Information Flow Analysis of Discrete Embedded Control System Models

Total Page:16

File Type:pdf, Size:1020Kb

Information Flow Analysis of Discrete Embedded Control System Models Information Flow Analysis of Discrete Embedded Control System Models vorgelegt von Marcus Mikulcak, M.Sc. ORCID: 0000-0003-2900-2897 an der Fakultät IV – Elektrotechnik und Informatik der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften – Dr.-Ing.– genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr.-Ing. Clemens Gühmann Technische Universität Berlin Gutachterin: Prof. Dr. rer. nat. Sabine Glesner Technische Universität Berlin Gutachter: Prof. Dr.-Ing. Christian Hammer Universität Potsdam Gutachter: Prof. Dr.-Ing. Frank Slomka Universität Ulm Tag der wissenschaftlichen Aussprache: 06. November 2019 Berlin 2020 Abstract Embedded systems used in safety-critical domains have to uphold strict safety and security re- quirements. At the same time, their complexity has been strongly increasing across application domains. To manage this rise in complexity, manufacturers have shifted towards model-driven development methodologies. While successful in managing the complexity in the development of large, interconnected systems, analysis and verifcation techniques for model-driven development methods and languages still have to reach a similar level of maturity as those for text-based imperative programming languages traditionally used in the development of safety-critical em- bedded systems. In this thesis, we present an information fow analysis method for discrete embedded control system models, which has the potential to identify possible violations of both safety requirements and security policies by analyzing where and under which conditions information travels through a model. The main challenges such an information fow analysis faces are to (1) consider the specifc semantics of the modeling languages, which heavily rely on concurrency and a complex notion of timing, and (2) relate the strongly different semantics of signal-fow-oriented and state-machine-based components, which comprise embedded control system models. Our major contribution is twofold: First, we provide an information fow analysis for the signal-fow-oriented components of an embedded control system model. The main idea of this analysis is that we only extract that information from an existing model which is required to analyze information fow in respect to both its timing and functionality. To this end, our technique captures timed path conditions, i.e., the precise control, data and timing conditions under which information fow is enabled as well as when and how these conditions are triggered. Second, we relate the inherently different semantics of the signal-fow-oriented and the state- machine-based components. To this end, we frst translate the state-machine-based controller into a formally verifable representation and, second, combine this representation with condition observer automata which we generate from the timed path conditions extracted in the frst step of our method. This enables us to use the well-established technique of model checking to identify precisely the behavior that leads to the execution of information fow paths under analysis. To show the practical applicability of our approach, we have implemented it as a fully automatic and modular framework for MATLAB Simulink/Statefow and Modelica, two widely used languages from the domain of embedded control systems, and applied our information fow analysis to two industrial case studies. In these case studies, we are able to verify integrity by checking that no information fow is possible from a non-critical to a critical component. i ii Zusammenfassung Im sicherheitskritischen Bereich unterliegen eingebettete Systeme strengen Anforderungen an Ausfall- sowie Datensicherheit. Zugleich ist die Systemkomplexität in den vergangenen Jahren in allen Anwendungsbereichen stark gestiegen. Um diesem Anstieg zu begegnen, nutzen Her- steller modellgetriebene Entwicklungsansätze. Während Ansätze dieser Art bereits erfolgreich dazu genutzt werden, komplexe, miteinander verbundene Systeme zu entwickeln, haben Ansätze zur Analyse und Verifkation dieser Systeme noch nicht den Stand erreicht, den ähnliche Methoden für imperative Programmiersprachen aufweisen. In dieser Arbeit stellen wir eine Informations- fussanalyse für diskrete eingebettete Kontrollsystemmodelle vor, die es ermöglicht, Verletzungen von Ausfall- sowie Datensicherheitsanforderungen zu erkennen. Unsere Analyse verfolgt, wie und unter welchen Bedingungen Informationen durch ein Modell fießen. Die Herausforderungen in der Entwicklung einer solchen Analyse liegen in (1) der Berücksichtigung der spezifschen Seman- tik der Modellierungssprachen, welche auf komplexen zeitlichen Abhängigkeiten und Parallelität basieren, und (2) der Verbindung der stark heterogenen Semantiken der signalfussorientierten und jener auf Zustandsautomaten basierenden Komponenten, aus denen Kontrollsystemmodelle aufgebaut sind. Die vorliegende Arbeit leistet in diesem Gebiet zwei Beiträge. Zum einen eine Informati- onsfussanalyse für die signalfussorientierten Komponenten eines Kontrollsystemmodells. Diese Analyse basiert auf der Idee, nur diejenigen Informationen eines Modells zu extrahieren, die für die Analyse des Informationsfusses hinsichtlich des Zeitverhaltens und der Funktionalität des Modells relevant sind. Um dies zu ermöglichen, erfasst unser Ansatz timed path conditions, das heißt, diejenigen Bedingungen, die präzise das Kontroll-, Zeit-, und Datenverhalten abbilden, unter denen Informationsfuss stattfndet. Zum anderen schafft unsere Arbeit eine Verbindung zwischen den stark heterogenen Semantiken der signalfussorientierten und den auf Zustands- automaten basierenden Komponenten. Unser Ansatz ermöglicht dies durch eine Übersetzung der Automaten in eine formal verifzierbare Darstellung, und die Kombination dieser Darstellung mit condition observer automata, welche wir aus den im ersten Schritt extrahierten timed path conditions generieren. Diese Verbindung der Semantiken ermöglicht uns, eine wohlfundierte Technik wie model checking zu nutzen, um genau das Verhalten des Zustandsautomaten zu identifzieren, welches zur Ausführung eines Informationsfusspfades führt. Um die Anwendbarkeit unseres Ansatzes unter Beweis zu stellen, präsentieren wir außerdem eine vollautomatische und modular aufgebaute Implementierung für MATLAB Simulink/Statefow und Modelica, zwei im Bereich sicherheitskritischer eingebetteter Software weit verbreitete Spra- chen. Mithilfe dieser Implementierung konnten wir unseren Ansatz zur Informationsfussanalyse auf zwei Fallstudien aus dem industriellen Bereich anwenden. In beiden Fallstudien waren wir in der Lage, die Integrität kritischer Berechnungen sicherzustellen, indem wir Informationsfuss zwischen nicht-kritischen und sicherheitskritischen Komponenten ausschließen konnten. iii iv Danksagung Diese Arbeit wäre ohne die Anregungen und die Unterstützung einer Vielzahl von Menschen nicht zustande gekommen. Zuallererst möchte ich Prof. Dr. Sabine Glesner für ihre jahrelange Unterstützung meiner Arbeit sowie für die vielen Gespräche und Anregungen danken. Sie hat mir nicht nur einen wunderbaren Rahmen für meine Promotion am Fachgebiet Software and Embedded Systems Engi- neering (SESE) der Technischen Universität Berlin geboten, sondern mich auch dazu ermutigt, mit meiner Arbeit in die Welt zu treten, sie an anderen Orten vorzustellen und dadurch vor- anzubringen. Dank ihrer Vermittlung konnte ich meine Arbeit auch an den Lehrstühlen von Prof. Dr.-Ing. Christian Hammer und Prof. Dr.-Ing. Frank Slomka vorstellen. Beide haben meine Arbeit im Anschluss daran als Gutachter betreut und begleitet. Die hilfreichen Anregungen und Hinweise beider haben diese Arbeit enorm verbessert und die Offenheit und Gründlichkeit beider im Umgang mit meiner Arbeit haben mich beeindruckt und geehrt. Prof. Glesner hat mich auch darin unterstützt, sechs Monate als Visiting Research Collaborator in der Gruppe von Prof. Sharad Malik an der Princeton University zu verbringen. Die Gespräche und die gemeinsame Arbeit mit ihm, Prof. Aarti Gupta und Zhixing Xu haben meine Forschung extrem bereichert und mir neue Perspektiven eröffnet. Für Prof. Glesners Unterstützung in Planung und Durchführung dieser unvergesslichen Zeit bin ich ihr – sowie dem Deutschen Akademischen Austauschdienst – sehr dankbar. Sehr dankbar bin ich auch für die Unterstützung durch das Bundesministerium für Bil- dung und Forschung (BMBF) sowie durch unseren Industriepartner Model Engineering Solutions GmbH (MES), die meine Forschungsarbeit im Rahmen der Projekte Change Impact Analyses for Software Models (CISMo) und Effective Complexity of Software Models (ECoSMo) förderten. Auf Seiten von MES war Dr. Heiko Dörr zu jeder Zeit ein sehr hilfsbereiter und engagierter Gesprächs- partner für mich, der meine Forschung nicht nur durch das Zurverfügungstellen zahlreicher Anwendungsbeispiele maßgeblich vorangebracht und motiviert hat. Der Softwareprototyp, der im Rahmen meiner Arbeit und Forschung entstanden ist, hat von der langjährigen Mitarbeit meiner studentischen Hilfskräfte Moritz Lummerzheim, Feras Fattohi und Umar Ahmad unheimlich proftiert. Ich bin sehr froh, dass ihr mir geholfen habt, meine Ideen Realität werden zu lassen. Diese Arbeit wäre ohne die kontinuierliche Ermutigung, die klugen Kommentare und nicht zuletzt die immer tatkräftige Unterstützung von Prof. Dr.-Ing. Paula Herber und Dr.-Ing. Thomas Göthel nicht zustande gekommen. Sie haben diese Arbeit maßgeblich geprägt und vom ersten Satz bis zur letzten Seite begleitet. Dass die beiden
Recommended publications
  • Constraint Programming
    Constraint Programming Mikael Z. Lagerkvist Tomologic October 2015 Mikael Z. Lagerkvist (Tomologic) Constraint Programming October 2015 1 / 42 [flickr.com/photos/santos/] Who am I? Mikael Zayenz Lagerkvist Basic education at KTH 2000-2005 I Datateknik PhD studies at KTH 2005-2010 I Research in constraint programming systems I One of three core developers for Gecode, fast and well-known Constraint Programming (CP) system. http://www.gecode.org Senior developer R&D at Tomologic I Optimization systems for sheet metal cutting I Constraint programming for some tasks Mikael Z. Lagerkvist (Tomologic) Constraint Programming October 2015 3 / 42 Mikael Z. Lagerkvist (Tomologic) Constraint Programming October 2015 4 / 42 Mikael Z. Lagerkvist (Tomologic) Constraint Programming October 2015 5 / 42 Tomologic Mostly custom algorithms and heuristics Part of system implemented using CP at one point I Laser Cutting Path Planning Using CP Principles and Practice of Constraint Programming 2013 M. Z. Lagerkvist, M. Nordkvist, M. Rattfeldt Some sub-problems solved using CP I Ordering problems with side constraints I Some covering problems Mikael Z. Lagerkvist (Tomologic) Constraint Programming October 2015 6 / 42 1 Introduction 2 Sudoku example 3 Solving Sudoku with CP 4 Constraint programming basics 5 Constraint programming in perspective Constraint programming evaluation Constraint programming alternatives 6 Summary Mikael Z. Lagerkvist (Tomologic) Constraint Programming October 2015 7 / 42 Sudoku - The Rules Each square gets one value between 1 and 9 Each row has all values different Each column has all values different Each square has all values different Mikael Z. Lagerkvist (Tomologic) Constraint Programming October 2015 7 / 42 Sudoku - Example 3 6 1 9 7 5 8 9 2 8 7 4 3 6 1 2 8 9 4 5 1 Mikael Z.
    [Show full text]
  • A Stochastic Continuous Optimization Backend for Minizinc with Applications to Geometrical Placement Problems Thierry Martinez, François Fages, Abder Aggoun
    A Stochastic Continuous Optimization Backend for MiniZinc with Applications to Geometrical Placement Problems Thierry Martinez, François Fages, Abder Aggoun To cite this version: Thierry Martinez, François Fages, Abder Aggoun. A Stochastic Continuous Optimization Backend for MiniZinc with Applications to Geometrical Placement Problems. Proceedings of the 13th International Conference on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming, CPAIOR’16, May 2016, Banff, Canada. pp.262-278, 10.1007/978-3-319-33954-2_19. hal-01378468 HAL Id: hal-01378468 https://hal.archives-ouvertes.fr/hal-01378468 Submitted on 30 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Stochastic Continuous Optimization Backend for MiniZinc with Applications to Geometrical Placement Problems Thierry Martinez1 and Fran¸cois Fages1 and Abder Aggoun2 1 Inria Paris-Rocquencourt, Team Lifeware, France 2 KLS-Optim, France Abstract. MiniZinc is a solver-independent constraint modeling lan- guage which is increasingly used in the constraint programming com- munity. It can be used to compare different solvers which are currently based on either Constraint Programming, Boolean satisfiability, Mixed Integer Linear Programming, and recently Local Search. In this paper we present a stochastic continuous optimization backend for MiniZinc mod- els over real numbers.
    [Show full text]
  • Model-Based Optimization for Effective and Reliable Decision-Making
    Model-Based Optimization for Effective and Reliable Decision-Making Robert Fourer [email protected] AMPL Optimization Inc. www.ampl.com — +1 773-336-2675 DecisionCAMP Bolzano, Italy — 18 September 2019 Model-Based Optimization DecisionCAMP — 18 September 2019 1 Model-Based Optimization for Effective and Reliable Decision-Making Optimization originated as an advanced between the human modeler’s formulation mathematical technique, but it has become an and the solver software’s needs. This talk accessible and widely used decision-making introduces model-based optimization by tool. A key factor in the spread of successful contrasting it to a method-based approach optimization applications has been the that relies on customized implementation of adoption of a model-based approach: A rules and algorithms. Model-based domain expert or operations analyst focuses implementations are illustrated using the on modeling the problem of interest, while AMPL modeling language and popular the computation of a solution is left to solvers. The presentation concludes by general-purpose, off-the-shelf solvers; surveying the variety of modeling languages powerful yet intuitive modeling software and solvers available for model-based manages the difficulties of translating optimization today. Dr. Fourer has over 40 years’ experience in institutes, and corporations worldwide; he is studying, creating, and applying large-scale also author of a popular book on AMPL. optimization software. In collaboration with Additionally, he has been a key contributor to the colleagues in Computing Science Research at NEOS Server project and other efforts to make Bell Laboratories, he initiated the design and optimization services available over the Internet, development of AMPL, which has become one and has supported development of open-source of the most widely used software systems for software for operations research through his modeling and analyzing optimization problems, service on the board of the COIN-OR with users in hundreds of universities, research Foundation.
    [Show full text]
  • Theory and Practice of Constraint Programming September 24-28, 2012
    Association for Constraint Programming ACP Summer School 2012 Theory and Practice of Constraint Programming September 24-28, 2012 Institute of Computer Science University of Wrocław Poland Association for Constraint Programming ACP Summer School 2012 Theory and Practice of Constraint Programming September 24-28, 2012 Institute of Computer Science University of Wrocław Poland Table of contents Introduction to constraint programming Willem-Jan van Hoeve Operations Research Techniques in Constraint Programming Willem-Jan van Hoewe Constraint Programming and Biology Agostino Dovier Constraints and Complexity Peter Jeavons Set Constraints Witold Charatonik Constraints: Counting and Approximation Andrei Bulatov Introduction to Constraint Programming Willem-Jan van Hoeve Tepper School of Business, Carnegie Mellon University ACP Summer School on Theory and Practice of Constraint Programming September 24-28, 2012, Wrocław, Poland Outline Constraint Programming Overview General introduction • Successful applications Artificial Operations Computer Intelligence Research Science • Modeling • Solving • CP software optimization search algorithms data structures Basic concepts logical inference formal languages • Search Constraint • Constraint propagation Programming • Complexity Evolution events of CP Successful applications 1970s: Image processing applications in AI; Search+qualitative inference 1980s: Logic Programming (Prolog); Search + logical inference 1989: CHIP System; Constraint Logic Programming 1990s: Constraint Programming; Industrial Solvers
    [Show full text]
  • A Satisfiability Modulo Theories Approach to Constraint Programming
    A SATISFIABILITY MODULO THEORIES APPROACH TO CONSTRAINT PROGRAMMING Josep SUY FRANCH Dipòsit legal: GI. 150-2013 http://hdl.handle.net/10803/98302 A satisfiability modulo theories approach to constraint programming està subjecte a una llicència de Reconeixement 3.0 No adaptada de Creative Commons ©2013, Josep Suy Franch PHDTHESIS A Satisfiability Modulo Theories Approach to Constraint Programming Author: Josep SUY FRANCH 2012 Programa de Doctorat en Tecnologia Advisors: Dr. Miquel BOFILL ARASA Dr. Mateu VILLARET AUSELLE Memoria` presentada per optar al t´ıtol de doctor per la Universitat de Girona Abstract Satisfiability Modulo Theories (SMT) is an active research area mainly focused on for- mal verification of software and hardware. The SMT problem is the problem of deter- mining the satisfiability of ground logical formulas with respect to background theories expressed in classical first-order logic with equality. Examples of theories include linear real or integer arithmetic, arrays, bit vectors, uninterpreted functions, etc., or combina- tions of them. Modern SMT solvers integrate a Boolean satisfiability (SAT) solver with specialized solvers for a set of literals belonging to each theory. On the other hand, Constraint Programming (CP) is a programming paradigm de- voted to solve Constraint Satisfaction Problems (CSP). In a CSP, relations between vari- ables are stated in the form of constraints. Each constraint restricts the combination of values that a set of variables may take simultaneously. The constraints are stated over specific domains, typically: Booleans, integers, rationals, reals, finite domains, or com- binations of them. The problem consists in finding an assignment to the variables that satisfy all constraints.
    [Show full text]
  • Introduction to Constraint Programming Outline Constraint
    Introduction to Constraint Programming Willem-Jan van Hoeve Tepper School of Business, Carnegie Mellon University ACP Summer School on Theory and Practice of Constraint Programming September 24-28, 2012, Wrocław, Poland Outline General introduction • Successful applications • Modeling • Solving • CP software Basic concepts • Search • Constraint propagation • Complexity Constraint Programming Overview Artificial Operations Computer Intelligence Research Science optimization search algorithms data structures logical inference formal languages Constraint Programming 1 Evolution events of CP 1970s: Image processing applications in AI; Search+qualitative inference 1980s: Logic Programming (Prolog); Search + logical inference 1989: CHIP System; Constraint Logic Programming 1990s: Constraint Programming; Industrial Solvers (ILOG, Eclipse,…) 1994: Advanced inference for alldifferent and resource scheduling 2000s: Global constraints; integrated methods; modeling languages 2006: CISCO Systems acquires Eclipse CLP solver 2009: IBM acquires ILOG CP Solver & Cplex Successful applications Sport Scheduling Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Period 1 0 vs1 0 vs2 4 vs7 3 vs6 3 vs 7 1 vs 5 2 vs4 Period 2 2 vs3 1 vs7 0 vs3 5 vs7 1 vs4 0 vs6 5 vs 6 Period 3 4 vs 5 3 vs 5 1 vs6 0 vs4 2 vs6 2 vs7 0 vs7 Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 Schedule of 1997/1998 ACC basketball league (9 teams) • various complicated side constraints • all 179 solutions were found in 24h using enumeration and integer linear programming [Nemhauser
    [Show full text]
  • Constraint Programming
    Constraint Programming Justin Pearson Uppsala University 1st July 2016 Special thanks to Pierre Flener, Joseph Scott and Jun He CP MiniZinc Strings Other Final Outline 1 Introduction to Constraint Programming (CP) 2 Introduction to MiniZinc 3 Constraint Programming with Strings 4 Some recent, and not so Recent Advances 5 Final Thoughts Uppsala University Justin Pearson Constraint Programming CP MiniZinc Strings Other Final Constraint Programming in a Nutshell Slogan of CP Constraint Program = Model [ + Search ] CP provides: high level declarative modelling abstractions, a framework to separate search from from modelling. Search proceeds by intelligent backtracking with intelligent inference called propagation that is guided by high-level modelling constructs called global constraints. Uppsala University Justin Pearson Constraint Programming CP MiniZinc Strings Other Final Outline 1 Introduction to Constraint Programming (CP) Modelling Propagation Systematic Search History of CP 2 Introduction to MiniZinc 3 Constraint Programming with Strings 4 Some recent, and not so Recent Advances 5 Final Thoughts Uppsala University Justin Pearson Constraint Programming CP MiniZinc Strings Other Final Constraint-Based Modelling Example (Port tasting, PT) Alva Dan Eva Jim Leo Mia Ulla 2011 2003 2000 1994 1977 1970 1966 Constraints to be satisfied: Equal jury size: Every wine is evaluated by 3 judges. Equal drinking load: Every judge evaluates 3 wines. Fairness: Every port pair has 1 judge in common. Uppsala University Justin Pearson Constraint Programming CP MiniZinc Strings Other Final Constraint-Based Modelling Example (Port tasting, PT) Alva Dan Eva Jim Leo Mia Ulla 2011 3 3 3 2003 3 3 3 2000 3 3 3 1994 3 3 3 1977 3 3 3 1970 3 3 3 1966 3 3 3 Constraints to be satisfied: Equal jury size: Every wine is evaluated by 3 judges.
    [Show full text]
  • A GPU Implementation of Large Neighborhood Search for Solving Constraint Optimization Problems
    A GPU Implementation of Large Neighborhood Search for Solving Constraint Optimization Problems F. Campeotto and A. Dovier and F. Fioretto and E. Pontelli 1 Abstract. Constraint programming has gained prominence as an Processing Units—GPGPUs). Several libraries and programming en- effective and declarative paradigm for modeling and solving com- vironments (e.g., the Compute Unified Device Architecture (CUDA) plex combinatorial problems. In particular, techniques based on lo- created by NVIDIA) have been made available to allow programmers cal search have proved practical to solve real-world problems, pro- to access GPGPUs and exploit their computational power. viding a good compromise between optimality and efficiency. In In this paper, we propose the design and implementation of a spite of the natural presence of concurrency, there has been rela- novel constraint solver that exploits parallel Local Search (LS) us- tively limited effort to use novel massively parallel architectures— ing GPGPU architectures to solve constraint optimization problems. such as those found in modern Graphical Processing Units (GPUs)— The optimization process is performed in parallel on multiple large to speedup constraint programming algorithms, in general, and local promising regions of the search space, with the aim of improving the search methods, in particular. This paper describes a novel frame- quality of the current solution. The local search model pursued is a work which exploits parallelism from a popular local search method variant of Large Neighborhood Search (LNS) [18, 3]. LNS is a local (the Large Neighborhood Search method), using GPUs. search techniques characterized by an alternation of destroy and re- pair methods—used to destroy and repair part of a solution of a prob- lem.
    [Show full text]
  • Y Su Aplicación a Problemas Reales De La Industria
    MejorA DE LA EfiCIENCIA DE resolución DEL SISTEMA TOY(FD) Y SU aplicación A PROBLEMAS REALES DE LA INDUSTRIA TESIS DoctorAL Ignacio CastiñeirAS Pérez Directores Fernando Sáenz Pérez FrANCISCO Javier López FrAGUAS Universidad Complutense DE Madrid Facultad DE Informática Departamento DE Sistemas Informáticos Y Computación Madrid, MARZO DE 2014 Improving THE Solving EffiCIENCY OF TOY(FD) AND ITS Application TO Real-Life Problems PhD Thesis Ignacio CastiñeirAS Pérez Advisors Fernando Sáenz Pérez FrANCISCO Javier López FrAGUAS Complutense Univesity OF Madrid Faculty OF Information TECHNOLOGY AND Computer Science Departament OF Information Systems AND Computing Madrid, March OF 2014 MejorA DE LA EfiCIENCIA DE resolución DEL SISTEMA TOY(FD) Y SU aplicación A PROBLEMAS REALES DE LA INDUSTRIA Improving THE Solving EffiCIENCY OF TOY(FD) AND ITS Application TO Real-Life Problems Ignacio CastiñeirAS Pérez TESIS DOCTORal, CON título “MejorA DE LA EfiCIENCIA DE resolución DEL SISTEMA TOY(FD) Y SU aplicación A PROBLEMAS REALES DE LA INDUSTRIA”, PRESENTADA POR Ignacio CastiñeirAS Pérez PARA LA obtención DEL título DE Doctor POR LA Universi- DAD Complutense DE Madrid. Título: MejorA DE LA EfiCIENCIA DE resolución DEL SISTEMA TOY(FD) Y SU aplicación A PROBLEMAS REALES DE LA INDUSTRIA Autor: Ignacio CastiñeirAS Pérez ([email protected]) Directores: Fernando Sáenz Pérez ([email protected]) FrANCISCO Javier López FrAGUAS ([email protected]) Universidad Complutense DE Madrid, Facultad DE Informática, Departamento DE Sistemas Informáticos Y Computación Madrid, MARZO DE 2014 PhD Thesis, WITH TITLE “Improving THE Solving EffiCIENCY OF TOY(FD) AND ITS Ap- PLICATION TO Real-Life Problems”, PRESENTED BY Ignacio CastiñeirAS Pérez FOR ob- TAINING A PhD AT THE Complutense University OF Madrid.
    [Show full text]
  • Constraint Modelling and Solving of Some Verification Problems Anicet Bart
    Constraint modelling and solving of some verification problems Anicet Bart To cite this version: Anicet Bart. Constraint modelling and solving of some verification problems. Programming Languages [cs.PL]. Ecole nationale supérieure Mines-Télécom Atlantique, 2017. English. NNT : 2017IMTA0031. tel-01743851 HAL Id: tel-01743851 https://tel.archives-ouvertes.fr/tel-01743851 Submitted on 26 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Thèse de Doctorat Anicet BART Mémoire présenté en vue de l’obtention du grade de Docteur de l’École nationale supérieure Mines-Télécom Atlantique Bretagne-Pays de la Loire sous le sceau de l’Université Bretagne Loire École doctorale : Mathématiques et STIC (MathSTIC) Discipline : Informatique, section CNU 27 Unité de recherche : Laboratoire des Sciences du Numérique de Nantes (LS2N) Soutenue le 17 octobre 2017 Thèse n°: 2017IMTA0031 Constraint Modelling and Solving of some Verification Problems JURY Présidente : Mme Béatrice BÉRARD, Professeur, Université Pierre et Marie Curie, Paris-VI Rapporteurs : M. Salvador ABREU, Professeur, Universidade de Évora, Portugal Mme Béatrice BÉRARD, Professeur, Université Pierre et Marie Curie, Paris-VI Examinateurs : M. Nicolas BELDICEANU, Professeur, Institut Mines-Télécom Atlantique, Nantes M. Philippe CODOGNET, Professeur, Université Pierre et Marie Curie, Paris-VI Invité : M.
    [Show full text]
  • What Is Constraint Programming (CP)?
    ConstraintProgramming Extensions.jl An MOI/JuMP extension for constraint programming Thibaut Cuvelier — CentraleSupélec (université Paris-Saclay) What is constraint programming (CP)? ▪ Way of formulating combinatorial problems ▪ CP doesn’t really work for continuous problems (exception: Ibex, e.g.) ▪ Initial focus in CP was on feasibility, but optimisation is also possible ▪ Quite different from mathematical optimisation: ▪ No duality, no convexity, no linear/continuous relaxation, no differentiability at all ▪ More generic set of constraints, not just equations and inequalities ▪ Real focus on discrete aspect of the problem ▪ Mathematical optimisation’s support for combinatorial problems is more an afterthought ▪ CP has had many successes in operational research: ▪ Scheduling, time tabling, resource allocation An example of CP model: solving Sudokus ▪ Variables: ▪ 푑푖푗: digit for cell 푖, 푗 , a number between 1 and 9 ▪ Constraints: ▪ Known digits (hints) ▪ Each digit appears once in each row: alldifferent 푑푖푗 ∀푗 , ∀푖 ▪ Each digit appears once in each column: alldifferent 푑푖푗 ∀푖 , ∀푗 ▪ Each digit appears once in each block: 푑3푠,3푡 푑3푠,3푡+1 푑3푠,3푡+2 alldifferent 푑3푠+1,3푡 푑3푠+1,3푡+1 푑3푠+1,3푡+2 , 푠 ∈ 0,1,2 , 푡 ∈ 0,1,2 푑3푠+1,3푡 푑3푠+1,3푡+1 푑3푠+1,3푡+2 ▪ What about your typical MIP model ? ConstraintProgrammingExtensions.jl • What is the state of CP in Julia? • What is the state of the package? • What comes next? • What is missing in Julia/MOI/JuMP? • What is enabled with this package? What is the state of CP in Julia? ▪ Quite a few CP solvers
    [Show full text]
  • Thesis Structure
    UvA-DARE (Digital Academic Repository) Enabling framework for service-oriented collaborative networks Sargolzaei, M. Publication date 2018 Document Version Final published version License Other Link to publication Citation for published version (APA): Sargolzaei, M. (2018). Enabling framework for service-oriented collaborative networks. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:23 Sep 2021 Enabling Framework for Service-oriented Collaborative Networks Mahdi Sargolzaei Enabling Framework for Service-oriented Collaborative Networks Mahdi Sargolzaei Enabling Framework for Service-oriented Collaborative Networks Mahdi Sargolzaei Enabling Framework for Service-oriented Collaborative Networks Academisch Proefschrift ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof.dr. ir. K.I.J. Maex ten overstaan van een door het College voor Promoties ingestelde commissie, in het openbaar te verdedigen in de Agnietenkapel op dinsdag 15 mei 2018, te 10.00 uur door Mahdi Sargolzaei geboren te Mashhad, Iran.
    [Show full text]