Pyomo — Optimization Modeling in Python Second Edition Springer Optimization and Its Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Julia, My New Friend for Computing and Optimization? Pierre Haessig, Lilian Besson
Julia, my new friend for computing and optimization? Pierre Haessig, Lilian Besson To cite this version: Pierre Haessig, Lilian Besson. Julia, my new friend for computing and optimization?. Master. France. 2018. cel-01830248 HAL Id: cel-01830248 https://hal.archives-ouvertes.fr/cel-01830248 Submitted on 4 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 1 « Julia, my New frieNd for computiNg aNd optimizatioN? » Intro to the Julia programming language, for MATLAB users Date: 14th of June 2018 Who: Lilian Besson & Pierre Haessig (SCEE & AUT team @ IETR / CentraleSupélec campus Rennes) « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 2 AgeNda for today [30 miN] 1. What is Julia? [5 miN] 2. ComparisoN with MATLAB [5 miN] 3. Two examples of problems solved Julia [5 miN] 4. LoNger ex. oN optimizatioN with JuMP [13miN] 5. LiNks for more iNformatioN ? [2 miN] « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 3 1. What is Julia ? Open-source and free programming language (MIT license) Developed since 2012 (creators: MIT researchers) Growing popularity worldwide, in research, data science, finance etc… Multi-platform: Windows, Mac OS X, GNU/Linux.. -
Solving Mixed Integer Linear and Nonlinear Problems Using the SCIP Optimization Suite
Takustraße 7 Konrad-Zuse-Zentrum D-14195 Berlin-Dahlem fur¨ Informationstechnik Berlin Germany TIMO BERTHOLD GERALD GAMRATH AMBROS M. GLEIXNER STEFAN HEINZ THORSTEN KOCH YUJI SHINANO Solving mixed integer linear and nonlinear problems using the SCIP Optimization Suite Supported by the DFG Research Center MATHEON Mathematics for key technologies in Berlin. ZIB-Report 12-27 (July 2012) Herausgegeben vom Konrad-Zuse-Zentrum f¨urInformationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Telefon: 030-84185-0 Telefax: 030-84185-125 e-mail: [email protected] URL: http://www.zib.de ZIB-Report (Print) ISSN 1438-0064 ZIB-Report (Internet) ISSN 2192-7782 Solving mixed integer linear and nonlinear problems using the SCIP Optimization Suite∗ Timo Berthold Gerald Gamrath Ambros M. Gleixner Stefan Heinz Thorsten Koch Yuji Shinano Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, fberthold,gamrath,gleixner,heinz,koch,[email protected] July 31, 2012 Abstract This paper introduces the SCIP Optimization Suite and discusses the ca- pabilities of its three components: the modeling language Zimpl, the linear programming solver SoPlex, and the constraint integer programming frame- work SCIP. We explain how these can be used in concert to model and solve challenging mixed integer linear and nonlinear optimization problems. SCIP is currently one of the fastest non-commercial MIP and MINLP solvers. We demonstrate the usage of Zimpl, SCIP, and SoPlex by selected examples, give an overview of available interfaces, and outline plans for future development. ∗A Japanese translation of this paper will be published in the Proceedings of the 24th RAMP Symposium held at Tohoku University, Miyagi, Japan, 27{28 September 2012, see http://orsj.or. -
Numericaloptimization
Numerical Optimization Alberto Bemporad http://cse.lab.imtlucca.it/~bemporad/teaching/numopt Academic year 2020-2021 Course objectives Solve complex decision problems by using numerical optimization Application domains: • Finance, management science, economics (portfolio optimization, business analytics, investment plans, resource allocation, logistics, ...) • Engineering (engineering design, process optimization, embedded control, ...) • Artificial intelligence (machine learning, data science, autonomous driving, ...) • Myriads of other applications (transportation, smart grids, water networks, sports scheduling, health-care, oil & gas, space, ...) ©2021 A. Bemporad - Numerical Optimization 2/102 Course objectives What this course is about: • How to formulate a decision problem as a numerical optimization problem? (modeling) • Which numerical algorithm is most appropriate to solve the problem? (algorithms) • What’s the theory behind the algorithm? (theory) ©2021 A. Bemporad - Numerical Optimization 3/102 Course contents • Optimization modeling – Linear models – Convex models • Optimization theory – Optimality conditions, sensitivity analysis – Duality • Optimization algorithms – Basics of numerical linear algebra – Convex programming – Nonlinear programming ©2021 A. Bemporad - Numerical Optimization 4/102 References i ©2021 A. Bemporad - Numerical Optimization 5/102 Other references • Stephen Boyd’s “Convex Optimization” courses at Stanford: http://ee364a.stanford.edu http://ee364b.stanford.edu • Lieven Vandenberghe’s courses at UCLA: http://www.seas.ucla.edu/~vandenbe/ • For more tutorials/books see http://plato.asu.edu/sub/tutorials.html ©2021 A. Bemporad - Numerical Optimization 6/102 Optimization modeling What is optimization? • Optimization = assign values to a set of decision variables so to optimize a certain objective function • Example: Which is the best velocity to minimize fuel consumption ? fuel [ℓ/km] velocity [km/h] 0 30 60 90 120 160 ©2021 A. -
Pysp: Modeling and Solving Stochastic Programs in Python
Noname manuscript No. (will be inserted by the editor) PySP: Modeling and Solving Stochastic Programs in Python Jean-Paul Watson · David L. Woodruff · William E. Hart Received: September 6, 2010. Abstract Although stochastic programming is a powerful tool for modeling decision- making under uncertainty, various impediments have historically prevented its wide- spread use. One key factor involves the ability of non-specialists to easily express stochastic programming problems as extensions of deterministic models, which are often formulated first. A second key factor relates to the difficulty of solving stochastic programming models, particularly the general mixed-integer, multi-stage case. Intri- cate, configurable, and parallel decomposition strategies are frequently required to achieve tractable run-times. We simultaneously address both of these factors in our PySP software package, which is part of the COIN-OR Coopr open-source Python project for optimization. To formulate a stochastic program in PySP, the user speci- fies both the deterministic base model and the scenario tree with associated uncertain parameters in the Pyomo open-source algebraic modeling language. Given these two models, PySP provides two paths for solution of the corresponding stochastic program. The first alternative involves writing the extensive form and invoking a standard deter- ministic (mixed-integer) solver. For more complex stochastic programs, we provide an implementation of Rockafellar and Wets’ Progressive Hedging algorithm. Our particu- lar focus is on the use of Progressive Hedging as an effective heuristic for approximating Jean-Paul Watson Sandia National Laboratories Discrete Math and Complex Systems Department PO Box 5800, MS 1318 Albuquerque, NM 87185-1318 E-mail: [email protected] David L. -
Load Management and Demand Response in Small and Medium Data Centers
Thiago Lara Vasques Load Management and Demand Response in Small and Medium Data Centers PhD Thesis in Sustainable Energy Systems, supervised by Professor Pedro Manuel Soares Moura, submitted to the Department of Mechanical Engineering, Faculty of Sciences and Technology of the University of Coimbra May 2018 Load Management and Demand Response in Small and Medium Data Centers by Thiago Lara Vasques PhD Thesis in Sustainable Energy Systems in the framework of the Energy for Sustainability Initiative of the University of Coimbra and MIT Portugal Program, submitted to the Department of Mechanical Engineering, Faculty of Sciences and Technology of the University of Coimbra Thesis Supervisor Professor Pedro Manuel Soares Moura Department of Electrical and Computers Engineering, University of Coimbra May 2018 This thesis has been developed under the Energy for Sustainability Initiative of the University of Coimbra and been supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil). ACKNOWLEDGEMENTS First and foremost, I would like to thank God for coming to the conclusion of this work with health, courage, perseverance and above all, with a miraculous amount of love that surrounds and graces me. The work of this thesis has also the direct and indirect contribution of many people, who I feel honored to thank. I would like to express my gratitude to my supervisor, Professor Pedro Manuel Soares Moura, for his generosity in opening the doors of the University of Coimbra by giving me the possibility of his orientation when I was a stranger. Subsequently, by his teachings, guidance and support in difficult times. You, Professor, inspire me with your humbleness given the knowledge you possess. -
Using COIN-OR to Solve the Uncapacitated Facility Location Problem
The Uncapacitated Facility Location Problem Developing a Solver Additional Resources Using COIN-OR to Solve the Uncapacitated Facility Location Problem Ted Ralphs1 Matthew Saltzman 2 Matthew Galati 3 1COR@L Lab Department of Industrial and Systems Engineering Lehigh University 2Department of Mathematical Sciences Clemson University 3Analytical Solutions SAS Institute EURO XXI, July 4, 2006 Ted Ralphs, Matthew Saltzman , Matthew Galati Using COIN-OR to Solve the Uncapacitated Facility Location Problem The Uncapacitated Facility Location Problem Developing a Solver Additional Resources Outline 1 The Uncapacitated Facility Location Problem UFL Formulation Cutting Planes 2 Developing a Solver The ufl Class COIN Tools Putting It All Together 3 Additional Resources Ted Ralphs, Matthew Saltzman , Matthew Galati Using COIN-OR to Solve the Uncapacitated Facility Location Problem The Uncapacitated Facility Location Problem UFL Formulation Developing a Solver Cutting Planes Additional Resources Input Data The following are the input data needed to describe an instance of the uncapacitated facility location problem (UFL): Data a set of depots N = {1, ..., n}, a set of clients M = {1, ..., m}, the unit transportation cost cij to service client i from depot j, the fixed cost fj for using depot j Variables xij is the amount of the demand for client i satisfied from depot j yj is 1 if the depot is used, 0 otherwise Ted Ralphs, Matthew Saltzman , Matthew Galati Using COIN-OR to Solve the Uncapacitated Facility Location Problem The Uncapacitated Facility -
Pyomo Documentation Release 5.6.2.Dev0
Pyomo Documentation Release 5.6.2.dev0 Pyomo Feb 06, 2019 Contents 1 Installation 3 1.1 Using CONDA..............................................3 1.2 Using PIP.................................................3 2 Citing Pyomo 5 2.1 Pyomo..................................................5 2.2 PySP...................................................5 3 Pyomo Overview 7 3.1 Mathematical Modeling.........................................7 3.2 Overview of Modeling Components and Processes...........................9 3.3 Abstract Versus Concrete Models....................................9 3.4 Simple Models.............................................. 10 4 Pyomo Modeling Components 17 4.1 Sets.................................................... 17 4.2 Parameters................................................ 23 4.3 Variables................................................. 24 4.4 Objectives................................................ 25 4.5 Constraints................................................ 26 4.6 Expressions................................................ 26 4.7 Suffixes.................................................. 31 5 Solving Pyomo Models 41 5.1 Solving ConcreteModels......................................... 41 5.2 Solving AbstractModels......................................... 41 5.3 pyomo solve Command....................................... 41 5.4 Supported Solvers............................................ 42 6 Working with Pyomo Models 43 6.1 Repeated Solves............................................. 43 6.2 Changing -
Research and Development of an Open Source System for Algebraic Modeling Languages
Vilnius University Institute of Data Science and Digital Technologies LITHUANIA INFORMATICS (N009) RESEARCH AND DEVELOPMENT OF AN OPEN SOURCE SYSTEM FOR ALGEBRAIC MODELING LANGUAGES Vaidas Juseviˇcius October 2020 Technical Report DMSTI-DS-N009-20-05 VU Institute of Data Science and Digital Technologies, Akademijos str. 4, Vilnius LT-08412, Lithuania www.mii.lt Abstract In this work, we perform an extensive theoretical and experimental analysis of the char- acteristics of five of the most prominent algebraic modeling languages (AMPL, AIMMS, GAMS, JuMP, Pyomo), and modeling systems supporting them. In our theoretical comparison, we evaluate how the features of the reviewed languages match with the requirements for modern AMLs, while in the experimental analysis we use a purpose-built test model li- brary to perform extensive benchmarks of the various AMLs. We then determine the best performing AMLs by comparing the time needed to create model instances for spe- cific type of optimization problems and analyze the impact that the presolve procedures performed by various AMLs have on the actual problem-solving times. Lastly, we pro- vide insights on which AMLs performed best and features that we deem important in the current landscape of mathematical optimization. Keywords: Algebraic modeling languages, Optimization, AMPL, GAMS, JuMP, Py- omo DMSTI-DS-N009-20-05 2 Contents 1 Introduction ................................................................................................. 4 2 Algebraic Modeling Languages ......................................................................... -
Simulation and Application of GPOPS for Trajectory Optimization and Mission Planning Tool Danielle E
Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-10-2010 Simulation and Application of GPOPS for Trajectory Optimization and Mission Planning Tool Danielle E. Yaple Follow this and additional works at: https://scholar.afit.edu/etd Part of the Systems Engineering and Multidisciplinary Design Optimization Commons Recommended Citation Yaple, Danielle E., "Simulation and Application of GPOPS for Trajectory Optimization and Mission Planning Tool" (2010). Theses and Dissertations. 2060. https://scholar.afit.edu/etd/2060 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. SIMULATION AND APPLICATION OF GPOPS FOR A TRAJECTORY OPTIMIZATION AND MISSION PLANNING TOOL THESIS Danielle E. Yaple, 2nd Lieutenant, USAF AFIT/GAE/ENY/10-M29 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT/GAE/ENY/10-M29 SIMULATION AND APPLICATION OF GPOPS FOR A TRAJECTORY OPTIMIZATION AND MISSION PLANNING TOOL THESIS Presented to the Faculty Department of Aeronautics and Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Aeronautical Engineering Danielle E. -
Open Source Tools for Optimization in Python
Open Source Tools for Optimization in Python Ted Ralphs Sage Days Workshop IMA, Minneapolis, MN, 21 August 2017 T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Outline 1 Introduction 2 COIN-OR 3 Modeling Software 4 Python-based Modeling Tools PuLP/DipPy CyLP yaposib Pyomo T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Outline 1 Introduction 2 COIN-OR 3 Modeling Software 4 Python-based Modeling Tools PuLP/DipPy CyLP yaposib Pyomo T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Caveats and Motivation Caveats I have no idea about the background of the audience. The talk may be either too basic or too advanced. Why am I here? I’m not a Sage developer or user (yet!). I’m hoping this will be a chance to get more involved in Sage development. Please ask lots of questions so as to guide me in what to dive into! T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Mathematical Optimization Mathematical optimization provides a formal language for describing and analyzing optimization problems. Elements of the model: Decision variables Constraints Objective Function Parameters and Data The general form of a mathematical optimization problem is: min or max f (x) (1) 8 9 < ≤ = s.t. gi(x) = bi (2) : ≥ ; x 2 X (3) where X ⊆ Rn might be a discrete set. T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Types of Mathematical Optimization Problems The type of a mathematical optimization problem is determined primarily by The form of the objective and the constraints. -
Computing in Operations Research Using Julia
Computing in Operations Research using Julia Miles Lubin and Iain Dunning MIT Operations Research Center INFORMS 2013 { October 7, 2013 1 / 25 High-level, high-performance, open-source dynamic language for technical computing. Keep productivity of dynamic languages without giving up speed. Familiar syntax Python+PyPy+SciPy+NumPy integrated completely. Latest concepts in programming languages. 2 / 25 Claim: \close-to-C" speeds Within a factor of 2 Performs well on microbenchmarks, but how about real computational problems in OR? Can we stop writing solvers in C++? 3 / 25 Technical advancements in Julia: Fast code generation (JIT via LLVM). Excellent connections to C libraries - BLAS/LAPACK/... Metaprogramming. Optional typing, multiple dispatch. 4 / 25 Write generic code, compile efficient type-specific code C: (fast) int f() { int x = 1, y = 2; return x+y; } Julia: (No type annotations) Python: (slow) function f() def f(): x = 1; y = 2 x = 1; y = 2 return x + y return x+y end 5 / 25 Requires type inference by compiler Difficult to add onto exiting languages Available in MATLAB { limited scope PyPy for Python { incompatible with many libraries Julia designed from the ground up to support type inference efficiently 6 / 25 Simplex algorithm \Bread and butter" of operations research Computationally very challenging to implement efficiently1 Matlab implementations too slow to be used in practice High-quality open-source codes exist in C/C++ Can Julia compete? 1Bixby, Robert E. "Solving Real-World Linear Programs: A Decade and More of Progress", Operations Research, Vol. 50, pp. 3{15, 2002. 7 / 25 Implemented benchmark operations in Julia, C++, MATLAB, Python. -
The TOMLAB NLPLIB Toolbox for Nonlinear Programming 1
AMO - Advanced Modeling and Optimization Volume 1, Number 1, 1999 The TOMLAB NLPLIB Toolbox 1 for Nonlinear Programming 2 3 Kenneth Holmstrom and Mattias Bjorkman Center for Mathematical Mo deling, Department of Mathematics and Physics Malardalen University, P.O. Box 883, SE-721 23 Vasteras, Sweden Abstract The pap er presents the to olb ox NLPLIB TB 1.0 (NonLinear Programming LIBrary); a set of Matlab solvers, test problems, graphical and computational utilities for unconstrained and constrained optimization, quadratic programming, unconstrained and constrained nonlinear least squares, b ox-b ounded global optimization, global mixed-integer nonlinear programming, and exp onential sum mo del tting. NLPLIB TB, like the to olb ox OPERA TB for linear and discrete optimization, is a part of TOMLAB ; an environment in Matlab for research and teaching in optimization. TOMLAB currently solves small and medium size dense problems. Presently, NLPLIB TB implements more than 25 solver algorithms, and it is p ossible to call solvers in the Matlab Optimization Toolbox. MEX- le interfaces are prepared for seven Fortran and C solvers, and others are easily added using the same typ e of interface routines. Currently, MEX- le interfaces havebeendevelop ed for MINOS, NPSOL, NPOPT, NLSSOL, LPOPT, QPOPT and LSSOL. There are four ways to solve a problem: by a direct call to the solver routine or a call to amulti-solver driver routine, or interactively, using the Graphical User Interface (GUI) or a menu system. The GUI may also be used as a prepro cessor to generate Matlab co de for stand-alone runs. If analytical derivatives are not available, automatic di erentiation is easy using an interface to ADMAT/ADMIT TB.