Application of Deterministic Distributed Hydrological Model in Mediterranean Region, Case Study in Var Catchment, France
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
4.0 Integrated Environmental Modelling
University of Calgary PRISM: University of Calgary's Digital Repository University of Calgary Press University of Calgary Press Open Access Books 2021-01 Integrated Environmental Modelling Framework for Cumulative Effects Assessment Gupta, Anil; Farjad, Babak; Wang, George; Eum, Hyung; Dubé, Monique University of Calgary Press Gupta, A., Farjad, B., Wang, G., Eum, H. & Dubé, M. (2021). Integrated Environmental Modelling Framework for Cumulative Effects Assessment. University of Calgary Press, Calgary, AB. http://hdl.handle.net/1880/113082 book https://creativecommons.org/licenses/by-nc-nd/4.0 © 2021 Anil Gupta, Babak Farjad, George Wang, Hyung Eum, and Monique Dubé Downloaded from PRISM: https://prism.ucalgary.ca INTEGRATED ENVIRONMENTAL MODELLING FRAMEWORK FOR CUMULATIVE EFFECTS ASSESSMENT Authors: Anil Gupta, Babak Farjad, George Wang, Hyung Eum, and Monique Dubé ISBN 978-1-77385-199-0 THIS BOOK IS AN OPEN ACCESS E-BOOK. It is an electronic version of a book that can be purchased in physical form through any bookseller or on-line retailer, or from our distributors. Please support this open access publication by requesting that your university purchase a print copy of this book, or by purchasing a copy yourself. If you have any questions, please contact us at [email protected] Cover Art: The artwork on the cover of this book is not open access and falls under traditional copyright provisions; it cannot be reproduced in any way without written permission of the artists and their agents. The cover can be displayed as a complete cover image for the purposes of publicizing this work, but the artwork cannot be extracted from the context of the cover of this specific work without breaching the artist’s copyright. -
Assessment of Numerical Groundwater Models Moharram Fouad1,Enas E
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018 951 ISSN 2229-5518 Assessment of Numerical Groundwater Models Moharram Fouad1,Enas E. Hussein2 1Enginnering Department of Public Works, Faculty of Engineering, Mansoura University, Mansoura, Egypt 2National Center of Water Research, Cairo, Egypt [email protected] Abstract: The numerical hydrological models which interested in the simulation and prediction the hydrological behavior were built relied on physically-based equations. The groundwater flow model was considered one of these models. The groundwater flow and contaminants transport model were used to monitoring, controlling, managing groundwater resources and forecasting the effects of varying both the recharge and groundwater abstract ion. Moreover, it developed a preventive planning to maintain the quality of the groundwater, identify flow patterns, and predict the future aquifer hydrodynamics. The groundwater software codes were constructed based on numerical methods of advection-dominated transport and inverse problems. Major of these software codes was relied on the numerical solution based specially of finite difference method (FDM) and finite element method (FEM). In addition, some of various numerical methods were also applied such as Upstream weighting method and moving point method. The numerical models were based on groundwater governing equation that used Darcy’s low in addition to water mass balance. The evaluation of these groundwater models was presented and demonstrated the merits and demerits of each one. The results referred that the MODFLOW software package was the most spread software that used to simulate the groundwater flow and contaminants transport. Keywords: Groundwater models, contaminants, Numerical methods, FED, FEM. 1. Introduction A comprehensive Knowledge about the hydrologic process and the influence of the point and non-point sources pollution on water quality was required for the management of the watersheds. -
Modelling the Hydrological Interactions Between a Fissured Granite Aquifer and a Valley Mire in the Massif Central, France Arnaud Duranel1,2, Julian R
Modelling the hydrological interactions between a fissured granite aquifer and a valley mire in the Massif Central, France Arnaud Duranel1,2, Julian R. Thompson1, Helene Burningham1, Philippe Durepaire3, Stéphane Garambois4, Robert Wyns5, Hervé Cubizolle2 5 1 UCL Department of Geography, University College London, London WC1E 6BT, United Kingdom 2 Lyon University, UMR 5600 CNRS EVS, 42023 Saint-Etienne cedex 2, France 3 Conservatoire d’Espaces Naturels de Nouvelle-Aquitaine, Réserve Naturelle Nationale de la Tourbière des Dauges, Sauvagnac, 87340 Saint-Léger-la-Montagne, France 4 Université Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, UMR 5275, 38041 Grenoble, France 10 5 Bureau de Recherches Géologiques et Minières, ISTO, UMR 7327, 45060 Orléans, France Correspondence to: Arnaud Duranel ([email protected]). RESPONSE TO REFEREES’ COMMENTS 15 REFEREE #1 We thank Anonymous Referee #1 for their comments and suggestions on the original paper. We believe that the paper has been improved considerably by responding to the issues that they raised and by incorporating their suggested revisions. Summary and Comment 1: The referee suggested that we “see the main generic contribution of the study as a demonstration of the limits of the 20 “impermeable bedrock paradigm””. Although our study does indeed contradict this paradigm, we do not see this as its main contribution, nor its main objective. The “impermeable bedrock paradigm” was only referenced in the Introduction and Conclusion of the original paper, to frame our study within the wider context of hydrological research within hard rock regions. It is not central to the aims of the study and the methods employed which, as discussed below, focus on mire hydrology. -
Simulation and Analysis of Conjunctive Use with MODFLOW's
Simulation and Analysis of Conjunctive Use with MODFLOW’s Farm Process by R. T. Hanson1,W.Schmid2,C.C.Faunt3, and B. Lockwood4 Abstract The extension of MODFLOW onto the landscape with the Farm Process (MF-FMP) facilitates fully coupled simulation of the use and movement of water from precipitation, streamflow and runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. This allows for more complete analysis of conjunctive use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within “water-balance subregions” comprised of one or more model cells that can represent a single farm, a group of farms, or other hydrologic or geopolitical entities. Simulation of micro-agriculture in the Pajaro Valley and macro-agriculture in the Central Valley are used to demonstrate the utility of MF-FMP. For Pajaro Valley, the simulation of an aquifer storage and recovery system and related coastal water distribution system to supplant coastal pumpage was analyzed subject to climate variations and additional supplemental sources such as local runoff. For the Central Valley, analysis of conjunctive use from different hydrologic settings of northern and southern subregions shows how and when precipitation, surface water, and groundwater are important to conjunctive use. The examples show that through MF-FMP’s ability to simulate natural and anthropogenic components of the hydrologic cycle, the distribution and dynamics of supply and demand can be analyzed, understood, and managed.