Real Estate in Frequency Space

Total Page:16

File Type:pdf, Size:1020Kb

Real Estate in Frequency Space coverMARCH2012-x_Layout 1 2/13/12 2:51 PM Page 1 3 AMERICA AEROSPACE March 2012 MARCH 2012 REAL ESTATE IN FREQUENCY SPACE The ephemeral ‘advanced propulsion’ Strategic bombers—relevant again A PUBLICATION OF THE AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS VIEWPOINT-X1-0312_Layout 1 2/21/12 11:58 AM Page 2 Viewpoint The ephemeral ‘advanced propulsion’ requent letters to the editor and com- mentaries in space journals have de- cried current and past deep-space mission concepts as being doomed by New technologies with the promise Finefficient propulsion systems. They call upon NASA or DARPA to develop ‘advanced of more affordable, more efficient, propulsion’ technologies that will make and safer propulsion for space those difficult missions more efficient, more affordable, more capable, more whatever. launch currently seem to be out of The term ‘advanced propulsion,’ prop- erly, has been applied primarily to in-space reach. That, however, does not mean technologies, not those suitable for Earth- based launches. These have included vari- that we should stop searching. ous electric propulsion methods (electrosta- tic, electromagnetic, electrothermal, magne- toplasmadynamic), nuclear thermal rockets, various forms of catapults (railguns, tether ‘slingshots’), laser-heated propellants, pho- ton sails (solar or laser), charged-particle sails, or ‘way out’ concepts using nuclear fusion or antimatter-based energy sources. Unfortunately, advanced propulsion with sufficient thrust for Earth-based launch- ers requires concepts involving esoteric ma- terials (often denoted as ‘unobtainium’) or other new (or as yet unknown) principles of physics such as antigravity, modifying the structure of space-time, employing elec- tromagnetic zero-point energy, faster-than- light drive, or ‘wormholes.’ None of these is likely to be operational in the foreseeable future. So, for Earth launch, we are stuck with the few high-thrust technologies avail- by Jerry Grey able within our current understanding of Editor-at-Large physics: liquid-propellant and solid-propel- 24 AEROSPACE AMERICA/MARCH 2012 Copyright ©2012 by the American Institute of Aeronautics and Astronautics VIEWPOINT-X1-0312_Layout 1 2/13/12 2:32 PM Page 3 lant rockets, combined-cycle systems in- pioneer Konstantin Tsiolkovsky in the 19th volving air-breathing engines and rockets, century—the oxygen-hydrogen rocket. True, guns, and nuclear-thermal rockets. we can get slightly better performance from Neither guns nor nuclear-thermal rock- fluorine-hydrogen or ozone-hydrogen, but ets are suitable for space launch from Earth; only with unacceptable cost, hazard, and guns because of their need to achieve or- complexity issues (both have been tried in bital or escape velocity—over 7 km/sec— the past). Other improvements in liquid- ’ while still in the high-density atmosphere and solid-propellant rockets are, of course, (even high-altitude launch sites or airborne possible, and are indeed likely to be pur- gun-launch platforms have been studied sued, but they are equally likely not to pro- and found to be eminently impractical and vide game-changing breakthroughs. economically disastrous), and nuclear-ther- Nevertheless, in December 2011 the Air mal booster rockets because of valid envi- Force announced funding of the first major ronmental concerns. research phases of a reusable booster sys- Indeed, the most advanced but still tem intended to replace its costly expend- practicable Earth-launch propulsion avail- able launch vehicles, with initial contracts able to us today or in the foreseeable future issued to Boeing, Lockheed Martin, and An- remains the one first conceived by rocket drews Space. THE PROMISE OF THE COMBINED CYCLE Most past efforts to improve launch per- 9.8, and the first powered flight of Boeing’s formance via air-breathing engines com- X-51A Waverider, which reached a Mach bined with rockets (the so-called combined- number of 4.87 in May 2010 and boasts the Dr. Jerry Grey, an honorary cycle systems) have never been able to longest operating time to date of a scramjet fellow of the AIAA and a fellow demonstrate practical, operationally suit- engine: 143 sec. The engine was developed of Britain’s Royal Aeronautical able results, although there are still several and built by Pratt & Whitney Rocketdyne. Society, was professor of aerospace engineering at Princeton University, such concepts currently being pursued—at Several other potential combined-cycle director of science and technology funding levels too low to possibly produce approaches are also worthy of note. For ex- policy for the AIAA, and the much in the way of operationally useful ample, Aerojet has proposed a three-engine founder and first publisher of systems for years to come. However, there concept, the TriJet, which combines the Aerospace America. He was are a few recent developments in this cate- two classical combined-cycle designs—tur- instrumental in completing gory that appear to be worth following up bine-based and rocket-based—to achieve a successful research on preventing actively, if sufficient funding can be made smooth transition from start to over Mach 7. rocket combustion instability, founder and director of Princeton’s available. Lockheed Martin’s axisymmetric scramjet, Nuclear Propulsion Laboratory, Of the many research efforts seeking to based upon a design conceived during and organizing chairman of the demonstrate a practical high-speed air- DARPA’s canceled Blackswift project, has University Space Research breathing engine that might be adaptable to been proposed as the turbine-based com- Association’s Center for Space space launch, only two have achieved sig- bined-cycle powerplant for a new Air Force Nuclear Research. He was president nificant flight demonstrations: the third flight Research Laboratory prototype of a long- of the International Astronautical of NASA’s X-43A in November 2004, whose range strike missile, planned for flight test- Federation and deputy secretary-general of the United supersonic combustion ramjet (scramjet) ing in 2016. Boeing’s successor to the X-51 Nations’ Unispace-82. He now engine operated for 10 sec and boosted the is another candidate for that mission. consults on space policy and craft to a new world speed record of Mach Whereas current U.S. high-speed com- space propulsion. AEROSPACE AMERICA/MARCH 2012 25 VIEWPOINT-X1-0312_Layout 1 2/13/12 2:32 PM Page 4 The black X-43A rides on the oxygen rocket. Germany’s Sharp Edged front of a modified Pegasus Flight Experiment (Shefex-2), whose design booster rocket hung from the speed is Mach 11, is a pathfinder for subor- special pylon under the wing of NASA's B-52B mother ship. bital reentry tests in 2020, building on the prior Shefex-1 flight at Mach 6 in 2005. But despite all this activity, it is still far from clear that any of these efforts eventu- ally can produce a practical, low-cost, op- erational space-launch capability. Some will ask, “What about the Holy Grail of space transportation: fully reusable Lapcat has flight test targets single-stage to orbit (SSTO)?” Unfortunately of Mach 5 and Mach 8 using a hydrogen-fueled dual-mode the physics of orbital launch (or at least, ramjet-scramjet. our present knowledge of physics) simply does not allow us to attain this ultimate goal. With our highest performance Earth- to-orbit launcher, the hydrogen-oxygen rocket, the rocket equation tells us that we need a mass ratio (propellant mass divided by takeoff mass) of about 0.9; that is, the total mass of engine, tanks, structure, con- SpaceLiner is a two-stage trols, return and landing vehicle, and pay- all-rocket-propelled vehicle load can total only about one-tenth of the launched vertically from launch vehicle’s initial mass. For compari- the ground for ultra-fast long-range flights. son, 0.9 is about the mass ratio of a hen’s egg, if we consider the contents to simulate the propellant and the shell to contain everything else. Past efforts to beat those odds, even with the benefit of an air-breathing boost engine, haven’t even come close; for exam- ple, the X-30, the X-33, and Lockheed Mar- bined-cycle engine concepts are aimed at tin’s VentureStar. Britain’s Skylon project, military applications, Europe has been es- another single-stage-to-orbit wannabe, is pecially active in research on combined-cy- still in its very early stages and will not be cle engines for high-speed transport that able to prove its worth (if any) for a long, could be adaptable to space launch. ESA’s long time. Lapcat-II concept, a study conducted under And if we were to forgo advanced- the 4-year Long-Term Advanced Propulsion technology Earth-launch concepts and de- Concepts and Technologies program, has vote our attention to reducing space trans- flight test targets of Mach 5 and Mach 8 us- portation costs by using advanced higher ing a hydrogen-fueled dual-mode ramjet- thrust in-space propulsion for upper stages scramjet named Scimitar. This engine,de- and space ‘cruise’ operations, we would signed by the U.K.’s Reaction Engines, face a nearly insurmountable cost and mass employs air cooling and a shaftless air-com- barrier: the need by all such systems (other pression system. One Lapcat-II vehicle de- than nuclear thermal rockets) for high elec- sign is derived from Reaction Engines’ sin- tric power. This requirement, which calls gle-stage-to-orbit Skylon concept; another for multikilowatt or even megawatt nuclear is based on a waverider under study by (or less practical solar) powerplants, im- ESA’s Estec and the U.K.’s Gas Dynamics; a poses such severe mass penalties on the third is being explored by France’s ONERA craft as to make any mission that requires and the Universities of Brussels and Rome. both high performance and high thrust A separate project under Lapcat is the both impractical and much too costly.
Recommended publications
  • The Rocket That Thinks It's A
    UNDER STRICT EMBARGO 00:01 hours GMT, Thursday 18 February 2009 THE ROCKET THAT THINKS IT’S A JET The SKYLON spaceplane is one step closer to realization thanks to European Space Agency and UK Government support for revolutionary British propulsion technology A reusable spaceplane that can take off from a conventional aircraft runway, carry over twelve tonnes to orbit and then return to land on the same runway could be less than a decade away thanks to a one million euro award by the European Space Agency (ESA). The contract awarded to Reaction Engines Limited (REL), is part of a joint public and private multi-million pound development programme, that will demonstrate the core technologies for the SABRE air-breathing rocket engine, which will power the SKYLON spaceplane. Lord Drayson, Minister for Science and Innovation, said: “This is an example of a British company developing world beating technology with exciting consequences for the future of space. It is fantastic that Reaction Engines, the British National Space Centre and ESA have successfully secured this public-private partnership arrangement and I look forward to seeing how the project progresses.” The SABRE is a unique hybrid engine that can “breathe” air when in the atmosphere, like a jet engine, and become a rocket engine when in space. In air-breathing mode air is first cooled by a revolutionary heat exchanger pre- cooler before being compressed and fed to the rocket engine to be burned with hydrogen fuel. When in rocket mode the hydrogen is burnt with liquid oxygen. Alan Bond, Managing Director of REL, said: “Traditional throw-away rockets costing more than a $100 million per launch are a drag on the growth of this market.
    [Show full text]
  • Three Ways to Mars
    Three Ways to Mars Three related talks by Bob Parkinson, Alan Bond and Mark Hempsell on 24 October 2007 at the British Interplanetary Society, London Report by Stephen Ashworth Chairman Rodney Buckland introduced the speakers with a quote from George W. Bush: “The American way of life is non-negotiable.” To him, this suggested that Earth would not be able to support a growing population aspiring to a modern American level of affluence, and that therefore many of us would need to move to Mars. (Memo to RB: have you considered the possible impact of space-based solar power?) Talk 1 Bob Parkinson, “You need a little magic to get to Mars” Bob Parkinson teaches engineering at Queen Mary College, London (give or take a few changes of name at that college). He is Vice-President of the IAF, and is very involved with preparations for the IAC in Glasgow in 2008. He originally did the work he’s talking about today in two consultancy contracts, one for ESA and one for a Canadian organisation. Neither client took his work any further. A graph shows the drop over the years in the size of proposed Mars missions: 60,000 tons in LEO – Von Braun, 1950 5,000 tons in LEO – Von Braun amended, 1956 2,000 tons in LEO – NASA, 1970 < 1,000 tons in LEO – Parkinson, 1980 He discusses conjunction class vs opposition class missions. Parkinson concludes: the first mission is likely to be opposition class with Venus flyby, for the shortest possible total mission time. Once it has been established that people Three ways to Mars 2 can survive on Mars, subsequent missions will be lower-energy conjunction class (3-year missions), and using the same hardware for both means that later missions will therefore have extra payload capacity.
    [Show full text]
  • Hydrogen Fuelled Pre-Cooled Jet Engines
    HydrogenHydrogen FuelledFuelled PrePre--CooledCooled JetJet EnginesEngines AA PresentationPresentation toto thethe RoyalRoyal AeronauticalAeronautical SocietySociety 33 JuneJune 20082008 Alan Bond, Managing Director Reaction Engines Ltd Origins Early 1950s view of the route to space. A fully reusable transport infrastructure. X-15 with B52 Mother ship. 199 flights between 1959 and 1968. A fully reusable Spaceplane. Reusable launcher concepts of the late 1960s and early 1970s ..we thought we would have this .. But:- Can We Consider Single Stage Vehicles? Earth is marginally too big to admit an effective SSTO rocket with near term materials technology, discounting the use of ozone or fluorine. Use must be made of the lower atmosphere for both its chemical potential and reaction mass. (Nuclear propulsion is the subject of a different lecture!) Stagnation Temperature increases with Mach number 2 T = 220 1+ 0.2M N X-43A Scramjet Research Vehicle The LACE engine R.A. Jeffs & B.A. Beeton NGTE (1962) In the mid 1980s the UK returned to the higher-faster aircraft concept as a route to space …HOTOL SKYLON 1990 The SKYLON Spaceplane … the Phoenix of HOTOL Skylon sculpture Festival of Britain 1951 Characteristics for Commercial Operations (1) • Reusability: reduced cost per flight by amortising production cost over 200 flights. • Single-stage: reduced development and operating costs relative to multi-stage vehicles. • Un-piloted: reduced mission control, relaxed safety during development, increased payload. dedicated accessory passenger module for payload bay. Characteristics for Commercial Operations (2) z Abort capability: abort to launch site with up to half engines failed. flight critical systems redundant to single point failure.
    [Show full text]
  • Progress on Skylon and Sabre
    IAC-13,D2.4,6x19609 PROGRESS ON SKYLON AND SABRE Mark Hempsell Reaction Engines Limited. UK, mark.hempsell@reactionengines,co.uk SKYLON is a reusable single stage to orbit spaceplane that can take off from a runway reach a 300 km altitude low earth orbit with a payload of 15 tonnes and then return to Earth for a runway landing. The unique feature of SKYLON that enables it to achieve this objective is the Synergistic Air-Breathing Rocket Engine (SABRE) which has both air breathing and pure rocket modes. The SKYLON development programme has concentrated on the SABRE engines and the component level technology development programme was completed in 2013 with the successful demonstration of a complete pre-cooler system using flight representative modules. The technology readiness has reached the point when the next phase of the development programme has begun. This £250 million programme will demonstrate the technologies in a system complex and take the design of the flight SABRE to CDR. The SKYLON airframe has also been subject of a slower paced programme including a series of technology development projects, mostly centred on the structure and thermal protection system, and a revision of the system design to incorporate the results of both the airframe and engine programmes. Keywords: SKYLON SABRE Pre-coolers 1 INTRODUCTION to this point and planning for the next phase leading to the Critical Design Review. For 30 years there has been activity in the United Kingdom to realise the vision of single stage to orbit launch system using combined cycle engines that work 2 THE SABRE ENGINE both in airbreathing and pure rocket modes.
    [Show full text]
  • Reusable Space Transportation Systems
    Springer Praxis Books Reusable Space Transportation Systems Bearbeitet von Heribert Kuczera, Peter W. Sacher 1. Auflage 2011. Buch. xxv, 251 S. Hardcover ISBN 978 3 540 89180 2 Format (B x L): 17 x 24 cm Gewicht: 703 g Weitere Fachgebiete > Technik > Verkehrstechnologie > Raum- und Luftfahrttechnik, Luftverkehr Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. 2 Major efforts in the U.K. (1984–1994) 2.1 OVERVIEW, OBJECTIVES, AND PROGRAMMATICS British Aerospace (BAe) and Rolls-Royce (RR) undertook many system and technology studies before the Hotol (Horizontal Take-Off and Landing) concept was revealed to the space transportation community. The project was originated by the Space and Communications Division (Stevenage) of BAe. Between 1982 and 1984 the overall concept was brought together by a Rolls-Royce/BAe team led by John Scott and Bob Parkinson. This concept at that time was completely different from the approach taken in the U.S. (Shuttle) and later in France (Hermes) and Germany (Sa¨nger). It was planned to supplement or even supersede the U.S. Shuttle and the Ariane upper-stage Hermes. It was a single-stage configuration which was launched from a rocket-driven trolley, was completely reusable, and was designed for unmanned operation, primarily for satellite launch and retrieval. The most innovative component of the Hotol concept was the use of a hybrid air- breathing propulsion system, which incorporated the RB 545, a unique liquid air cycle engine (LACE), invented by Alan Bond (later of Reaction Engines Ltd.) and built by Rolls-Royce.
    [Show full text]
  • Study and Review of Helium Gas Turbine Technology for High-Temperature Pre-Cooler Gas
    European Scientific Journal July 2019 edition Vol.15, No.21 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 Study and Review of Helium Gas Turbine Technology for High-temperature Pre-cooler Gas Suhayb Lateef Sadaa, PhD in Technical Sciences, Associate Professor Tseligorov preparation, Don State Technical University (DSTU) Rostov on Don, Russia Doi:10.19044/esj.2019.v15n21p80 URL:http://dx.doi.org/10.19044/esj.2019.v15n21p80 Abstract The technology of pre-cooler system is the strongest means of air cooling and heat exchangers in the world. Heat exchangers that cool the incoming air are the biggest technical challenge At Mach 5 (5 times the speed of sound),To meet this challenge, REL (Reaction Engines Ltd) is a UK-based company , has developed the most powerful lightweight heat exchangers in the world -.The air enters the radiator to a compressor such as the jet engine, and it is pre-cooled from 1,000°C to minus 150°C, in 1/100th of a second, displacing 400 Mega-Watts of heat energy (equivalent to the power output of a typical gas-powered power station) yet weighs less than 1¼ tons . Equivalent to a small power plant, a very high rate in the world of aviation. As the temperature inside the engine will decrease significantly, this will help the engine to continue to work normally and thus increase its speed comfortably. The pre-cooled cooling device weighs about a ton, which is a group of thin tubes that contain helium (helium condensate) in their liquid form. These pipes are intertwined with each other in spiral form.
    [Show full text]
  • Varvill & Bond 0259.Pmd
    RichardJBIS, Vol. Varvill 57, pp.22-32, and Alan 2004Bond The SKYLON Spaceplane RICHARD VARVILL AND ALAN BOND Reaction Engines Ltd, D5 Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB, UK. SKYLON is a single stage to orbit (SSTO) winged spaceplane designed to give routine low cost access to space. At a gross takeoff weight of 275 tonnes of which 220 tonnes is propellant the vehicle is capable of placing 12 tonnes into an equatorial low Earth orbit. The vehicle configuration consists of a slender fuselage containing the propellant tankage and payload bay with delta wings located midway along the fuselage carrying the SABRE engines in axisymmetric nacelles on the wingtips. The vehicle takes off and lands horizontally on it’s own undercarriage. The fuselage is constructed as a multilayer structure consisting of aeroshell, insulation, structure and tankage. SKYLON employs extant or near term materials technology in order to minimise development cost and risk. The SABRE engines have a dual mode capability. In rocket mode the engine operates as a closed cycle liquid oxygen/liquid hydrogen high specific impulse rocket engine. In airbreathing mode (from takeoff to Mach 5) the liquid oxygen flow is replaced by atmospheric air, increasing the installed specific impulse 3-6 fold. The airflow is drawn into the engine via a 2 shock axisymmetric intake and cooled to cryogenic temperatures prior to compression. The hydrogen fuel flow acts as a heat sink for the closed cycle helium loop before entering the main combustion chamber. Keywords: Spaceplane design, SSTO, SKYLON, SABRE, airbreathing propulsion. 1. Introduction SKYLON is designed to provide cheap reliable trans- eliminated and the size of the mission control port into low Earth orbit.
    [Show full text]