation for the However, recent hydrologic data from arid systems show occurrence of deep-rooted plants in arid and semi-arid that soil water potentials at depth fluctuate little over long systems. We propose that hydraulic redistribution of time periods, suggesting this water may be rarely utilized shallow surface water to deep soil layers by roots may or replenished. In this study, we examine the distributions be the mechanism through which deep soil nutrients are of root biomass, soil moisture and nutrient contents to 10- mobilized and taken up by plants. m depths at five semi-arid and arid sites across south- western USA. We couple these depth distributions with Keywords Cation uptake . Deep roots . Hydraulic strontium (Sr) isotope data that show deep (>1 m) nutrient redistribution . Nutrient uplift . Strontium isotopes uptake is prevalent at four of the five sites. At all of the sites, the highest abundance of one or more of the measured nutrients occurred deep within the soil profile, Introduction particularly for P, Ca2+ and Mg2+.
    [Show full text]
  • Hydraulic Redistribution of Soil Water by Neotropical Savanna Trees
    Tree Physiology 22, 603–612 © 2002 Heron Publishing—Victoria, Canada Hydraulic redistribution of soil water by neotropical savanna trees FABIAN G. SCHOLZ,1 SANDRA J. BUCCI,1 GUILLERMO GOLDSTEIN,1,2 FREDERICK C. MEINZER3,4 and AUGUSTO C. FRANCO5 1 Laboratorio de Ecologia Funcional, Departamento de Biologia, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Nunez, Buenos Aires, Argentina 2 Department of Botany, University of Hawaii, 3190 Maile Way, Honolulu, Hawaii 96822, USA 3 USDA Forest Service, Forestry Sciences Laboratory, 3200 SW Jefferson Way, Corvallis, OR 97331, USA 4 Author to whom correspondence should be addressed ([email protected]) 5 Departamento de Botanica, Universidade de Brasilia, Caixa postal 04457, Brasilia, DF 70919-970, Brazil Received June 7, 2001; accepted November 30, 2001; published online May 1, 2002 Summary The magnitude and direction of water transport Introduction by the roots of eight dominant Brazilian savanna (Cerrado) The movement of water from moist to drier portions of the soil woody species were determined with a heat pulse system that profile via plant root systems has been termed hydraulic lift allowed bidirectional measurements of sap flow. The patterns (Richards and Caldwell 1987, Caldwell et al. 1989). The di- of sap flow observed during the dry season in species with di- rection of water movement is typically upward, from deeper to morphic root systems were consistent with the occurrence of shallower soil layers. However, recent studies of sap flow in hydraulic redistribution of soil water, the movement of water taproots and lateral roots of trees have demonstrated that roots from moist to drier regions of the soil profile via plant roots.
    [Show full text]
  • Protea Night-Life: Ecological and Commercial Significance for Soil Hydraulics 1
    Protea night-life: Ecological and commercial significance for soil hydraulics 1. Heidi-J Hawkins A,C, Hans Hettasch B and Michael D Cramer A ADepartment of Botany, University of Cape Town, Private Bag X1, Rondebosch, 7701, South Africa; BArnelia Farms, P.O. Box 192, Hopefield, 7355, South Africa CCorresponding author Tel: +27 21 650 2442 Fax: +27 21 650 4041 Email: [email protected] 1 Submitted Feb 2009 in detailed format to Functional Plant Biology as ‘Hydraulic redistribution by Protea ‘Sylvia’ (Proteaceae) facilitates soil water recharge and water acquisition by an understorey grass and shrub’. Please use the latter article to cite information . 1 Introduction During the day , if plant stomata are open, water moves along the water potential (ψw) gradient from soil to leaf to atmosphere via the xylem , i.e . transpiration occurs (Fig. 1a) . At night , or whenever stomata close , that gradient is removed ... However,However,However, asas longlong asas plantplant rootsroots spanspan wetwet (usually(usually deeper)deeper) and drier (usually shallow) soil areas, another water gradient exists , i.e. between wet ter and drier soil layers. In this case, w ater moves along the ψw gradient from wet soil toto thethe root,root, along the root xylem andand outout intointo drier soil , resulting in soil wetting (Fig. 1b). This passive process is called hydraulic redistribution and has been documented for more than 50 taxa includingincluding trees, shrubs and grasses , particularly in summer -drought Mediterranean areas, but also in deserts , tropical forests (Jackson et al. 2000) and crop plants ( Sekiya and Yano 2004 ). Hydraulic redistribution is thought to be important forfor soilsoil waterwater recharge and facilitating nutrientnutrient uptake in water -limite d and summer -drought ecosystems, e.g.
    [Show full text]
  • New Representation of Plant Hydraulics Improves the Estimates of Transpiration in Land Surface Model
    Article New Representation of Plant Hydraulics Improves the Estimates of Transpiration in Land Surface Model Hongmei Li 1, Xingjie Lu 1,* , Zhongwang Wei 1 , Siguang Zhu 2,3, Nan Wei 1, Shupeng Zhang 1, Hua Yuan 1, Wei Shangguan 1 , Shaofeng Liu 1, Shulei Zhang 1, Jianfeng Huang 1 and Yongjiu Dai 1 1 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510275, China; [email protected] (H.L.); [email protected] (Z.W.); [email protected] (N.W.); [email protected] (S.Z.); [email protected] (H.Y.); [email protected] (W.S.); [email protected] (S.L.); [email protected] (S.Z.); [email protected] (J.H.); [email protected] (Y.D.) 2 Key Laboratory of Meteorological Disaster, Ministry of Education/International Joint Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China; [email protected] 3 School of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China * Correspondence: [email protected] Abstract: Transpiration represents more than 30% of the global land–atmosphere water exchange but is highly uncertain. Plant hydraulics was ignored in traditional land surface modeling, but recently plant hydraulics has been found to play an essential role in transpiration simulation. A new physical- Citation: Li, H.; Lu, X.; Wei, Z.; Zhu, based representation of plant hydraulic schemes (PHS) was recently developed and implemented S.; Wei, N.; Zhang, S.; Yuan, H.; in the Common Land Model (CoLM).
    [Show full text]
  • ESS PI Meeting 2016 Abstract Cardon
    Subsurface Biogeochemical Research and Terrestrial Ecosystem Science Joint Meeting April 26-27, 2016 http://doesbr.org/PImeetings/2016/ and http://tes.science.energy.gov/PImeetings/2016/ Modeling the impact of hydraulic redistribution on carbon fluxes and storage using CLM4.5 at four AmeriFlux Sites TES program (PI Cardon) Zoe G. Cardon, The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543, [email protected] Congsheng Fu, Dept. of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269, [email protected] Guiling Wang, Dept. of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269, [email protected] In seasonally-dry ecosystems, when gradients in soil water content develop, plant root systems can serve as conduits for water flow from wet to dry soil (along the water potential gradient). This “hydraulic redistribution” (HR) of water affects landscape hydrology and plant physiology, but is not included in the current generation of standard dynamic global vegetation and earth system models. It has long been hypothesized that HR’s impact on soil moisture profiles also inevitably affects rhizosphere soil microbial activity, and thus heterotrophic soil respiration, carbon cycling, nutrient cycling, and nutrient availability to plants in seasonally-dry systems. Recent field evidence assaying microbial nitrogen cycling activity in dry Utah soils supports this idea. HR thus potentially can affect carbon cycling and land-atmosphere carbon exchange through two pathways: (1) by directly stimulating plant physiology (e.g. enhancing stomatal conductance and thus increasing photosynthesis), and (2) by affecting rhizosphere microbial activity in the soil profile, and therefore the magnitude of heterotrophic soil respiration and/or nutrient cycling rates and nutrient availability to plants.
    [Show full text]
  • Environmental and Experimental Botany 176 (2020) 104085
    Environmental and Experimental Botany 176 (2020) 104085 Contents lists available at ScienceDirect Environmental and Experimental Botany journal homepage: www.elsevier.com/locate/envexpbot Potassium fertilization increases hydraulic redistribution and water use efficiency for stemwood production in Eucalyptus grandis plantations T Verónica Asensioa,*, Jean-Christophe Domecb,c, Yann Nouvellond,e, Jean-Paul Laclaud,e, Jean-Pierre Bouilletd,e, Lionel Jordan-Meilleb, José Lavresa, Juan Delgado Rojasf, Joannès Guillemotd,e,g, Cassio H. Abreu-Juniora a Universidade de São Paulo-Centro de Energia Nuclear na Agricultura (USP-CENA), CEP 13400-970 Piracicaba, SP, Brazil b Bordeaux Sciences Agro, INRA UMR 1391 ISPA, F-33170 Gradignan, France c Nicholas School of the Environment, Duke University, Box 90328, Durham, NC 27708, USA d Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, 34060 Montpellier, France e CIRAD, UMR Eco&Sols, 34060 Montpellier, France f Agro Ambiência Serviços Agrícolas, Piracicaba, SP, Brazil g Department of Forest Sciences, Universidade de São Paulo-“Luiz de Queiroz” College of Agriculture (USP-ESALQ), CEP 13418-900 Piracicaba, SP, Brazil ARTICLE INFO ABSTRACT Keywords: Climate change is expected to increase the frequency of droughts in most tropical regions in the coming decades. Eucalyptus A passive phenomenon called hydraulic redistribution (HR) allows some plant species to take up water from Hydraulic lift deep and wet soil layers and redistribute it in the upper dry layers where other plants and soil biota can benefit Soil fertilization from it. In addition, soil fertilization, particularly potassium (K), may also affect drought-adaptive mechanisms Tree transpiration and increase water use efficiency (WUE) on poor and acidic tropical soils.
    [Show full text]
  • Alternative Water Sources in Western Conifers Via Foliar Uptake and Hydraulic Redistribution
    ALTERNATIVE WATER SOURCES IN WESTERN CONIFERS VIA FOLIAR UPTAKE AND HYDRAULIC REDISTRIBUTION By Ariel Sol Weisgrau A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Natural Resources: Forestry, Watershed, and Wildland Science Committee Membership Dr. Lucy P. Kerhoulas, Committee Chair Dr. Rebecca E. Hewitt, Committee Member Dr. Jasper Oshun, Committee Member Dr. Erin C. Kelly, Graduate Coordinator December 2020 ABSTRACT ALTERNATIVE WATER SOURCES IN WESTERN CONIFERS VIA FOLIAR UPTAKE AND HYDRAULIC REDISTRIBUTION Ariel Sol Weisgrau Water is often the most limiting resource in a plant’s environment. Plants that can maximize their ability to acquire water improve their chances of success. Outside of the traditional soil-plant-atmosphere continuum, plants can alternatively acquire water via foliar uptake of water and hydraulic redistribution (HR) of deep water. This study used greenhouse-based experiments to investigate water use and physiology in four conifer species native to the western U.S.: Picea sitchensis (Bong.) Carriére (PISI), Pseudotsuga menziesii (Mirb.) Franco (PSME), Sequoia sempervirens (D. Don) Endl. (SESE), and Thuja plicata Donn ex. D. Don (THPL). First, this work investigated the capacity for foliar water uptake using two different measurement methods (submersion in water versus exposure to water vapor in a fog chamber). Second, mesocosms were used to evaluate the capacity for HR of water and the possible effects of HR water on tree physiology. Analyses found that foliar uptake rates measured using a fog chamber were roughly three times greater than uptake rates measured using the submersion method. All species were capable of foliarly absorbing water; PSME generally had the greatest foliar uptake values while THPL had the lowest uptake capacity.
    [Show full text]
  • Hydraulic Redistribution and It's Potential for Food
    HYDRAULIC REDISTRIBUTION AND IT’S POTENTIAL FOR FOOD PRODUCTION Professor José Miguel Reichert Física do Solo- UFSM Sérgio Ely V. G. A. Costa WATER CYCLE LimpoporakRAMSAR (2011) BLUE WATER VS GREEN WATER INVISIBLE WATER Hamdy (2008) BLUE WATER = SHARE OF WATER RESOURCES STORED IN RIVERS, LAKES AND GROUNDWATER THAT IS CONTROLLED BY PHYSICAL PROCESSES GREEN WATER= WATER THAT IS INFLUENCED BY BIOLOGICAL PROCESSES SUCH AS EVAPO-TRANSPIRATION BY VEGETATION AND STORED AS SOIL MOISTURE WATER USE POPULATION CLIMATE TIME ECONOMY INDICATOR ?????? “WITHDRAWALS-TO-AVALABILITY RATIO” LONG TERM EFFECTS WATER AVAILABILITY Fonte FEOW disponível em: http://www.feow.org WATER USE WATER USE SECTORS ANNUAL WITHDRAWALS Menzel & Matovelle (2010) IRRIGATION GREEN WATER USE EFFICIENCY 100 90 80 Today 2030 70 60 50 40 30 20 10 0 (FAO, 2010) http://www.feow.org EFFICIENCY WITHDRAWALS IMPROVING WATER PRODUCTIVITY WHERE DOES THE RAINWATER GO ? RAIN RAINFALL PARTIONING RF – (E+T+R+D) D= 10-30% R= 10-25% E= 30-50% T= 15-30% Hillel (2008) ROOT-ZONE WATER BALANCE CHANGES IN STORAGE= GAINS – LOSSES 4-5 CROP YIELDS !!!! (ΔS + ΔV) = (P+I+U) – (R+D+E+T) VAPOR FLOW GREEN WATER RESOURCE GREEN WATER FLOW GREEN- BLUE WATER BALANCE BLUE WATER RESOURCE GREEN WATER REQUIREMENT OF CROP RAIN INPUT RAIN DEFICIENCY BLUE WATER YIELD GAP SOIL WATER RECHARGE LOSSES RUNOFF BLUE WATER PERCOLATION FARMER’S FIELD HYDROLOGICAL GREEN WATER LOSS LIMITATIONS % GREEN WATER REQUIREMENT WATER % GREEN PRODUCTIVE GREEN WATER USE % OF VAPOR FLOW Rockström et al. (2007) GLOBAL PRODUCTION LOSSES LOSSES
    [Show full text]
  • Using Mycorrhizal Fungi in Restoration Projects of the Southwestern Us
    USING MYCORRHIZAL FUNGI IN RESTORATION PROJECTS OF THE SOUTHWESTERN US 2020 RIPARIAN RESTORATION CONFERENCE GRAND JUNCTION • COLORADO • USA • FEBRUARY 6, 2020 Photos: Lisa Markovchick & Jamie Yazzie General Background 1. Symbiotic mycorrhizal fungi can assist vegetation with nutrition, drought resilience, pests, disease, and more - but our knowledge here is still in its infancy. 2. Co-adaptations between soil, fungi, and plants can occur locally. 3. Anthropogenic actions, invasive plant species, and even well-intentioned management actions can impact the mycorrhizal community at a site. 4. Restoring that mycorrhizal community alongside the vegetation community may be critical to restoration success. 5. Commercially-available mycorrhizal inoculum may target mycorrhizal fungi that are not site or vegetation-appropriate and/or contain mostly fertilizer. Obtaining and Using Mycorrhizal Inoculum 1. The easiest and cheapest method of inoculating is using bulk-soil. Bulk soil can be obtained from a nearby, more pristine site that lacks some of the invasive plant, or other potentially disruptive, legacies. Soil can be bulked-up in the greenhouse with appropriate plants, to increase soil fungi (do not cover or drown the bins!). Soil can be applied prior to, during, or after planting in the field. 2. If specific mycorrhizal fungi taxa are known to be critical to success, it is also possible to specifically culture those fungi in a lab setting. Once cultured, these fungi can be applied prior to, during, or after planting in the field. Things to Consider Prior to Implementation 1. What nearby sites have similar vegetation, similar soil, but less invasive vegetation and other intrusions that might have reduced the soil community? 2.
    [Show full text]
  • Changes in Soil Hyphal Abundance and Viability Can Alter the Patterns of Hydraulic Redistribution by Plant Roots
    Plant Soil (2012) 355:63–73 DOI 10.1007/s11104-011-1080-8 REGULAR ARTICLE Changes in soil hyphal abundance and viability can alter the patterns of hydraulic redistribution by plant roots José Ignacio Querejeta & Louise M. Egerton-Warburton & Iván Prieto & Rodrigo Vargas & Michael F. Allen Received: 13 June 2011 /Accepted: 22 November 2011 /Published online: 9 December 2011 # Springer Science+Business Media B.V. 2011 Abstract Results Contrary to expectations, both upper soil and Background and aims We conducted a mesocosm receiver seedlings contained significantly greater pro- study to investigate the extent to which the process portions of HLW in mesocosms where the abundance of of hydraulic redistribution of soil water by plant roots mycorrhizal hyphal links between donor and receiver is affected by mycorrhizosphere disturbance. roots had been sharply reduced by fungicide application. Methods We used deuterium-labeled water to track the Reduced soil hyphal density and viability likely ham- transfer of hydraulically lifted water (HLW) from pered soil moisture retention properties in fungicide- well-hydrated donor oaks (Quercus agrifolia Nee.) to treated mesocosms, thus leading to faster soil water drought-stressed receiver seedlings growing together depletion in upper compartments. The resulting steeper in mycorrhizal or fungicide-treated mesocosms. We soil water potential gradient between taproot and upper hypothesized that the transfer of HLW from donor to compartments enhanced hydraulic redistribution in receiver plants would be enhanced in undisturbed fungicide-treated mesocosms. (non-fungicide-treated) mesocosms where an intact Conclusions Belowground disturbances that reduce soil mycorrhizal hyphal network was present. hyphal density and viability in the mycorrhizosphere can Responsible Editor: Angela Hodge.
    [Show full text]