Managing DOCSIS Capacity Over HFC Networks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ipv6 Support in Home Gateways
IPv6 Support in Home Gateways Chris Donley [email protected] 0 Agenda • Introduction • Basic Home Gateway Architecture • DOCSIS® Support for IPv6 • CableLabs eRouter Specification • IETF IPv6 CPE Router • IPv6 Transition Technologies • Ongoing Initiatives Cable Television Laboratories, Inc. 2010. All Rights Reserved. 1 Introduction • Service Providers are beginning to offer IPv6 service • Home Gateways are instrumental in determining IPv6 service characteristics • CableLabs and the IETF have developed compatible specifications for IPv6 Home Gateways • During the transition to IPv6, co-existence with IPv4 is required » Many clients will not be upgradable to IPv6 » A significant amount of content will remain accessible only through IPv4 • As we approach IPv4 exhaustion, new transition technologies such as NAT444, Dual-Stack Lite, and 6RD will be important for such gateways. Cable Television Laboratories, Inc. 2010. All Rights Reserved. 2 Basic Home Gateway Architecture • Basic IPv6 Home Gateways are envisioned as extensions of existing IPv4 gateways » One or two customer-facing interfaces » One physical service provider-facing interface • Gateways assign addresses to CPE devices » Stateless Address Autoconfiguration (SLAAC, RFC 4862) » Stateful DHCPv6 (RFC 3315) • Gateways provide some level of security to home networks Cable Television Laboratories, Inc. 2010. All Rights Reserved. 3 Home Gateway Architecture Cable Television Laboratories, Inc. 2010. All Rights Reserved. 4 DOCSIS® Support for IPv6 • DOCSIS specifications define a broadband -
A Comparison of Mechanisms for Improving TCP Performance Over Wireless Links
A Comparison of Mechanisms for Improving TCP Performance over Wireless Links Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan Seshan and Randy H. Katz1 {hari,padmanab,ss,randy}@cs.berkeley.edu Computer Science Division, Department of EECS, University of California at Berkeley Abstract the estimated round-trip delay and the mean linear deviation from it. The sender identifies the loss of a packet either by Reliable transport protocols such as TCP are tuned to per- the arrival of several duplicate cumulative acknowledg- form well in traditional networks where packet losses occur ments or the absence of an acknowledgment for the packet mostly because of congestion. However, networks with within a timeout interval equal to the sum of the smoothed wireless and other lossy links also suffer from significant round-trip delay and four times its mean deviation. TCP losses due to bit errors and handoffs. TCP responds to all reacts to packet losses by dropping its transmission (conges- losses by invoking congestion control and avoidance algo- tion) window size before retransmitting packets, initiating rithms, resulting in degraded end-to-end performance in congestion control or avoidance mechanisms (e.g., slow wireless and lossy systems. In this paper, we compare sev- start [13]) and backing off its retransmission timer (Karn’s eral schemes designed to improve the performance of TCP Algorithm [16]). These measures result in a reduction in the in such networks. We classify these schemes into three load on the intermediate links, thereby controlling the con- broad categories: end-to-end protocols, where loss recovery gestion in the network. is performed by the sender; link-layer protocols, that pro- vide local reliability; and split-connection protocols, that Unfortunately, when packets are lost in networks for rea- break the end-to-end connection into two parts at the base sons other than congestion, these measures result in an station. -
Lecture 8: Overview of Computer Networking Roadmap
Lecture 8: Overview of Computer Networking Slides adapted from those of Computer Networking: A Top Down Approach, 5th edition. Jim Kurose, Keith Ross, Addison-Wesley, April 2009. Roadmap ! what’s the Internet? ! network edge: hosts, access net ! network core: packet/circuit switching, Internet structure ! performance: loss, delay, throughput ! media distribution: UDP, TCP/IP 1 What’s the Internet: “nuts and bolts” view PC ! millions of connected Mobile network computing devices: server Global ISP hosts = end systems wireless laptop " running network apps cellular handheld Home network ! communication links Regional ISP " fiber, copper, radio, satellite access " points transmission rate = bandwidth Institutional network wired links ! routers: forward packets (chunks of router data) What’s the Internet: “nuts and bolts” view ! protocols control sending, receiving Mobile network of msgs Global ISP " e.g., TCP, IP, HTTP, Skype, Ethernet ! Internet: “network of networks” Home network " loosely hierarchical Regional ISP " public Internet versus private intranet Institutional network ! Internet standards " RFC: Request for comments " IETF: Internet Engineering Task Force 2 A closer look at network structure: ! network edge: applications and hosts ! access networks, physical media: wired, wireless communication links ! network core: " interconnected routers " network of networks The network edge: ! end systems (hosts): " run application programs " e.g. Web, email " at “edge of network” peer-peer ! client/server model " client host requests, receives -
Bit & Baud Rate
What’s The Difference Between Bit Rate And Baud Rate? Apr. 27, 2012 Lou Frenzel | Electronic Design Serial-data speed is usually stated in terms of bit rate. However, another oft- quoted measure of speed is baud rate. Though the two aren’t the same, similarities exist under some circumstances. This tutorial will make the difference clear. Table Of Contents Background Bit Rate Overhead Baud Rate Multilevel Modulation Why Multiple Bits Per Baud? Baud Rate Examples References Background Most data communications over networks occurs via serial-data transmission. Data bits transmit one at a time over some communications channel, such as a cable or a wireless path. Figure 1 typifies the digital-bit pattern from a computer or some other digital circuit. This data signal is often called the baseband signal. The data switches between two voltage levels, such as +3 V for a binary 1 and +0.2 V for a binary 0. Other binary levels are also used. In the non-return-to-zero (NRZ) format (Fig. 1, again), the signal never goes to zero as like that of return- to-zero (RZ) formatted signals. 1. Non-return to zero (NRZ) is the most common binary data format. Data rate is indicated in bits per second (bits/s). Bit Rate The speed of the data is expressed in bits per second (bits/s or bps). The data rate R is a function of the duration of the bit or bit time (TB) (Fig. 1, again): R = 1/TB Rate is also called channel capacity C. If the bit time is 10 ns, the data rate equals: R = 1/10 x 10–9 = 100 million bits/s This is usually expressed as 100 Mbits/s. -
A Special Supplement of CED Magazine. the a T of ADDRESS ILITY
THE MAGAZINE OF BROADBAND TECHNOLOGY/APRIL 1990 A special supplement of CED Magazine. THE A T OF ADDRESS ILITY There's an art to creating an addressable cable system. The Pioneer BA-6000 converter brings all the right elements together to create state-of-the-art addressability. The composition of such features as volume control, multi-vendor scrambling compatibility, PPV/IPPV capability, VCR program timer, VCR filter, four digit display, and unmatched security illustrate the lasting impression of apicture-perfect addressable converter. The BA-6000 paints an attractive picture for cable operators. (11) PION COW 600 East Crescent Ave. •Upper Saddle River, NJ 07458 (201)327-6400 Outside New Jersey (800) 421-6450 (c) Copyright 1990 Reader Service Number 1 Perfection in Dielectrics. Trilogy Communications built abetter means immediate savings. coaxial cable -MC 2-and the CATV industry is All this plus the highly respected Trilogy letting us know about it. program of delivery and service provides our The MC2 air dielectric combines excellent customers with the attention and performance product durability and flexibility with air-tight that are second to none. fully-bonded construction. Our 93% velocity Our most prized dynamics are your of propagation provides the purest signal acceptance of our best effort so far -MC 2 air over the longest chstance -fewer amplifiers dielectric coaxial cables. Reader Service Number 2 COMMUNICATIONS INC. Cat or write for our free sample and brochure: TRILOGY COMMUNICATIONS INC., 2910 Highway 80 East, Pearl, Mississippi 39208 800-874-5649 •601-932-4461 •201-462-8700 CR171 THE PROBLEM Direct pickup interference 8 Subscribers who plug cable directly into their cable-ready TVs are plagued with ghosts and beats caused by poor quality consumer electronics. -
DOCSIS 3.1 Physical Layer Specification
Data-Over-Cable Service Interface Specifications DOCSIS® 3.1 Physical Layer Specification CM-SP-PHYv3.1-I10-170111 ISSUED Notice This DOCSIS specification is the result of a cooperative effort undertaken at the direction of Cable Television Laboratories, Inc. for the benefit of the cable industry and its customers. You may download, copy, distribute, and reference the documents herein only for the purpose of developing products or services in accordance with such documents, and educational use. Except as granted by CableLabs® in a separate written license agreement, no license is granted to modify the documents herein (except via the Engineering Change process), or to use, copy, modify or distribute the documents for any other purpose. This document may contain references to other documents not owned or controlled by CableLabs. Use and understanding of this document may require access to such other documents. Designing, manufacturing, distributing, using, selling, or servicing products, or providing services, based on this document may require intellectual property licenses from third parties for technology referenced in this document. To the extent this document contains or refers to documents of third parties, you agree to abide by the terms of any licenses associated with such third-party documents, including open source licenses, if any. Cable Television Laboratories, Inc. 2013-2017 CM-SP-PHYv3.1-I10-170111 Data-Over-Cable Service Interface Specifications DISCLAIMER This document is furnished on an "AS IS" basis and neither CableLabs nor its members provides any representation or warranty, express or implied, regarding the accuracy, completeness, noninfringement, or fitness for a particular purpose of this document, or any document referenced herein. -
19 Automated Test System for Addressable Descramblers 35
CCommunications Engineering Digest/The Magazine of Broadband Technology 19 Automated test system for addressable descramblers 35 Using microprocessors for headend/system reliability 47 Computer graphics for drafting and design 48 Product Profile: Trunk and distribution cable 66 Cable-Tec Expo exhibitors booth guide May 1983 FROM MINI TO MAXI.... THE vosE CHOICE IN HEADEND EQUIPMENT Whether it's 5 channels for an SMATV acoustic wave) filters and advanced solid state installation or 108 or more channels for a major circuitry to insure accurate signals with less HRC installation, the right choice is Phasecom— maintenance. And whether you need a "Mini" or the headend-wise company. We've specialized in a "Maxi," Phasecom can supply it in trouble- headend electronics for over a decade now, saving pre-pack cabinets completely wired and gaining the experience and know-how to pro- ready for plug-in. vide you with important benefits—like more Find out the facts today about Phasecom performance for less cost, increased reliability, headend systems. After all, it's the wise thing faster installation and a superior customer to do! support program. Phasecom Corp., 6365 Arizona Circle, All Phasecom modulators, demodulators, Los Angeles, CA 90045, Phone: (213) 641-3501, and heterodyne processors feature SAW (surface Telex: 181899 PHASECOM LSA Ji PHASECOM CORP. For testing satellite for quick and accurate indication So if you work with satellite communications components and of each parameter. A variable communications, and need a systems, the Wavetek Model 1084 is marker across the full sweep allows microwave sweep generator, the right on the money. Its 3.5 to 4.5 instant centering upon any portion Wavetek Model 1084 has your GHz frequency range blankets the of the sweep, and a simple push- numbers. -
Docsis™ Reliability = Increased Revenue
IMPROVING DOCSIS RELIABILITY DOCSIS™ RELIABILITY = INCREASED REVENUE Data-over-cable System Interface Specification (DOCSIS) is the vehicle for cable operators to obtain immediate revenue generating opportunities such as Broadband Data, Voice over IP, IP Video-on-Demand, and countless emerging IP-based technologies. These growth channels rely on cable operators obtaining and retaining subscribers. Subscriber satisfaction with new services is a direct function of DOCSIS network reliability. Improving DOCSIS network reliability requires new skills and new test equipment, in addition to the skills and test equipment we possess as an industry today. DOCSIS WORKING MODEL Developed by CableLabs, DOCSIS is the specification which provides a standard for bridging Ethernet data over a Hybrid- Figure 1. DOCSIS Working Model Fiber Coaxial (HFC) network. The DOCSIS specification defines the method by which DOCSIS-based devices operate TROUBLESHOOTING DOCSIS on the RF plant. Fundamentally, there are three layers of communication which must be understood in order to In assessing and improving DOCSIS network reliability, it is analyze a DOCSIS network. critical that all three layers of the DOCSIS working model are analyzed. Impairments that occur in the RF plant may This model is best illustrated in figure 1. The base of the appear to be DOCSIS or IP related problems, similarly pyramid represents the physical layer of DOCSIS. This is problems in the DOCSIS MAC or IP protocols may appear as where data is modulated and up-converted to an RF carrier RF impairments. This creates Finger Pointing; which often for transport across the HFC plant. The middle of the results in significant time loss and money expenditures pyramid is the DOCSIS Media Access Control (MAC) layer. -
Thread 1.2 in Commercial White Paper
Thread 1.2 in Commercial White Paper September 2019 This Thread Technical white paper is provided for reference purposes only. The full technical specification is available to Thread Group members. To join and gain access, please follow this link: http://threadgroup.org/Join.aspx . If you are already a member, the full specification is available in the Thread Group Portal: http://portal.threadgroup.org . If there are questions or comments on these technical papers, please send them to [email protected]. This document and the information contained herein is provided on an “AS IS” basis and THE THREAD GROUP DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO (A) ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OF THIRD PARTIES (INCLUDING WITHOUT LIMITATION ANY INTELLECTUAL PROPERTY RIGHTS INCLUDING PATENT, COPYRIGHT OR TRADEMARK RIGHTS) OR (B) ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NONINFRINGEMENT. IN NO EVENT WILL THE THREAD GROUP BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OF DATA, INTERRUPTION OF BUSINESS, OR FOR ANY OTHER DIRECT, INDIRECT, SPECIAL OR EXEMPLARY, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY KIND, IN CONTRACT OR IN TORT, IN CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED HEREIN, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE. Copyright © 2019 Thread Group, Inc. All rights reserved. 1 Thread 1.2 in Commercial White Paper Date: August 2019 Revision History Revision Date Comments 1.0 September 2019 First public release Table of Contents Introduction ..................................................................................................................... 3 I. -
LTE-Advanced
Table of Contents INTRODUCTION........................................................................................................ 5 EXPLODING DEMAND ............................................................................................... 8 Smartphones and Tablets ......................................................................................... 8 Application Innovation .............................................................................................. 9 Internet of Things .................................................................................................. 10 Video Streaming .................................................................................................... 10 Cloud Computing ................................................................................................... 11 5G Data Drivers ..................................................................................................... 11 Global Mobile Adoption ........................................................................................... 11 THE PATH TO 5G ..................................................................................................... 15 Expanding Use Cases ............................................................................................. 15 1G to 5G Evolution ................................................................................................. 17 5G Concepts and Architectures ................................................................................ 20 Information-Centric -
RTM-100 Troposcatter Modem Improved Range, Stability and Throughput for Troposcatter Communications
RTM-100 Troposcatter Modem Improved range, stability and throughput for troposcatter communications The Raytheon RTM-100 troposcatter modem sets new milestones in troposcatter communications featuring 100 MB throughput. Benefits Superior Performance The use of turbo-coding An industry first, the waveform forward error correction The RTM-100 comes as n Operation up to 100 Mbps of Raytheon’s RTM-100 (FEC) and state-of-the-art a compact 2U rack with troposcatter modem offers digital processing ensures an n Unique waveform for multipath standard 70 MHz inputs/ strong resiliency to multipath, unprecedented throughput cancellation and optimized outputs. algorithms for fading immunity which negatively affects up to 100 Mbps. The modem n Quad diversity with soft decision troposcatter communications. integrates a non-linear digital algorithm Combined with an optimized pre-distortion capability. time-interleaving process and n Highly spectrum-efficient FEC The Gigabit Ethernet (GbE) signal channel diversity, the processing data port and the ability RTM- 100 delivers superior n Dual transmission path with to command and control transmission performance. independent digital pre- the operation over Simple The sophisticated algorithms, distortion Network Management including Doppler n Ethernet data and control Protocol (SNMP) simplify the compensation and maximum interface (SNMP and Web integration of the device into ratio combining between the graphical user interface) a net-centric Internet protocol four diversity inputs, ensure n Compact 2U 19-inch -
SFR Transition to 3Rd Wave
Future of Video Videoscape Architecture Overview Admir Hadzimahovic Systems Engineering Manager – EME VTG May 2011 © 2010 Cisco and/or its affiliates. All rights reserved. Cisco Public 1 Videoscape Architecture Overview Agenda: 1. Key IPTV video drivers 2. Claud – Mediasuit Platform 3. Network and ABR 4. Client – Home Gateway 5. Conductor 6. Demo © 2010 Cisco and/or its affiliates. All rights reserved. Cisco Public 2 CES Las Vegas Videoscape © 2010 Cisco and/or its affiliates. All rights reserved. Cisco Public 3 Consumer Broadcasters CE/Over The Top Service Provider Behavior and Media Video = 91% of consumer New distribution platform & Brand power Multi-screen offering IP traffic by 2014 interactive content – becoming table stakes Sky Sport TV on iPad / RTL on iPhone & iPad 20% New business models – Rising churn and Netflix = 20% of US Hulu 2009 revenue: $100M Building application & Subscriber acquisition cost st downstream internet 1 half 2010 revenue: $100M content eco-systems traffic in peak times Partnerships & Online Video Snacking Hybrid Broadcast Broadband TV: New Streaming Vertical Integration 11.4 Hour /month HbbTV subscription services Experience Diminishing SP Evolving Legacy Fragmentation Network Relevance Infrastructure Consumer Experience Business Models Content Fragmentation Subscription Fragmentation Broadcast, Premium, UGC Broadband, TV, Mobile, Movie rentals, OTT Device & Screen Fragmentation Free vs. Paid TV, PC, Mobile, Gaming, PDA Interactivity Fragmentation Ad Dollars Fragmentation Lean back, Lean forward, Social Transition from linear TV to online © 2010 Cisco and/or its affiliates. All rights reserved. Cisco Public 8 Presentation_ID © 2010 Cisco Systems, Inc. All rights reserved. Cisco Public 21 But SP’s Struggle to Deliver Online Content Intuitive Unified Navigation on TV /STB for All Content Multi-screen Web 2.0 Experiences on TV experience TV/STB © 2010 Cisco and/or its affiliates.