One-Dimensional Trap Models
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												
												Introduction to Lévy Processes
Introduction to Lévy Processes Huang Lorick [email protected] Document type These are lecture notes. Typos, errors, and imprecisions are expected. Comments are welcome! This version is available at http://perso.math.univ-toulouse.fr/lhuang/enseignements/ Year of publication 2021 Terms of use This work is licensed under a Creative Commons Attribution 4.0 International license: https://creativecommons.org/licenses/by/4.0/ Contents Contents 1 1 Introduction and Examples 2 1.1 Infinitely divisible distributions . 2 1.2 Examples of infinitely divisible distributions . 2 1.3 The Lévy Khintchine formula . 4 1.4 Digression on Relativity . 6 2 Lévy processes 8 2.1 Definition of a Lévy process . 8 2.2 Examples of Lévy processes . 9 2.3 Exploring the Jumps of a Lévy Process . 11 3 Proof of the Levy Khintchine formula 19 3.1 The Lévy-Itô Decomposition . 19 3.2 Consequences of the Lévy-Itô Decomposition . 21 3.3 Exercises . 23 3.4 Discussion . 23 4 Lévy processes as Markov Processes 24 4.1 Properties of the Semi-group . 24 4.2 The Generator . 26 4.3 Recurrence and Transience . 28 4.4 Fractional Derivatives . 29 5 Elements of Stochastic Calculus with Jumps 31 5.1 Example of Use in Applications . 31 5.2 Stochastic Integration . 32 5.3 Construction of the Stochastic Integral . 33 5.4 Quadratic Variation and Itô Formula with jumps . 34 5.5 Stochastic Differential Equation . 35 Bibliography 38 1 Chapter 1 Introduction and Examples In this introductive chapter, we start by defining the notion of infinitely divisible distributions. We then give examples of such distributions and end this chapter by stating the celebrated Lévy-Khintchine formula. - 
												
												Poisson Processes Stochastic Processes
Poisson Processes Stochastic Processes UC3M Feb. 2012 Exponential random variables A random variable T has exponential distribution with rate λ > 0 if its probability density function can been written as −λt f (t) = λe 1(0;+1)(t) We summarize the above by T ∼ exp(λ): The cumulative distribution function of a exponential random variable is −λt F (t) = P(T ≤ t) = 1 − e 1(0;+1)(t) And the tail, expectation and variance are P(T > t) = e−λt ; E[T ] = λ−1; and Var(T ) = E[T ] = λ−2 The exponential random variable has the lack of memory property P(T > t + sjT > t) = P(T > s) Exponencial races In what follows, T1;:::; Tn are independent r.v., with Ti ∼ exp(λi ). P1: min(T1;:::; Tn) ∼ exp(λ1 + ··· + λn) . P2 λ1 P(T1 < T2) = λ1 + λ2 P3: λi P(Ti = min(T1;:::; Tn)) = λ1 + ··· + λn P4: If λi = λ and Sn = T1 + ··· + Tn ∼ Γ(n; λ). That is, Sn has probability density function (λs)n−1 f (s) = λe−λs 1 (s) Sn (n − 1)! (0;+1) The Poisson Process as a renewal process Let T1; T2;::: be a sequence of i.i.d. nonnegative r.v. (interarrival times). Define the arrival times Sn = T1 + ··· + Tn if n ≥ 1 and S0 = 0: The process N(t) = maxfn : Sn ≤ tg; is called Renewal Process. If the common distribution of the times is the exponential distribution with rate λ then process is called Poisson Process of with rate λ. Lemma. N(t) ∼ Poisson(λt) and N(t + s) − N(s); t ≥ 0; is a Poisson process independent of N(s); t ≥ 0 The Poisson Process as a L´evy Process A stochastic process fX (t); t ≥ 0g is a L´evyProcess if it verifies the following properties: 1. - 
												
												Perturbed Bessel Processes Séminaire De Probabilités (Strasbourg), Tome 32 (1998), P
SÉMINAIRE DE PROBABILITÉS (STRASBOURG) R.A. DONEY JONATHAN WARREN MARC YOR Perturbed Bessel processes Séminaire de probabilités (Strasbourg), tome 32 (1998), p. 237-249 <http://www.numdam.org/item?id=SPS_1998__32__237_0> © Springer-Verlag, Berlin Heidelberg New York, 1998, tous droits réservés. L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utili- sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im- pression systématique est constitutive d’une infraction pénale. Toute copie ou im- pression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Perturbed Bessel Processes R.A.DONEY, J.WARREN, and M.YOR. There has been some interest in the literature in Brownian Inotion perturbed at its maximum; that is a process (Xt ; t > 0) satisfying (0.1) , where Mf = XS and (Bt; t > 0) is Brownian motion issuing from zero. The parameter a must satisfy a 1. For example arc-sine laws and Ray-Knight theorems have been obtained for this process; see Carmona, Petit and Yor [3], Werner [16], and Doney [7]. Our initial aim was to identify a process which could be considered as the process X conditioned to stay positive. This new process behaves like the Bessel process of dimension three except when at its maximum and we call it a perturbed three-dimensional Bessel process. We establish Ray-Knight theorems for the local times of this process, up to a first passage time and up to infinity (see Theorem 2.3), and observe that these descriptions coincide with those of the local times of two processes that have been considered in Yor [18]. - 
												
												Patterns in Random Walks and Brownian Motion
Patterns in Random Walks and Brownian Motion Jim Pitman and Wenpin Tang Abstract We ask if it is possible to find some particular continuous paths of unit length in linear Brownian motion. Beginning with a discrete version of the problem, we derive the asymptotics of the expected waiting time for several interesting patterns. These suggest corresponding results on the existence/non-existence of continuous paths embedded in Brownian motion. With further effort we are able to prove some of these existence and non-existence results by various stochastic analysis arguments. A list of open problems is presented. AMS 2010 Mathematics Subject Classification: 60C05, 60G17, 60J65. 1 Introduction and Main Results We are interested in the question of embedding some continuous-time stochastic processes .Zu;0Ä u Ä 1/ into a Brownian path .BtI t 0/, without time-change or scaling, just by a random translation of origin in spacetime. More precisely, we ask the following: Question 1 Given some distribution of a process Z with continuous paths, does there exist a random time T such that .BTCu BT I 0 Ä u Ä 1/ has the same distribution as .Zu;0Ä u Ä 1/? The question of whether external randomization is allowed to construct such a random time T, is of no importance here. In fact, we can simply ignore Brownian J. Pitman ()•W.Tang Department of Statistics, University of California, 367 Evans Hall, Berkeley, CA 94720-3860, USA e-mail: [email protected]; [email protected] © Springer International Publishing Switzerland 2015 49 C. Donati-Martin et al. - 
												
												Introduction to Lévy Processes
Introduction to L´evyprocesses Graduate lecture 22 January 2004 Matthias Winkel Departmental lecturer (Institute of Actuaries and Aon lecturer in Statistics) 1. Random walks and continuous-time limits 2. Examples 3. Classification and construction of L´evy processes 4. Examples 5. Poisson point processes and simulation 1 1. Random walks and continuous-time limits 4 Definition 1 Let Yk, k ≥ 1, be i.i.d. Then n X 0 Sn = Yk, n ∈ N, k=1 is called a random walk. -4 0 8 16 Random walks have stationary and independent increments Yk = Sk − Sk−1, k ≥ 1. Stationarity means the Yk have identical distribution. Definition 2 A right-continuous process Xt, t ∈ R+, with stationary independent increments is called L´evy process. 2 Page 1 What are Sn, n ≥ 0, and Xt, t ≥ 0? Stochastic processes; mathematical objects, well-defined, with many nice properties that can be studied. If you don’t like this, think of a model for a stock price evolving with time. There are also many other applications. If you worry about negative values, think of log’s of prices. What does Definition 2 mean? Increments , = 1 , are independent and Xtk − Xtk−1 k , . , n , = 1 for all 0 = . Xtk − Xtk−1 ∼ Xtk−tk−1 k , . , n t0 < . < tn Right-continuity refers to the sample paths (realisations). 3 Can we obtain L´evyprocesses from random walks? What happens e.g. if we let the time unit tend to zero, i.e. take a more and more remote look at our random walk? If we focus at a fixed time, 1 say, and speed up the process so as to make n steps per time unit, we know what happens, the answer is given by the Central Limit Theorem: 2 Theorem 1 (Lindeberg-L´evy) If σ = V ar(Y1) < ∞, then Sn − (Sn) √E → Z ∼ N(0, σ2) in distribution, as n → ∞. - 
												
												Chapter 1 Poisson Processes
Chapter 1 Poisson Processes 1.1 The Basic Poisson Process The Poisson Process is basically a counting processs. A Poisson Process on the interval [0 , ∞) counts the number of times some primitive event has occurred during the time interval [0 , t]. The following assumptions are made about the ‘Process’ N(t). (i). The distribution of N(t + h) − N(t) is the same for each h> 0, i.e. is independent of t. ′ (ii). The random variables N(tj ) − N(tj) are mutually independent if the ′ intervals [tj , tj] are nonoverlapping. (iii). N(0) = 0, N(t) is integer valued, right continuous and nondecreasing in t, with Probability 1. (iv). P [N(t + h) − N(t) ≥ 2]= P [N(h) ≥ 2]= o(h) as h → 0. Theorem 1.1. Under the above assumptions, the process N(·) has the fol- lowing additional properties. (1). With probability 1, N(t) is a step function that increases in steps of size 1. (2). There exists a number λ ≥ 0 such that the distribution of N(t+s)−N(s) has a Poisson distribution with parameter λ t. 1 2 CHAPTER 1. POISSON PROCESSES (3). The gaps τ1, τ2, ··· between successive jumps are independent identically distributed random variables with the exponential distribution exp[−λ x] for x ≥ 0 P {τj ≥ x} = (1.1) (1 for x ≤ 0 Proof. Let us divide the interval [0 , T ] into n equal parts and compute the (k+1)T kT expected number of intervals with N( n ) − N( n ) ≥ 2. This expected value is equal to T 1 nP N( ) ≥ 2 = n.o( )= o(1) as n →∞ n n there by proving property (1). - 
												
												Bessel Process, Schramm-Loewner Evolution, and Dyson Model
Bessel process, Schramm-Loewner evolution, and Dyson model – Complex Analysis applied to Stochastic Processes and Statistical Mechanics – ∗ Makoto Katori † 24 March 2011 Abstract Bessel process is defined as the radial part of the Brownian motion (BM) in the D-dimensional space, and is considered as a one-parameter family of one- dimensional diffusion processes indexed by D, BES(D). First we give a brief review of BES(D), in which D is extended to be a continuous positive parameter. It is well-known that D = 2 is the critical dimension such that, when D D (resp. c ≥ c D < Dc), the process is transient (resp. recurrent). Bessel flow is a notion such that we regard BES(D) with a fixed D as a one-parameter family of initial value x> 0. There is another critical dimension Dc = 3/2 and, in the intermediate values of D, Dc <D<Dc, behavior of Bessel flow is highly nontrivial. The dimension D = 3 is special, since in addition to the aspect that BES(3) is a radial part of the three-dimensional BM, it has another aspect as a conditional BM to stay positive. Two topics in probability theory and statistical mechanics, the Schramm-Loewner evolution (SLE) and the Dyson model (i.e., Dyson’s BM model with parameter β = 2), are discussed. The SLE(D) is introduced as a ‘complexification’ of Bessel arXiv:1103.4728v1 [math.PR] 24 Mar 2011 flow on the upper-half complex-plane, which is indexed by D > 1. It is explained (D) (D) that the existence of two critical dimensions Dc and Dc for BES makes SLE have three phases; when D D the SLE(D) path is simple, when D <D<D ≥ c c c it is self-intersecting but not dense, and when 1 < D D it is space-filling. - 
												
												A Two-Dimensional Oblique Extension of Bessel Processes Dominique Lepingle
A two-dimensional oblique extension of Bessel processes Dominique Lepingle To cite this version: Dominique Lepingle. A two-dimensional oblique extension of Bessel processes. 2016. hal-01164920v2 HAL Id: hal-01164920 https://hal.archives-ouvertes.fr/hal-01164920v2 Preprint submitted on 22 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A TWO-DIMENSIONAL OBLIQUE EXTENSION OF BESSEL PROCESSES Dominique L´epingle1 Abstract. We consider a Brownian motion forced to stay in the quadrant by an electro- static oblique repulsion from the sides. We tackle the question of hitting the corner or an edge, and find product-form stationary measures under a certain condition, which is reminiscent of the skew-symmetry condition for a reflected Brownian motion. 1. Introduction In the present paper we study existence and properties of a new process with values in the nonnegative quadrant S = R+ ×R+ where R+ := [0; 1). It may be seen as a two-dimensional extension of a usual Bessel process. It is a two-dimensional Brownian motion forced to stay in the quadrant by electrostatic repulsive forces, in the same way as in the one-dimensional case where a Brownian motion which is prevented from becoming negative by an electrostatic drift becomes a Bessel process. - 
												
												Bessel Processes, Stochastic Volatility, and Timer Options
Mathematical Finance, Vol. 26, No. 1 (January 2016), 122–148 BESSEL PROCESSES, STOCHASTIC VOLATILITY, AND TIMER OPTIONS CHENXU LI Guanghua School of Management, Peking University Motivated by analytical valuation of timer options (an important innovation in realized variance-based derivatives), we explore their novel mathematical connection with stochastic volatility and Bessel processes (with constant drift). Under the Heston (1993) stochastic volatility model, we formulate the problem through a first-passage time problem on realized variance, and generalize the standard risk-neutral valuation theory for fixed maturity options to a case involving random maturity. By time change and the general theory of Markov diffusions, we characterize the joint distribution of the first-passage time of the realized variance and the corresponding variance using Bessel processes with drift. Thus, explicit formulas for a useful joint density related to Bessel processes are derived via Laplace transform inversion. Based on these theoretical findings, we obtain a Black–Scholes–Merton-type formula for pricing timer options, and thus extend the analytical tractability of the Heston model. Several issues regarding the numerical implementation are briefly discussed. KEY WORDS: timer options, volatility derivatives, realized variance, stochastic volatility models, Bessel processes. 1. INTRODUCTION Over the past decades, volatility has become one of the central issues in financial mod- eling. Both the historic volatility derived from time series of past market prices and the implied volatility derived from the market price of a traded derivative (in particular, an option) play important roles in derivatives valuation. In addition to index or stock options, a variety of volatility (or variance) derivatives, such as variance swaps, volatility swaps, and options on VIX (the Chicago board of exchange volatility index), are now actively traded in the financial security markets. - 
												
												Asymptotics of Query Strategies Over a Sensor Network
Asymptotics of Query Strategies over a Sensor Network Sanjay Shakkottai∗ February 11, 2004 Abstract We consider the problem of a user querying for information over a sensor network, where the user does not have prior knowledge of the location of the information. We consider three information query strategies: (i) a Source-only search, where the source (user) tries to locate the destination by initiating query which propagates as a continuous time random walk (Brownian motion); (ii) a Source and Receiver Driven “Sticky” Search, where both the source and the destination send a query or an advertisement, and these leave a “sticky” trail to aid in locating the destination; and (iii) where the destination information is spatially cached (i.e., repeated over space), and the source tries to locate any one of the caches. After a random interval of time with average t, if the information is not located, the query times-out, and the search is unsuccessful. For a source-only search, we show that the probability that a query is unsuccessful decays as (log(t))−1. When both the source and the destination send queries or advertisements, we show that the probability that a query is unsuccessful decays as t−5/8. Further, faster polynomial decay rates can be achieved by using a finite number of queries or advertisements. Finally, when a spatially periodic cache is employed, we show that the probability that a query is unsuccessful decays no faster than t−1. Thus, we can match the decay rates of the source and the destination driven search with that of a spatial caching strategy by using an appropriate number of queries. - 
												
												Bessel Spdes with General Dirichlet Boundary Conditions Henri Elad Altman
Bessel SPDEs with general Dirichlet boundary conditions Henri Elad Altman To cite this version: Henri Elad Altman. Bessel SPDEs with general Dirichlet boundary conditions. 2019. hal-02264627 HAL Id: hal-02264627 https://hal.archives-ouvertes.fr/hal-02264627 Preprint submitted on 7 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. BESSEL SPDES WITH GENERAL DIRICHLET BOUNDARY CONDITIONS HENRI ELAD ALTMAN Abstract. We generalise the integration by parts formulae obtained in [7] to Bessel bridges on [0, 1] with arbitrary boundary values, as well as Bessel processes with arbitrary initial conditions. This allows us to write, formally, the corresponding dynamics using renormalised local times, thus extending the Bessel SPDEs of [7] to general Dirichlet boundary conditions. We also prove a dynamical result for the case of dimension 2, by providing a weak construction of the gradient dynamics corresponding to a 2-dimensional Bessel bridge. 1. Introduction 1.1. Bessel SPDEs. The purpose of this paper is to further extend the results obtained recently in [7], and which introduced Bessel SPDEs of dimension smaller than 3. Bessel processes are a one-parameter family of nonnegative real-valued diffusions which play a central role in various fields, ranging from statistical mechanics to finance. - 
												
												Compound Poisson Processes, Latent Shrinkage Priors and Bayesian
Bayesian Analysis (2015) 10, Number 2, pp. 247–274 Compound Poisson Processes, Latent Shrinkage Priors and Bayesian Nonconvex Penalization Zhihua Zhang∗ and Jin Li† Abstract. In this paper we discuss Bayesian nonconvex penalization for sparse learning problems. We explore a nonparametric formulation for latent shrinkage parameters using subordinators which are one-dimensional L´evy processes. We particularly study a family of continuous compound Poisson subordinators and a family of discrete compound Poisson subordinators. We exemplify four specific subordinators: Gamma, Poisson, negative binomial and squared Bessel subordi- nators. The Laplace exponents of the subordinators are Bernstein functions, so they can be used as sparsity-inducing nonconvex penalty functions. We exploit these subordinators in regression problems, yielding a hierarchical model with multiple regularization parameters. We devise ECME (Expectation/Conditional Maximization Either) algorithms to simultaneously estimate regression coefficients and regularization parameters. The empirical evaluation of simulated data shows that our approach is feasible and effective in high-dimensional data analysis. Keywords: nonconvex penalization, subordinators, latent shrinkage parameters, Bernstein functions, ECME algorithms. 1 Introduction Variable selection methods based on penalty theory have received great attention in high-dimensional data analysis. A principled approach is due to the lasso of Tibshirani (1996), which uses the ℓ1-norm penalty. Tibshirani (1996) also pointed out that the lasso estimate can be viewed as the mode of the posterior distribution. Indeed, the ℓ1 penalty can be transformed into the Laplace prior. Moreover, this prior can be expressed as a Gaussian scale mixture. This has thus led to Bayesian developments of the lasso and its variants (Figueiredo, 2003; Park and Casella, 2008; Hans, 2009; Kyung et al., 2010; Griffin and Brown, 2010; Li and Lin, 2010).