ISU Word Template

Total Page:16

File Type:pdf, Size:1020Kb

ISU Word Template Lifeline for the ISS and Future Tethers Final Report International Space University MSS Program 2018 © International Space University. All Rights Reserved. The MSS 2018 Program of the International Space University was held at the ISU Central Campus in Illkirch-Graffenstaden, France. The front page represents an artistic representation of the contents of the final report. On it there is a tether in perspective, where the structure of the cable is seen in the foreground. The tether then recedes into the background where its attachment to the International Space Station is shown. Background image courtesy of: Demonic Lucifer- https://demonic-lucifer.deviantart.com/ While all care has been taken in the preparation of this report, the International Space University (ISU) does not take any responsibility for the accuracy of its content. Electronic copies of the Final Report and Executive Summary can be downloaded from the ISU web site at www.isunet.edu. Printed copies of the Executive Summary may be requested, while supplies last, from: International Space University Strasbourg Central Campus Attention: Publications/Library Parc d’Innovation 1 rue Jean-Dominique Cassini 67400 Illkirch-Graffenstaden France Tel. +33 (0)3 88 65 54 32 Fax. +33 (0)3 88 65 54 47 e-mail. [email protected] International Space University, MSS 2018 ii Lifeline for the ISS and Future Tethers Acknowledgements ACKNOWLEDGEMENTS The LIFT team would like to express our gratitude to all ISU faculty members and staff for their help and their encouragement during the realization of the project this report will present. We would like to express special thanks to the following ISU faculty and staff members: Prof. Gongling Sun For being our Faculty Interface, and supporting and supervising our team throughout the project Prof. Chris Welch For sharing past experiences and providing guidance to assist us in accomplishing the TPR Research For providing encouragement and support and giving us helpful Associate Danijela advice Stupar Prof. Hugh Hill For contributing expertise and knowledge regarding the science involved Prof. Barnaby For providing support and advice regarding the engineering part Osborne Prof. Vazilis For answering our questions about politics, economics and law Zervos Prof. Volker For giving us helpful feedback about our project Damann Hameed Mohamed For being our project TA and providing us with helpful tips and advice in the crafting of this report Prof. Walter For sharing knowledge to assist us in the writing of this report Peeters Muriel Riester For providing endless support in using the library and its resources Steve Brody For his support with the interface to NASA Additionally, this report would not be complete without the support of the following external persons: Pierre Brunner For initiating the topic of this project and for providing general (ESA) support Les Johnson For answering our questions on technical issues and providing (NASA) literature relevant to our project Philippe Achilleas For providing advice regarding legal considerations Robert Hoyt For presenting information about the Hoyt tether and willingness to answer our interrogations Joe Carroll For providing support about materials that could be used for a tether We would like to express a special thanks to Prof Walter Peeters, President of ISU and Dr Buzz Aldrin, Chancellor of ISU for their commitment at ISU and this program. Finally, we would like to thank NASA’s Marshall Space Flight Center (MSFC), and specifically its Science and Technology Office for sponsoring this project. International Space University, MSS 2018 iii Lifeline for the ISS and Future Tethers List of Authors AUTHORS Baberwal, Sonal Hu, Wenjing India People’s Republic of China BEng. In Electronics & Telecom MSc. In Information Engineering Communications and Technology Hurrell, James Bernard, Robert United Kingdom Canada MPhys In Astronomy, Space Science PEng. In Aerospace Engineering and Astrophysics, Koumi, Elissavet Brechenmacher, Nicolas Greece France BEng. In Electronics & Electrical MSc. In Aerospace Engineering Engineering Burkhardt, Zachary Lalonde, Josh United States of America Canada BSc. In Aerospace Engineering BSc. In Pure & Applied Mathematics Caiazzo, Antonio Noguez Ceron, Michelle Italy Australia MSc. In Aerospace Engineering BEHons Space Mechatronics Chan, Edward Qureshi, Anisa United States of America United Kingdom BSc. In Information, Science and BSc. Mathematics & Computer Technology Science Chen, Xi Rodriguez, Eduardo People’s Republic of China Colombia MSc. In Electrical Engineering MBBS, Psych. & Economics Delayat, Vincent Rojas Gómez, Armando France Spain MSc. In Mechatronics Engineering BEng. In Aerospace Engineering Djurdjevic, Stefan Aleksa Singh, Nisheet Serbia India BEng. In Architecture BTech. In Telecom. & Electronics Gu, Wenhua Singh, Rishank People’s Republic of China India BSc. In Mechanical & Automation Mechanical and Energy Engineering Engineering MBA Tang Baitao Higashio, Susan People’s Republic of China Canada MSc. In Guidance Navigation and B. of Commerce Control Engineering International Space University, MSS 2018 iv Lifeline for the ISS and Future Tethers Abstract ABSTRACT Over the twentieth and twenty-first centuries, the concept of space tether systems has evolved from a thought experiment to a feasible and tangible idea, with multiple missions having flown with tether lengths from a few meters to a few kilometers. Tether systems have many potential applications which could transform space activities in the long term. There are multiple justifications for space tether systems; culturally such systems could revolutionize access to space and open up new economic opportunities. Additionally, the scientific community could benefit from an extensive platform for scientific experiments and the concept represents an unprecedented and fascinating experiment in itself. Yet, despite the potential, tether systems with hundreds or thousands of kilometers in length have never been constructed. It is clear that there are significant challenges hindering the implementation of large tether systems. The currently unreliable nature of tether deployment, the harsh nature of the space environment, and the lack of support for tethers among both space industry experts and the public are some of the most significant inhibitors to tether projects. The best first step to solving these problems is to understand them. In order to do so a study has been conducted, outlining the main obstacles determined for the development of space tether systems and proposed recommendations to overcome them. One promising possibility is the re-use of the ISS as part of a 6500 km tether system from LEO to MEO. This presents an interesting synergy with questions of the ISS’s future and would serve as an ideal first demonstration of such a large space tether system. By virtue of broad public support, capacity for human occupation and with existing applications, the use of the ISS inherently relieves many of the general obstacles that face tether projects. While this concept does introduce new obstacles, primarily driven by the value of the ISS and its current deorbiting date sometime in the 2020s, these issues are resolvable and the potential benefits of such a project can justify the effort needed to do so. A well designed ISS tether system, incorporating several aspects examined for the use of tether systems, could aid in many problems, both for the development of tether systems and for the future of space activities. With this in mind, a suggested preliminary requirements list was defined for an ISS tether system; incorporating the recommendations developed for large tether systems. International Space University, MSS 2018 v Lifeline for the ISS and Future Tethers Faculty Preface FACULTY PREFACE The concept of space tethers was introduced as a means of space transportation over a century ago. Unlike rocket systems, the technical level of tether system development is still in a very early stage. To date government agencies and commercial entities have put limited focus on tether system development because of system complexity and some other non- technical concerns. Keeping this in mind, I have had the honor to share tether ideas and concepts with our international, intercultural and interdisciplinary team of 22 graduate students of ISU MSS 18 who have: critically analyzed the current major obstacles to tether system development for space transportation and possible ways to overcome them; identified cultural, political, scientific, legal and economic rationales for future tether system implementation; provided the conceptual idea for the reuse of the International Space Station after 2028, the schedule of ISS reuse tether system development schedule in line with the ISS retirement, and the cost analysis based on the 500 km tether system deployment in path with positive impact of the New Space era. This report outlines the case for the development of a LEO to MEO tether system that will reuse the International Space Station and the potential for such a system to evolve incrementally over time into something truly transformative. The report then outlines challenges that must be overcome for this concept to be realized and offer recommendations for how this might occur. On behalf of the all the ISU faculty members, I would like to express my gratitude and thanks to the team members for their sincere effort, commitment, hard work; and all my best wishes to the creative idea of ISS reutilization - further
Recommended publications
  • Fudge Space Opera
    Fudge Space Opera Version 0.3.0 2006-August-11 by Omar http://www.pobox.com/~rknop/Omar/fudge/spop Coprights, Trademarks, and Licences Fudge Space Opera is licenced under the Open Gaming Licence, version 1.0a; see Appendex A. Open Game License v 1.0 Copyright 2000, Wizards of the Coast, Inc. Fudge System Reference Document Copyright 2005, Grey Ghost Press, Inc.; Authors Steffan O’Sullivan, Ann Dupuis, with additional material by other authors as indicated within the text. Available for use under the Open Game License (see Appendix I) Fudge Space Opera Copyright 2005, Robert A. Knop Jr. Open Gaming Content Designation of Product Identity: Nothing herein is designated as Product Identity as outlined in section 1(e) of the Open Gaming License. Designation of Open Gaming Content: Everything herein is designated as Open Game Content as outlined in seciton 1(d) of the Open Gaming License. Fudge Space Opera -ii- Fudge Space Opera CONTENTS Contents 1 Introduction 1 1.1 Why “Space Opera”? . ......... 1 1.2 WhatisHere ........................................ .......... 2 1.3 TheMostImportantThing .............................. ............ 2 2 Character Creation 3 2.1 GeneralNotes........................................ .......... 3 2.2 5-PointFudge....................................... ........... 3 3 Combat 7 3.1 Default Combat Options . .......... 7 3.2 Basic Armor and Weapon Mechanics . ........... 7 3.3 Cross-WeaponScaleAttacks. .............. 8 3.4 Suggested Weapon Scales . ........ 9 3.5 DamagetoPassengers ................................. ............ 9 3.6 GiantSpaceBeasts.................................... ........... 9 3.7 When To Use Fudge Scale .......................................... 10 3.8 RangedWeapons....................................... ......... 11 3.9 Explosions........................................ ............ 12 3.10 Missiles and Point Defense . .............. 12 -iii- Fudge Space Opera CONTENTS 3.11 Doing Too Many Things at Once .
    [Show full text]
  • Bare Tape Tether Scaling Laws
    Departamento de F´ısica Aplicada a la Ingenier´ıa Aeronautica´ Escuela Tecnica´ Superior de Ingenieros Aeronauticos´ Bare-tape scaling laws for de-orbit missions in a space debris environment Tesis Doctoral SHAKER BAYAJID KHAN Ingeniero Mecanico´ DIRECTOR JUAN R. SANMART´IN Doctor Ingeniero Aeronautico´ & GONZALO SANCHEZ´ ARRIAGA Doctor Ingeniero Aeronautico´ Madrid, 2014 "সোেচর িবলতা িনেজের অপমান। সেটর ক1নােত হােয়া না িয়মাণ। - মু8 কেরা ভয়, আপনা মােঝ শি8 ধেরা, িনেজের কেরা জয়।" --- রবীনাথ ঠাকু র “Never be demoralized in hesitance In the reason of danger, never lagged behind Release yourself from fear Stand upright, win over thyself with strength.” ---Rabindranath Tagore Tribunal nombrado por el Sr. Rector Magfco. de la Universidad Polit´ecnica de Madrid, el d´ıa ...... de ............... de 2014. Presidente: .............................. Vocal: .................................... Vocal: .................................... Vocal: .................................... Secretario: ................................. Suplente:................................. Suplente: ................................. Realizado el acto de defensa y lectura de la Tesis el d´ıa .... de........ de 2014 en la E.T.S.I. Aeronauticos.´ Calificac´ıon ................................................... EL PRESIDENTE LOS VOCALES EL SECRETARIO Acknowledgements To my Parents It gives me great pleasure in expressing my sincere gratitude to all those people who have supported me and had their contributions in making this thesis possible. First and foremost, I would never have accomplished my achievements upto this point without the unconditional sacrifice and endless support from my parents. Starting from the very beginning of my childhood days, with her stories of admiral Nelson, my mother deserves special acknowledgement for giving me the unyielding mindset, that eventually became a key virtue to lead me through the barriers.
    [Show full text]
  • Thesis the Effects of a Realistic Hollow Cathode
    THESIS THE EFFECTS OF A REALISTIC HOLLOW CATHODE PLASMA CONTACTOR MODEL ON THE SIMULATION OF BARE ELECTRODYNAMIC TETHER SYSTEMS Submitted by Derek M. Blash Department of Mechanical Engineering In partial fulfillment of the requirements For the Degree of Master of Science Colorado State University Fort Collins, Colorado Fall 2013 Master's Committee: Advisor: John D. Williams Thomas H. Bradley Raymond S. Robinson Copyright by Derek Blash 2013 All Rights Reserved Abstract THE EFFECTS OF A REALISTIC HOLLOW CATHODE PLASMA CONTACTOR MODEL ON THE SIMULATION OF BARE ELECTRODYNAMIC TETHER SYSTEMS The region known as Low-Earth Orbit (LEO) has become populated with artificial satel- lites and space debris since humanities initial venture into the region. This has turned LEO into a hazardous region. Since LEO is very valuable to many different countries, there has been a push to prevent further buildup and talk of even deorbiting spent satellites and de- bris already in LEO. One of the more attractive concepts available for deorbiting debris and spent satellites is a Bare Electrodynamic Tether (BET). A BET is a propellantless propul- sion technique in which two objects are joined together by a thin conducting material. When these tethered objects are placed in LEO, the tether sweeps across the magnetic field lines of the Earth and induces an electromotive force (emf ) along the tether. Current from the space plasma is collected on the bare tether under the action of the induced emf, and this current interacts with the Earth's magnetic field to create a drag force that can be used to deorbit spent satellites and space debris.
    [Show full text]
  • Concept for a Crewed Lunar Lander Operating from the Lunar Orbiting Platform-Gateway
    69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018. Copyright © 2018 by Lockheed Martin Corporation. Published by the IAF, with permission and released to the IAF to publish in all forms. IAC-18.A5.1.4x46653 Concept for a Crewed Lunar Lander Operating from the Lunar Orbiting Platform-Gateway Timothy Cichana*, Stephen A. Baileyb, Adam Burchc, Nickolas W. Kirbyd aSpace Exploration Architect, P.O. Box 179, MS H3005, Lockheed Martin Space, Denver, Colorado, U.S.A. 80201, [email protected] bPresident, 8100 Shaffer Parkway, Unit 130, Deep Space Systems, Inc., Littleton, Colorado, 80127-4124, [email protected] cDesign Engineer / Graphic Artist, 8341 Sangre de Christo Rd, Deep Space Systems, Inc., Littleton, Colorado, 80127, [email protected] dSystems Engineer, Advanced Programs, P.O. Box 179, MS H3005, Lockheed Martin Space, Denver, Colorado, U.S.A. 80201, [email protected] * Corresponding Author Abstract Lockheed Martin is working with NASA on the development of the Lunar Orbiting Platform – Gateway, or Gateway. Positioned in the vicinity of the Moon, the Gateway allows astronauts to demonstrate operations beyond Low Earth Orbit for months at a time. The Gateway is evolvable, flexible, modular, and is a precursor and mission demonstrator directly on the path to Mars. Mars Base Camp is Lockheed Martin's vision for sending humans to Mars. Operations from an orbital base camp will build on a strong foundation of today's technologies and emphasize scientific exploration as mission cornerstones. Key aspects of Mars Base Camp include utilizing liquid oxygen and hydrogen as the basis for a nascent water-based economy and the development of a reusable lander/ascent vehicle.
    [Show full text]
  • STAR TREK the TOUR Take a Tour Around the Exhibition
    R starts CONTents STAR TREK THE TOUR Take a tour around the exhibition. 2 ALL THOSE WONDERFUL THINGS.... More than 430 items of memorabilia are on show. 10 MAGIC MOMENTS A gallery of great Star Trek moments. 12 STAR TREK Kirk, Spock, McCoy et al – relive the 1960s! 14 STAR TREK: THE NEXT GENERATION The 24th Century brought into focus through the eyes of 18 Captain Picard and his crew. STAR TREK: DEEP SPACE NINE Wormholes and warriors at the Alpha Quadrant’s most 22 desirable real estate. STAR TREK: VOYAGER Lost. Alone. And desperate to get home. Meet Captain 26 Janeway and her fearless crew. STAR TREK: ENTERPRISE Meet the newest Starfleet crew to explore the universe. 30 STARSHIP SPECIAL Starfleet’s finest on show. 34 STAR TREK – THE MOVIES From Star Trek: The Motion Picture to Star Trek Nemesis. 36 STAR trek WELCOMING WORDS Welcome to Star TREK THE TOUR. I’m sure you have already discovered, as I have, that this event is truly a unique amalgamation of all the things that made Star Trek a phenomenon. My own small contribution to this legendary story has continued to be a source of great pride to me during my career, and although I have been fortunate enough to have many other projects to satisfy the artist in me, I have nevertheless always felt a deep and visceral connection to the show. But there are reasons why this never- ending story has endured. I have always believed that this special connection to Star Trek we all enjoy comes from the positive picture the stories consistently envision.
    [Show full text]
  • REMARKS for ADMINISTRATOR BOLDEN AIAA NEW HORIZONS FORUM Jan
    REMARKS FOR ADMINISTRATOR BOLDEN AIAA NEW HORIZONS FORUM Jan. 5, 2011 Thank you for inviting me to join you today for the New Horizons forum. I want to acknowledge Dr. Ron Sega, my crewmate on STS-60, the first joint U.S./Russian space shuttle mission, for chairing this forum and for extending the original invitation for me to participate today. Thanks, Ron. This is a wonderful gathering. It's my honor today to talk to you about a program that was a vital part of my 14-year NASA career. As you no doubt know, I was privileged to fly four times on the space shuttle -- on Columbia, Atlantis and Discovery twice. Being an astronaut and serving as a member of the NASA team provided me with some of the proudest moments of my life. At NASA, the past year has been bittersweet. Each successive shuttle flight demonstrates the expertise of the phenomenal team that launches and returns our crews safely, and adds one more notch toward construction-complete of the International Space Station. Each mission showcases the amazing talents and expertise of our astronauts in robotics and science. The astronauts train for years for each flight and extra for their 1 spacewalks, and as smoothly as they have gone, we forget how difficult they are. So it is impossible not to feel a little sadness that each flight brings us closer to the final voyage of one of our flagship programs, and the final chapter in one of the most storied eras in the history of human spaceflight.
    [Show full text]
  • Tethers in Space Handbook
    Tethers In Space Handbook rampantly.Compensatory Chancy and Jeremiasmustached flamed, Casey his denationalises loon stapling herconned role plumingdebauchedly. or james retrorsely. Aleck brush-off Some cases where they conserve energy gap is especially useful to tethers in space handbook is made Upper atmosphere after which exploit the space handbook provides good agreement to! Scientists expect the see tethers doing real authority in orbit in copper not reach distant. This paper introduces history of space tethers including tether concepts and tether. Feedback eligible for Retrieving an Electro IEEE Xplore. The handbook is moving plasma grounding techniques in tethers space handbook: a unique and are examined in general innovative space has separated from the performance of the tether part is. Tethers in this Handbook NASA Marshall Space service Center Huntsville Ala. A NUCLEAR SPACE door system the SP-100 is being developed for. Tethers In that Handbook Cosmo M L Lorenzini E C Administration National Aeronautics and Amazoncomau Books. 1 ML Cosmo EC Lorenzini Tethers in this Handbook Smithsonian. Space tether technologies in working space missions 3 7. Phase which includes tether picks up to space handbook: terms of the handbook, advanced tether will require at large counterweight, there are taken along with. Mechanisms and lubrication of electrodynamic tether system. Applications for space handbook has developed controller proved effective effort has focused definition of tethers in space handbook is the figure gives the connection is the grapple would quickly be transported up. Tethers In adventure Handbook Amazonde Cosmo M L Lorenzini. The handbook is increased tensile mode allows to space handbook: this magnetic field.
    [Show full text]
  • Preparation of Papers for AIAA Technical Conferences
    In-space Assembly Capability Assessment for Potential Human Exploration and Science Applications Sharon A. Jefferies1, Christopher A. Jones2, Dale C. Arney3, Frederic H. Stillwagen4, Patrick R. Chai5, Craig D. Hutchinson6, Matthew A. Stafford7, Robert W. Moses8, James A. Dempsey9 NASA Langley Research Center, Hampton, VA, 23681, USA Erica M. Rodgers10 NASA Headquarters, Washington, D.C., 20024, USA Henry H. Kwan11 Georgia Institute of Technology, Atlanta, GA, 30332, USA and Sean P. Downs12 University of Colorado Boulder, Boulder, CO, 80309, USA Human missions to Mars present several major challenges that must be overcome, including delivering multiple large mass and volume elements, keeping the crew safe and productive, meeting cost constraints, and ensuring a sustainable campaign. Traditional methods for executing human Mars missions minimize or eliminate in-space assembly, which provides a narrow range of options for addressing these challenges and limits the types of missions that can be performed. This paper discusses recent work to evaluate how the inclusion of in-space assembly in space mission architectural concepts could provide novel solutions to address these challenges by increasing operational flexibility, robustness, risk reduction, crew health and safety, and sustainability. A hierarchical framework is presented to characterize assembly strategies, assembly tasks, and the required capabilities to assemble mission systems in space. The framework is used to identify general mission system design considerations and assembly system characteristics by assembly strategy. These general approaches are then applied to identify potential in-space assembly applications to address each challenge. Through this process, several focus areas were identified where applications of in-space assembly could affect multiple challenges.
    [Show full text]
  • Recommended Government Actions to Address Critical U.S. Space Logistics Needs
    AIAA Space Logistics Technical Committee Position Paper (http://www.aiaa.org/tc/sl) Recommended Government Actions to Address Critical U.S. Space Logistics Needs Introduction The purpose of this position paper is to highlight the importance of assessing the nation’s space logistics needs and to propose specific Government actions to undertake this assessment. The three recommended actions are: 1. Establish a space logistics task force to assess the capabilities of the industrial base and the value of establishing the basic elements of an integrated space logistics infrastructure including: assured, routine space access for passengers and cargo; in-space mobility within the central solar system for passengers and cargo; and, in-space logistics support for civil, commercial, national security, and space exploration missions. 2. The space logistics task force, perhaps through appropriate supporting Government organizations, should contract with industry to conduct the conceptual design studies of near-term, reusable space access systems, e.g., two-stage RLVs, suitable for providing first-generation passenger and cargo transport to and from earth orbit. 3. In parallel with the operation of the space logistics task force and the conduct of the reusable space access conceptual design trade studies, establish a space logistics commission to identify and recommend the preferred strategy for organizing and funding Government and industry efforts to effectively and affordably undertake the development, production, and operation of an integrated space logistics infrastructure. Background Space Logistics Definition The definition of space logistics, derived from the commonly-accepted definition of military logistics, is: Space logistics is the science of planning and carrying out the movement of humans and materiel to, from and within space combined with the ability to maintain human and robotics operations within space.
    [Show full text]
  • Today's Space Elevator
    International Space Elevator Consortium ISEC Position Paper # 2019-1 Today's Space Elevator Space Elevator Matures into the Galactic Harbour A Primer for Progress in Space Elevator Development Peter Swan, Ph.D. Michael Fitzgerald ii Today's Space Elevator Space Elevator Matures into the Galactic Harbour Peter Swan, Ph.D. Michael Fitzgerald Prepared for the International Space Elevator Consortium Chief Architect's Office Sept 2019 iii iv Today's Space Elevator Copyright © 2019 by: Peter Swan Michael Fitzgerald International Space Elevator Consortium All rights reserved, including the rights to reproduce this manuscript or portions thereof in any form. Published by Lulu.com [email protected] 978-0-359-93496-6 Cover Illustrations: Front – with permission of Galactic Harbour Association. Back – with permission of Michael Fitzgerald. Printed in the United States of America v vi Preface The Space Elevator is a Catalyst for Change! There was a moment in time that I realized the baton had changed hands - across three generations. I was talking within a small but enthusiastic group of attendees at the International Space Development Conference in June 2019. On that stage there was generation "co-inventor" Jerome Pearson, generation "advancing concept" Michael Fitzgerald and generation "excited students" James Torla and Souvik Mukherjee. The "moment" was more than an assembly of young and old. It was also a portrait of the stewards of the Space Elevator revolution -- from Inventor to Developer to Innovators. James was working a college research project on how to get to Mars in 77 days from the Apex Anchor and Souvik (16 years old) was representing his high school from India.
    [Show full text]
  • Commercial Heavy-Lift Orbital Refueling Depot CHORD
    Commercial Heavy-lift Orbital Refueling Depot CHORD Aerosp 483 Space Systems Design Final Report April 29, 2013 Created By DAVID HASH, MILES JUSTICE, MATTHEW KARASHIN COLIN MCNALLY, DUNCAN MILLER, TOMASZ NIELSEN ISAAC OLSON, HRISHIKESH SHELAR, ROBERTO SHU JOSHUA WEISS, SHAWN WETHERHOLD University of Michigan Ann Arbor Abstract The Commercial Heavy-lift Orbital Refueling Depot (CHORD) is a private mission proposed by Reliable Refuels to provide economically feasible orbital refueling for deep space missions. By decoupling cargo/propellant from the dry bus, CHORD will enable much higher mass payloads such as those necessary to complete manned missions to Mars or deep space robotic landings. This report summarizes our mission motivation, proposed business model and space system design. Contents 1 Introduction and Motivation 1 2 Mission Objectives and Feasibility1 2.1 Mission Objectives...............................................2 2.2 Design Drivers.................................................2 3 Economic Analysis 3 3.1 Customer Base.................................................3 3.2 Economics of Development and Operations.................................3 3.3 Cost and Funding Phases...........................................5 3.4 Development and Operations Schedule....................................5 4 Mission Architecture 6 4.1 Mission Requirements.............................................6 4.2 Concept of Operations.............................................7 5 Virtual Mission Simulations 9 5.1 Orbital Analysis................................................9
    [Show full text]
  • Iac-10-D1.1.4 Design Concepts for a Manned Artificial
    IAC-10-D1.1.4 DESIGN CONCEPTS FOR A MANNED ARTIFICIAL GRAVITY RESEARCH FACILITY Joseph A Carroll Tether Applications, Inc., USA, [email protected] Abstract Before mankind attempts long-term manned bases, settlements, or colonies on the moon or Mars, it is prudent to learn whether people exposed to lunar or Martian gravity levels experience continuing physiological deterioration, as they do in micro-gravity. If these problems do occur in partial gravity, then it will also be important to develop and test effective countermeasures, since countermeasures could have drastic effects on manned exploration plans and facility designs. Such tests can be done in low earth orbit, using a long slowly rotating dumbbell that provides Martian gravity at one end, lunar gravity at the other, and lower values in between. To cut Coriolis effects by half, one must cut the rotation rate of an artificial gravity facility by half. This requires a 4X longer facility. The paper argues that ground-based rotating room tests have uncertain relevance, so allowable rotation rates are not yet known. Because of this uncertainty, the paper presents 4 different structural design options that seem suited to rotation rates ranging from 0.25 to 2 rpm. This corresponds to overall facility lengths ranging from 120m to 8km. The paper also discusses early flight experiments that may allow selection of a suitable rotation rate and hence facility length and design. For most design options, “trapeze" tethers can be deployed outward from the Moon and/or Mars nodes. This allows capture of visiting vehicles from low-perigee orbits, and also accurate passive deorbit.
    [Show full text]