Diversity Combining Under Interference Correlation in Wireless Networks

Total Page:16

File Type:pdf, Size:1020Kb

Diversity Combining Under Interference Correlation in Wireless Networks Forschungsberichte aus dem Institut für Nachrichtentechnik des CEL Karlsruher Instituts für Technologie Ralph Tanbourgi Diversity Combining under Interference Correlation in Wireless Networks Band 34 Copyright: Institut für Nachrichtentechnik (CEL) Karlsruher Institut für Technologie (KIT) 2015 Druck: Frick Digitaldruck Brühlstraße 6 86381 Krumbach ISSN: 1433-3821 Forschungsberichte aus dem Institut für Nachrichtentechnik des Karlsruher Instituts für Technologie Herausgeber: Prof. Dr. rer. nat. Friedrich Jondral Band 1 Marcel Kohl Simulationsmodelle für die Bewertung von Satellitenübertragungsstrecken im 20/30 GHz Bereich Band 2 Christoph Delfs Zeit-Frequenz-Signalanalyse: Lineare und quadratische Verfahren sowie vergleichende Untersuchungen zur Klassifikation von Klaviertönen Band 3 Gunnar Wetzker Maximum-Likelihood Akquisition von Direct Sequence Spread-Spectrum Signalen Band 4 Anne Wiesler Parametergesteuertes Software Radio für Mobilfunksysteme Band 5 Karl Lütjen Systeme und Verfahren für strukturelle Musteranalysen mit Produktionsnetzen Band 6 Ralf Machauer Multicode-Detektion im UMTS Band 7 Gunther M. A. Sessler Schnell konvergierender Polynomial Expansion Multiuser Detektor mit niedriger Komplexität Band 8 Henrik Schober Breitbandige OFDM Funkübertragung bei hohen Teilnehmergeschwindigkeiten Band 9 Arnd-Ragnar Rhiemeier Modulares Software Defined Radio Band 10 Mustafa Mengüç Öner Air Interface Identification for Software Radio Systems iii Forschungsberichte aus dem Institut für Nachrichtentechnik des Karlsruher Instituts für Technologie Herausgeber: Prof. Dr. rer. nat. Friedrich Jondral Band 11 Fatih Çapar Dynamische Spektrumverwaltung und elektronische Echtzeitvermarktung von Funkspektren in Hotspotnetzen Band 12 Ihan Martoyo Frequency Domain Equalization in CDMA Detection Band 13 Timo Weiß OFDM-basiertes Spectrum Pooling Band 14 Wojciech Kuropatwiński-Kaiser MIMO-Demonstrator basierend auf GSM-Komponenten Band 15 Piotr Rykaczewski Quadraturempfänger für Software Defined Radios: Kompensation von Gleichlauffehlern Band 16 Michael Eisenacher Optimierung von Ultra-Wideband-Signalen (UWB) Band 17 Clemens Klöck Auction-based Medium Access Control Band 18 Martin Henkel Architektur eines DRM-Empfängers und Basisbandalgorithmen zur Frequenzakquisition und Kanalschätzung Band 19 Stefan Edinger Mehrträgerverfahren mit dynamisch-adaptiver Modulation zur unterbrechungsfreien Datenübertragung in Störfällen Band 20 Volker Blaschke Multiband Cognitive Radio-Systeme iv Forschungsberichte aus dem Institut für Nachrichtentechnik des Karlsruher Instituts für Technologie Herausgeber: Prof. Dr. rer. nat. Friedrich Jondral Band 21 Ulrich Berthold Dynamic Spectrum Access using OFDM-based Overlay Systems Band 22 Sinja Brandes Suppression of Mutual Interference in OFDM-based Overlay Systems Band 23 Christian Körner Cognitive Radio – Kanalsegmentierung und Schätzung von Periodizitäten Band 24 Tobias Renk Cooperative Communications: Network Design and Incremental Relaying Band 25 Dennis Burgkhardt Dynamische Reallokation von spektralen Ressourcen in einem hierarchischen Auktionssystem Band 26 Stefan Nagel Portable Waveform Development for Software Defined Radios Band 27 Hanns-Ulrich Dehner Interferenzuntersuchungen für inkohärente Multiband Ultra-Breitband (UWB) Übertragung Band 28 Maximilian Hauske Signalverarbeitung für optoelektronische Sensoren Band 29 Jens Elsner Interference Mitigation in Frequency Hopping Ad Hoc Networks Band 30 Georg Vallant Modellbasierte Entzerrung von Analog/Digital-Wandler-Systemen v Forschungsberichte aus dem Institut für Nachrichtentechnik des Karlsruher Instituts für Technologie Herausgeber: Prof. Dr. rer. nat. Friedrich Jondral Band 31 Martin Braun OFDM Radar Algorithms in Mobile Communication Networks Band 32 Michael Mühlhaus Automatische Modulationsartenerkennung in MIMO Systemen Band 33 Michael Schwall Turbo-Entzerrung: Implementierungsaspekte für Software Defined Radios Band 34 Ralph Tanbourgi Diversity Combining under Interference Correlation in Wireless Networks vi Vorwort des Herausgebers Der Mobilfunk spielt im täglichen Leben eine immer größere Rolle und wird in den kommenden Jahren, unter anderem getrieben durch Maschine- zu-Maschine (M2M) Kommunikation, weiter stark an Bedeutung gewin- nen. Dabei ist das zur Verfügung stehende elektromagnetische Spektrum begrenzt, weshalb Mittel und Wege gefunden werden müssen, mit deren Hilfe deutlich höhere Übertragungskapazitäten als die derzeit vorhan- denen nutzbar gemacht werden können. In der Forschung haben sich drei Technologien herauskristallisiert, deren Anwendungen besonders erfolgversprechend erscheinen: • Höhere Übertragungsbandbreiten: Der einfachste Weg, zu höheren Funkkapazitäten zu kommen, besteht natürlich in der Zuteilung weiterer Frequenzbereiche. Solche sind aber unterhalb von 6 GHz kaum noch zu identifizieren, so dass inzwischen unter anderem untersucht wird, mit welchen Mitteln höhere Frequenzbere- iche (28 GHz, 38 GHz, 90 GHz) für die Mobilkommunikation nutzbar gemacht werden können. • Heterogene Netze: Ein derzeit bereits genutzter Ansatz zur Kapazitätserweiterung besteht darin, Basisstationen mit niedriger Leistung und damit Pico- bzw. Femtozellen in bestehende Netze einzufügen. Andere Untersuchungen zielen auf den Einsatz der Device-to-Device (D2D) Technologie oder von Ad-hoc Netzen ab. vii • Mehrantennentechnologien: Die Nutzung der räumlichen Di- mension durch Multiple Input Multiple Output (MIMO) Systeme zur Verbesserung der Verbindungsqualität oder zur Erhöhung der Datenrate wird in zukünftigen Netzen eine wichtige Rolle spielen. Je nachdem, welche Kanalzustandsinformation sende- und empfangs- seitig verfügbar ist, kann hier an räumliches Multiplexing, räumliche Interferenzverringerung, Raumdiversity oder Kombinationen dieser Technologien gedacht werden. Die vorliegende Dissertation beschäftigt sich mit Interferenzminderung durch den Einsatz von Mehrantennensystemen mit Diversity Combining in Ad-hoc und heterogenen zellularen Netzen. Der Schwerpunkt liegt dabei auf der Untersuchung des Maximum Ratio Combinings (MRC), einer Tech- nologie bei der die von den beteiligten Empfangsantennen aufgenommenen Signale proportional zum dort vorliegenden Signal-zu-Stör- und Rauschver- hältnis (Signal-to-Interference and Noise Ratio, SINR) gewichtet und dann addiert werden. Die zentrale Frage, die es zu beantworten gilt, ist die nach der an einem (“typischen“) Empfänger innerhalb eines Netzes auftretenden Interferenz unter der Annahme, dass die von den Antennen des MRC Systems gelieferten Störsignale korreliert und somit bei der Berechnung des zugehörigen SINR diese Korrelationen zu berücksichtigen sind. Die damit umrissene Aufgabenstellung ist offenbar komplex und die Lösung könnte beispielsweise mit Hilfe von Monte Carlo Simulationen angegangen werden. Ralph Tanbourgi hat sich aus guten Gründen dafür entschieden, dass nicht zu tun. Simulationen wären, da sie, um statistisch relevante Ergebnisse generieren zu können, über viele Netzkonstellatio- nen mitteln müssten, extrem aufwändig. Darüber hinaus stellen solche Simulationen oft die funktionalen Zusammenhänge unvollständig oder nicht richtig dar und liefern deshalb schwer interpretierbare oder sogar fehlerhafte Ergebnisse. Hier wird bewusst der Weg über analytische Modelle auf Basis der stochastischen Geometrie (insbesondere der sta- tionären Poisson’schen Punktprozesse mit konstanter Dichte) eingeschla- gen. Aufwändige Simulationen werden dennoch zur Evaluierung der analytischen Ergebnisse herangezogen. Karlsruhe, im Juni 2015 Friedrich Jondral viii Diversity Combining under Interference Correlation in Wireless Networks Zur Erlangung des akademischen Grades eines DOKTOR-INGENIEURS von der Fakultät für Elektrotechnik und Informationstechnik des Karlsruher Instituts für Technologie genehmigte DISSERTATION von Dipl.-Ing. Ralph Tanbourgi geb. in Beirut, Libanon Tag der mündlichen Prüfung: 25. Juni 2015 Hauptreferent: Prof. Dr. rer. nat. Friedrich K. Jondral Korreferenten: Prof. Dr.-Ing. Aydin Sezgin Prof. Jeff G. Andrews, Ph.D Acknowledgments This thesis summarizes part of my work that I have conducted as a research associate at the Communications Engineering Lab (CEL), Karlsruhe Institute of Technology (KIT), Germany. Its present form could not have been made possible without the support from several persons, to whom I would like to express my sincere gratitude. My utmost thanks go to my advisor Prof. Friedrich K. Jondral for all the mentoring, guidance, and confidence he put in me. The joy I feel today about doing research is mainly due to his unique leadership style, which puts a strong accent on freedom of research and autonomous working. Our interactions and discussions have profoundly contributed to my personal development and have substantially shaped my view on many things related to both academic work and personal life. I would also like to thank my colleagues—the current ones as well as the former ones—for all the fruitful discussions we had with each other. I will certainly miss the great time we spent together, not only at work but certainly also after. Special thanks go to Dr.-Ing. Holger Jäkel for always lending me a sympathetic ear, for helping me in polishing my mathematics at times, and for proof-reading my thesis. Besides, I would also like to thank Dr.-Ing. Jens Elsner for introducing me to the interesting field of stochastic geometry and for our early collaborations. Working at CEL has always been convenient and productive for me, which is also due to the commitment of a number of people
Recommended publications
  • Introduction to Radio Systems
    Chapter 1 Introduction to Radio Systems Because radio systems have fundamental characteristics that distinguish them from their wired equivalents, this chapter provides an introduction to the various radio technologies relevant to the IP design engineer. The concepts discussed provide a foundation for fur- ther comparisons of the competing mobile radio access systems for supporting mobile broadband services and expanding into IP design for mobile networks. Many excellent texts concentrate on the detail of mobile radio propagation, and so this chapter will not attempt to cover radio frequency propagation in detail; rather, it is intended to provide a basic understanding of the various radio technologies and concepts used in realizing mobile radio systems. In particular, this chapter provides an insight into how the characteristics of the radio network impact the performance of IP applications running over the top of mobile networks—characteristics that differentiate wireless net- works from their fixed network equivalents. In an ideal world, radio systems would be able to provide ubiquitous coverage with seam- less mobility across different access systems; high-capacity, always-on systems with low latency and jitter; and wireless connectivity to IP hosts with extended battery life, thus ensuring that all IP applications could run seamlessly over the top of any access network. Unfortunately, real-world constraints mean that the radio engineer faces tough compro- mises when designing a network: balancing coverage against capacity, latency against throughput, and performance against battery life. This chapter introduces the basics of mobile radio design and addresses how these tradeoffs ultimately impact the perform- ance of IP applications delivered over mobile radio networks.
    [Show full text]
  • Multiple Antenna Technologies
    Multiple Antenna Technologies Manar Mohaisen | YuPeng Wang | KyungHi Chang The Graduate School of Information Technology and Telecommunications INHA University ABSTRACT the receiver. Alamouti code is considered as the simplest transmit diversity scheme while the receive diversity includes maximum ratio, equal gain and selection combining Multiple antenna technologies have methods. Recently, cooperative received high attention in the last few communication was deeply investigated as a decades for their capabilities to improve the mean of increasing the communication overall system performance. Multiple-input reliability by not only considering the multiple-output systems include a variety of mobile station as user but also as a base techniques capable of not only increase the station (or relay station). The idea behind reliability of the communication but also multiple antenna diversity is to supply the impressively boost the channel capacity. In receiver by multiple versions of the same addition, smart antenna systems can increase signal transmitted via independent channels. the link quality and lead to appreciable On the other hand, multiple antenna interference reduction. systems can tremendously increase the channel capacity by sending independent signals from different transmit antennas. I. Introduction BLAST spatial multiplexing schemes are a good example of such category of multiple Multiple antennas technologies proposed antenna technologies that boost the channel for communications systems have gained capacity. much attention in the last few years because In addition, smart antenna technique can of the huge gain they can introduce in the significantly increase the data rate and communication reliability and the channel improve the quality of wireless transmission, capacity levels. Furthermore, multiple which is limited by interference, local antenna systems can have a big contribution scattering and multipath propagation.
    [Show full text]
  • Performance Analysis of Diversity Techniques for Wireless Communication System
    1 Performance Analysis of Diversity Techniques for Wireless Communication System Md. Jaherul Islam [email protected] This Thesis is a part (30 ECTS) of Master of Science degree (120 ECTS) in Electrical Engineering emphasis on Telecommunication Blekinge Institute of Technology February 12 Blekinge Institute of Technology School of Engineering Department of Telecommunication Supervisor: Magnus G Nilsson Examiner: Magnus G Nilsson Contact: [email protected] 2 Abstract Different diversity techniques such as Maximal-Ratio Combining (MRC), Equal-Gain Combining (EGC) and Selection Combining (SC) are described and analyzed. Two branches (N=2) diversity systems that are used for pre-detection combining have been investigated and computed. The statistics of carrier to noise ratio (CNR) and carrier to interference ratio (CIR) without diversity assuming Rayleigh fading model have been examined and then measured for diversity systems. The probability of error ( ) vs CNR and ( ) versus CIR have also been obtained. The fading dynamic range of the instantaneous CNR and CIR is reduced remarkably when diversity systems are used [1]. For a certain average probability of error, a higher valued average CNR and CIR is in need for non-diversity systems [1]. But a smaller valued of CNR and CIR are compared to diversity systems. The overall conclusion is that maximal-ratio combining (MRC) achieves the best performance improvement compared to other combining methods. Diversity techniques are very useful to improve the performance of high speed wireless channel to transmit data and information. The problems which considered in this thesis are not new but I have tried to organize, prove and analyze in new ways.
    [Show full text]
  • Digital Radio-Relay Systems
    - iii - TABLE OF CONTENTS Page CHAPTER 1 - INTRODUCTION........................................................................................ 1 1.1 INTENT OF HANDBOOK ..................................................................................... 1 1.2 EVOLUTION OF DIGITAL RADIO-RELAY SYSTEMS .................................... 2 1.3 DIGITAL RADIO-RELAY SYSTEMS AS PART OF DIGITAL TRANSMISSION NETWORKS............................................................................. 3 1.4 GENERAL OVERVIEW OF THE HANDBOOK .................................................. 5 1.5 OUTLINE OF THE HANDBOOK.......................................................................... 5 CHAPTER 2 - BASIC PRINCIPLES .................................................................................. 7 2.1 DIGITAL SIGNALS, SOURCE CODING, DIGITAL HIERARCHIES AND MULTIPLEXING .......................................................................................... 7 2.1.1 Digitization (A/D conversion) of analogue voice signals ........................... 7 2.1.2 Digitization of video signals........................................................................ 8 2.1.3 Non voice services, ISDN and data signals ................................................. 8 2.1.4 Multiplexing of 64 kbit/s channels .............................................................. 8 2.1.5 Higher order multiplexing, Plesiochronous Digital Hierarchy (PDH) ........ 8 2.1.6 Other multiplexers ......................................................................................
    [Show full text]
  • Great Expectations: the Value of Spatial Diversity in Wireless Networks
    Great Expectations: The Value of Spatial Diversity in Wireless Networks SUHAS N. DIGGAVI, MEMBER, IEEE, NAOFAL AL-DHAHIR, SENIOR MEMBER, IEEE, A. STAMOULIS, MEMBER, IEEE, AND A. R. CALDERBANK, FELLOW, IEEE Invited Paper In this paper, the effect of spatial diversity on the throughput The challenge here is that Moore’s Law does not seem to and reliability of wireless networks is examined. Spatial diversity apply to rechargeable battery capacity, and though the den- is realized through multiple independently fading transmit/re- sity of transistors on a chip has consistently doubled every ceive antenna paths in single-user communication and through independently fading links in multiuser communication. Adopting 18 mo, the energy density of batteries only seems to double spatial diversity as a central theme, we start by studying its every 10 years. This need to conserve energy (see [2] and ref- information-theoretic foundations, then we illustrate its benefits erences therein) leads us to focus on what is possible when across the physical (signal transmission/coding and receiver signal signal processing at the terminal is limited. Throughout this processing) and networking (resource allocation, routing, and paper, we use the cost and complexity of the receiver to applications) layers. Throughout the paper, we discuss engineering intuition and tradeoffs, emphasizing the strong interactions be- bound the resources available for signal processing. Wireless tween the various network functionalities. spectrum itself is a valuable resource that also needs to be conserved given the economic imperative of return on multi- Keywords—Ad hoc networks, channel estimation, diversity, fading channels, hybrid networks, information theory for wireless billion-dollar investments by wireless carriers [1].
    [Show full text]
  • Proceedings of SDR-Winncomm- Europe 2013 Wireless Innovation
    Proceedings of SDR-WInnComm- Europe 2013 Wireless Innovation European Conference on Wireless Communications Technologies and Software Defined Radio 11-13 June 2013, Munich, Germany Editors: Lee Pucker, Kuan Collins, Stephanie Hamill Copyright Information Copyright © 2013 The Software Defined Radio Forum, Inc. All Rights Reserved. All material, files, logos and trademarks are properties of their respective organizations. Requests to use copyrighted material should be submitted through: http://www.wirelessinnovation.org/index.php?option=com_mc&view=mc&mcid=form_79765. SDR-WInnComm-Europe 2013 Organization Kuan Collins, SAIC (Program Chair) Thank you to our Technical Program Committee: Marc Adrat, Fraunhofer FKIE / KOM Anwer Al-Dulaimi, Brunel University Onur Altintas, Toyota InfoTechnology Center Masayuki Ariyoshi, NEC Claudio Armani, SELEX ES Gerd Ascheid, RWTH Aachen University Sylvain Azarian, Supélec Merouane Debbah, Supélec Prof. Romano Fantacci, University of Florence Joseph Jacob, Objective Interface Systems, Inc. Wolfgang Koenig, Alcatel-Lucent Deutschland AG Dr. Christophe Le Matret, Thales Fa-Long Luo, Element CXI Dr. Dania Marabissi, University of Florence Dominique Noguet, CEA LETI David Renaudeau, Thales Isabelle Siaud, Orange Labs, Reseach and Development, Access Networks Dr. Bart Scheers, Royal Military Academy, Belgium Ljiljana Simic, RWTH Aachen University Sarvpreet Singh, Fraunhofer FKIE Olga Zlydareva, University College Dublin Table of Contents PHYSEC concepts for wireless public networks - introduction, state of the
    [Show full text]
  • DIVERSITY TECHNIQUES Prepared by Deepa.T, Asst.Prof. /TCE
    DIVERSITY TECHNIQUES Prepared by Deepa.T, Asst.Prof. /TCE Introduction •Three techniques are used independently or in tandem to improve receiver signal quality •Equalization compensates for ISI created by multipath with time dispersive channels (W>BC) ¾Linear equalization, nonlinear equalization •Diversity also compensates for fading channel impairments, and is usually implemented by using two or more receiving antennas ¾Spatial diversity, antenna polarization diversity, frequency diversity, time diversity Diversity Diversity: It is the technique used to compensate for fading channel impairments. It is implemented by using two or more receiving antennas. While Equalization is used to counter the effects of ISI, Diversity is usually employed to reduce the depth and duration of the fades experienced by a receiver in a flat fading channel. These techniques can be employed at both base station and mobile receivers. Spatial Diversity is the most widely used diversity technique. Spatial Diversity Technique‐ A Brief Description In this technique multiple antennas are strategically spaced and connected to common receiving system. While one antenna sees a signal null, one of the other antennas may see a signal peak, and the receiver is able to select the antenna with the best signal at any time. The CDMA systems use Rake receivers which provide improvement through time diversity. Diversity Techniques‐ Highlights • Unlike Equalization, Diversity requires no training overhead as a transmitter doesn’t require one. •It provides significant link improvement with little added cost. •It exploits random nature of wave propagation by finding independent ( uncorrelated) signal paths for communication. Fundamentals of Equalization ISI has been recognized as the major obstacle to high speed data transmission over mobile radio channels.
    [Show full text]
  • Receive Diversity 1 1 Introduction
    Receive Diversity 1 1 Introduction When discussing beamforming we used the resources of an antenna array to service multiple users simultaneously. The interference cancellation schemes were formulated independent of whether the channels were line-of-sight (LOS) or fading. Diversity combining devotes the entire resources of the array to service a single user. Specifically, diversity schemes enhance reliability by minimizing the channel fluctuations due to fading. The central idea in diversity2 is that different antennas receive different versions of the same signal. The chances of all these copies being in a deep fade is small. These schemes therefore make most sense when the fading is independent from element to element and are of limited use (beyond increasing the SNR) if perfectly correlated (such as in LOS conditions). Independent fading would arise in a dense urban environment where the several multipath components add up very differently at each element.3. Early in this course we saw that fading has three components: path loss, large-scale and small- scale fading. Over fairly long periods the first two components are approximately constant and can be dealt with using power control. Furthermore, these components of fading are very close to being constant across all elements of the array (perfectly correlated). Diversity combining is specifically targeted to counteract small scale fading. We will therefore use slow, flat, Rayleigh fading as our model for the signal fluctuation. It must be emphasized that the Rayleigh model is the easiest and most tractable. However, this model is not valid in all situations. The results we present here will therefore be only “ballpark” figures, to illustrate the workings of diversity combining.
    [Show full text]
  • Comments of Nyu Wireless
    Before the Federal Communications Commission Washington, D.C. 20554 In the Matter of ) ) Use of Spectrum Bands Above 24 GHz For ) GN Docket No. 14-177 Mobile Radio Services ) ) Amendment of the Commission’s Rules ) Regarding the 37.0-38.6 GHz and 38.6-40.0 GHz ) ET Docket No. 95-183 Bands ) (Terminated) ) Implementation of Section 309(j) of the ) PP Docket No. 93-253 Communications Act – Competitive Bidding, ) (Terminated) 37.0-38.6 GHz and 38.6-40.0 GHz Bands ) ) Petition for Rulemaking of the Fixed Wireless ) RM-11664 Communications Coalition to Create Service ) Rules for the 42-43.5 GHz Band ) ) Reassessment of Federal Communications ) ET Docket 13-84 Commission Radiofrequency Exposure Limits and ) Policies ) ) Proposed Changes in the Commission's Rules ) ET Docket 03-137 Regarding Human Exposure to Radiofrequency ) Electromagnetic Fields ) ) COMMENTS OF NYU WIRELESS ATTACHMENTS 1 ATTACHMENT 1 Selected NYU WIRELESS Publications on 5G mmWave Technologies YouTube Video “NYU WIRELESS conducts pioneering 5G cellular measurements in New York City (5G millimeter wave)” http://youtu.be/pN_3Iek2jNw S. Sun, T. S. Rappaport, R. W. Heath, A. Nix, and S. Rangan, “MIMO for millimeter wave wireless communications: beamforming, spatial multiplexing, or both?” IEEE Comm. Mag., vol. 52, pp. 110-121, Dec. 2014. T. S. Rappaport, R. W. Heath, R. Daniels, J.N. Murdock, Millimeter Wave Wireless Communications, Pearson/Prentice-Hall, c. 2015 F. Gutierrez, S. Agarwal, K. Parrish, T.S. Rappaport, “On-chip integrated antenna structures in CMOS for 60 GHz WPAN systems,” IEEE Journal on Sel. Areas Comm., Vol. 27, No. 8, Oct.
    [Show full text]
  • Wireless Multiuser Communication Systems: Diversity Receiver Performance Analysis, Gsmud Design, and Fading Channel Simulator Dongbo Zhang Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2007 Wireless multiuser communication systems: diversity receiver performance analysis, GSMuD design, and fading channel simulator Dongbo Zhang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Electrical and Electronics Commons Recommended Citation Zhang, Dongbo, "Wireless multiuser communication systems: diversity receiver performance analysis, GSMuD design, and fading channel simulator" (2007). Retrospective Theses and Dissertations. 15587. https://lib.dr.iastate.edu/rtd/15587 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Wireless multiuser communication systems: diversity receiver performance analysis, GSMuD design, and fading channel simulator by Dongbo Zhang A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Electrical Engineering Program of Study Committee: Yao Ma, Major Professor Julie Dickerson Daji Qiao Zhengdao Wang Huaiqing Wu Iowa State University Ames, Iowa 2007 Copyright c Dongbo Zhang, 2007. All rights reserved. UMI Number: 3289389 UMI Microform 3289389 Copyright 2008 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 ii Dedicated To My Parents iii TABLE OF CONTENTS LIST OF TABLES .
    [Show full text]
  • Chapter 2 Radio Receiver Characteristics
    Source: Communications Receivers: DSP, Software Radios, and Design Chapter 1 Basic Radio Considerations 1.1 Radio Communications Systems The capability of radio waves to provide almost instantaneous distant communications without interconnecting wires was a major factor in the explosive growth of communica- tions during the 20th century. With the dawn of the 21st century, the future for communi- cations systems seems limitless. The invention of the vacuum tube made radio a practical and affordable communications medium. The replacement of vacuum tubes by transistors and integrated circuits allowed the development of a wealth of complex communications systems, which have become an integral part of our society. The development of digital signal processing (DSP) has added a new dimension to communications, enabling sophis- ticated, secure radio systems at affordable prices. In this book, we review the principles and design of modern single-channel radio receiv- ers for frequencies below approximately 3 GHz. While it is possible to design a receiver to meet specified requirements without knowing the system in which it is to be used, such ig- norance can prove time-consuming and costly when the inevitable need for design compro- mises arises. We strongly urge that the receiver designer take the time to understand thor- oughly the system and the operational environment in which the receiver is to be used. Here we can outline only a few of the wide variety of systems and environments in which radio re- ceivers may be used. Figure 1.1 is a simplified block diagram of a communications system that allows the transfer of information between a source where information is generated and a destination that requires it.
    [Show full text]
  • Task 3 Tompkins County
    q NYS TEC New York State Technology Enterprise Corporation presents its Options for a Public Safety Wireless Communications System: Synthesis and Evaluation Report for the Tompkins County Radio System Project February 28, 2001 Version 2 Options for a Public Safety Wireless Radio Communication System: NYS TEC Synthesis and Evaluation Report Tompkins County Radio System Project Table of Contents 1. OVERVIEW ..................................................................................................................................................1 2. WIDE-AREA WIRELESS MOBILE TECHNOLOGY ............................................................................3 2.1 RADIO FREQUENCIES .......................................................................................................................................3 2.2 CONVENTIONAL RADIO SYSTEMS ..................................................................................................................10 2.3 DIGITAL VOICE, DATA AND ENCRYPTION......................................................................................................13 2.4 VOTING SYSTEMS ..........................................................................................................................................17 2.5 TRUNKED RADIO SYSTEMS ............................................................................................................................17 2.6 SIMULCAST ....................................................................................................................................................24
    [Show full text]