Sustainable Polymers and Antimicrobial Biomaterials from Multicyclic Natural Products Md Anisur Rahman

Total Page:16

File Type:pdf, Size:1020Kb

Sustainable Polymers and Antimicrobial Biomaterials from Multicyclic Natural Products Md Anisur Rahman University of South Carolina Scholar Commons Theses and Dissertations Spring 2019 Sustainable Polymers and Antimicrobial Biomaterials from Multicyclic Natural Products Md Anisur Rahman Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Chemistry Commons Recommended Citation Rahman, M. A.(2019). Sustainable Polymers and Antimicrobial Biomaterials from Multicyclic Natural Products. (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/5137 This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. SUSTAINABLE POLYMERS AND ANTIMICROBIAL BIOMATERIALS FROM MULTICYCLIC NATURAL PRODUCTS by Md Anisur Rahman Bachelor of Science Jahangirnagar University, 2011 Master of Science Tennessee State University, 2014 Submitted in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy in Chemistry College of Arts and Sciences University of South Carolina 2019 Accepted by: Chuanbing Tang, Major Professor Brian C. Benicewicz, Committee Member Mythreye Karthikeyan, Committee Member Alan W. Decho, Committee Member Cheryl L. Addy, Vice Provost and Dean of the Graduate School © Copyright by Md Anisur Rahman, 2019 All Rights Reserved. ii DEDICATION To my parents, for their love, support, lifelong sacrifices and guiding me to get the best education possible. To Moumita Sharmin Jui, my loving wife, for her enormous love, care and support. None of my accomplishments would be possible without her support. iii ACKNOWLEDGEMENTS First and foremost, I would like to convey my sincere gratitude to my advisor, Dr. Chuanbing Tang, who gave me the opportunity to work in his research group and offered me tremendous support and guidance on my research projects throughout my Ph.D. journey. It has been a great honor and a privilege for me to work under such an enthusiastic and knowledgeable person. His passion and enthusiasm for polymer science has made an enormous impact on me and motivated me to develop as a polymer scientist. I sincerely thank his contributions to make my Ph.D. experience diverse, productive and stimulating. I want to appreciate him for being an excellent role model as a successful professor and a caring person that made a positive impact on my life. Then I would like to thank my graduate committee members Dr. Brian Benicewicz, Dr. Alan W. Decho and Dr. Mythreye Karthikeyan for their advice, encouragement, and valuable suggestions on my research during graduate school. I also appreciate my committee chair Dr. Brian Benicewicz for being a great teacher in the introduction to polymer that creates the foundation of my polymer science knowledge. I want to thank Dr. Decho and his group members Dr. Yunpin Chen and Dr. Kristen Miller for their collaborations with our group. In addition, I want to mention Dr. Mitzi Nagarkatti and her group member Dr. Marpe Bam for his productive collaborations. Further, I would like to acknowledge Dr. Morgan Stefik and his students especially Nadee, Amrita and Zach for helping me to run SAXS and allowing me to use their SAXS instrument. iv I am very appreciative of the experiences shared and friendships formed with other graduate students, post-docs and visiting scholars during the last 4.5 years at USC. I want to appreciate and mention the members of Tang Polymer Group. I thank Dr. Mitra Ganewatta and Dr. Liang Yuan for being my graduate mentor during the early stages of my graduate career. I had an opportunity to work and learn a lot of research techniques from some hard-working and motivating post-doctoral scientist such as Dr. Zhongkai, Dr. Jifu Wang, and Dr. Ye Sha, and I am thankful to them. It was a pleasant experience for me to work with Shichao Xu, Shaobo Tan, and Haijiao Kang. Thank you, Meghan E. Lamm, Tianyu Zhu, Yujin Cha and Pabel Kabir for being nice friends. Edgar Luat was excellent undergraduate students who worked with me. I also want to mention Dr. Perry Wilbon, Dr. Jeffery Hayat, Dr. Peng Yang, Dr. Hui Li, Nathen Trenor, Paras Pageni, Xinzhou Zhang, Ryan J. Miskin, Lin Fu, Jihyeon Hwang, Leman Kurnaz and many others. It is a great pleasure to work with all of you and learn from you. Thanks for all your help and suggestions. Besides the exciting research work, I feel thankful to get the chance to work with Dr. Brian Benicewicz while I served as the secretary of the ACS Poly/PMSE Student Chapter at USC. I want to mention Mitra, Julia, Andrew and Nadee for working with me to conduct many projects. Further, I want to give my sincerest gratitude to my mother, my father, other family members and friends for their unconditional love and support. I also would like to thank my wife Moumita Sharmin Jui for her constant support, patience, and help throughout my graduate school career. Finally, I would like to acknowledge all the funding supports from the University of South Carolina, and the National Science Foundation (NSF). v ABSTRACT In this dissertation, the development of sustainable polymers and antimicrobial biomaterials from multicyclic natural products is illustrated. In Chapter 1, an overall background and recent development of sustainable polymers from natural product-based renewable biomass, antimicrobial biomaterials, and polymerization methods are introduced. Afterward, the primary research objectives of my doctoral research work are illustrated. In chapter 2, designing block copolymer architectures toward tough bioplastics from renewable natural rosin was described. One of the most abundant natural biomasses is resin acids, however, most of the polymers derived from resin acids are brittle because of their bulky hydrophenanthrene pendant group. To overcome the brittleness, rosin containing pentablock and triblock copolymers were synthesized through living sequential ring opening metathesis polymerization (ROMP). Their thermal and mechanical properties were investigated. The phase behaviors were also studied for the microphase-separated pentablock and triblock copolymers using small angle x-ray scattering (SAXS) and atomic force microscopy. A new class of true facial amphiphilic cationic antimicrobial polymers was illustrated in chapter 3. Facially amphiphilic antimicrobial polymers were prepared from multicyclic natural products (e.g. bile acids) via reversible-addition fragmentation chain transfer (RAFT) polymerization. The antimicrobial activity against a range of bacteria and vi hemolysis activity with mammalian cells is investigated. In addition, the antimicrobial mechanistic aspects of facially amphiphilic polymers were also illustrated. Chapter 4 is explained about the facial amphiphilicity-induced self-assembly (FAISA) of multicyclic natural product-based cationic copolymers. The detail self-assembly behavior of copolymers with different polyethylene glycol was explained. The self-assembly of these copolymers to form antimicrobial nanoparticles was investigated in Chapter 5. The nanoaggregates exhibited strong antimicrobial activity against Gram-negative bacteria and showed minimal toxicity against mammalian cell. Finally, a summary and future directions of this dissertation research are provided in chapter 6. In future work, some suggestions about future directions involving renewable biomass for sustainable development are given. vii TABLE OF CONTENTS DEDICATION ....................................................................................................................... iii ACKNOWLEDGEMENTS ........................................................................................................ iv ABSTRACT .......................................................................................................................... vi LIST OF TABLES .................................................................................................................. xi LIST OF FIGURES ................................................................................................................ xii LIST OF SYMBOLS ............................................................................................................. xvi LIST OF ABBREVIATIONS .................................................................................................. xvii CHAPTER 1 GENERAL INTRODUCTION ...................................................................................1 1.1 SUSTAINABLE POLYMERS FROM NATURAL PRODUCT-BASED BIOMASS ................2 1.2 RENEWABLE RESIN ACIDS .....................................................................................5 1.3 BILE ACIDS ............................................................................................................7 1.4 ANTIMICROBIAL POLYMERS ................................................................................10 1.5 SELF-ASSEMBLY OF AMPHIPHILIC POLYMERS .....................................................13 1.6 POLYMERIZATION TECHNIQUES...........................................................................14 1.7 RESEARCH OBJECTIVES ........................................................................................17 1.8 REFERENCES ........................................................................................................18 CHAPTER 2 DESIGNING BLOCK COPOLYMER ARCHITECTURES TOWARD TOUGH BIOPLASTICS FROM NATURAL ROSIN .......................................................................................................27 2.1 ABSTRACT ...........................................................................................................28
Recommended publications
  • (12) United States Patent (10) Patent No.: US 6,706,855 B1 Collins Et Al
    USOO6706855B1 (12) United States Patent (10) Patent No.: US 6,706,855 B1 Collins et al. (45) Date of Patent: Mar. 16, 2004 (54) ANTIMICROBIAL POLYMER (56) References Cited (75) Inventors: Andrew Neale Collins, Manchester U.S. PATENT DOCUMENTS (GB); Brian David Bothwell, 5,235,045 A 8/1993 Lewis et al. Manchester (GB); Graham John 5,498,547 A 3/1996 Blake et al. McPherson, Manchester (GB) FOREIGN PATENT DOCUMENTS (73) Assignee: Avecia Limited, Manchester (GB) JP 56 167383 A 12/1981 SU 619 489 A 7/1978 (*) Notice: Subject to any disclaimer, the term of this WO WO 94/09357 4/1994 patent is extended or adjusted under 35 WO WO 94/09360 4/1994 U.S.C. 154(b) by 40 days. WO WO 98/02492 1/1998 (21) Appl. No.: 10/070,152 OTHER PUBLICATIONS (22) PCT Filed: Jul. 25, 2000 S.C. Chang et al., Bioorg. Med. Chem. Lett. (1993) vol. 3, (86) PCT No.: PCT/GB00/02864 No. 4, pp. 555-556. S371 (c)(1), Primary Examiner Duc Truong (2), (4) Date: Mar. 4, 2002 (74) Attorney, Agent, or Firm- Pillsbury Winthrop LLP (87) PCT Pub. No.: WO01/17356 (57) ABSTRACT An antimicrobial polymer, characterised in that it carries a PCT Pub. Date: Mar. 15, 2001 covalently bound chromophoric marker. The antimicrobial (30) Foreign Application Priority Data polymer is preferably a cationic antimicrobial polymer, especially a poly(hexamethylenebiguanide). Also claimed Sep. 3, 1999 (GB) ............................................. 992O774 are compositions containing the antimicrobial polymer, a (51) Int. Cl." ......................... C08G 73/00; CO8G 73/06 method for treating a medium using the antimicrobial poly (52) U.S.
    [Show full text]
  • Recent Developments in Antimicrobial Polymers: a Review
    materials Review Recent Developments in Antimicrobial Polymers: A Review Madson R. E. Santos 1, Ana C. Fonseca 1, Patrícia V. Mendonça 1, Rita Branco 2, Arménio C. Serra 1, Paula V. Morais 2 and Jorge F. J. Coelho 1,* 1 CEMUC, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal; [email protected] (M.R.E.S.); [email protected] (A.C.F.); [email protected] (P.V.M.); [email protected] (A.C.S.) 2 CEMUC, Department of Life Sciences, University of Coimbra, Coimbra 3001-401, Portugal; [email protected] (R.B.); [email protected] (P.V.M.) * Correspondence: [email protected]; Tel.: +351-239-798-744 Academic Editor: Fernão D. Magalhães Received: 30 April 2016; Accepted: 14 July 2016; Published: 20 July 2016 Abstract: Antimicrobial polymers represent a very promising class of therapeutics with unique characteristics for fighting microbial infections. As the classic antibiotics exhibit an increasingly low capacity to effectively act on microorganisms, new solutions must be developed. The importance of this class of materials emerged from the uncontrolled use of antibiotics, which led to the advent of multidrug-resistant microbes, being nowadays one of the most serious public health problems. This review presents a critical discussion of the latest developments involving the use of different classes of antimicrobial polymers. The synthesis pathways used to afford macromolecules with antimicrobial properties, as well as the relationship between the structure and performance of these materials are discussed. Keywords: antimicrobial polymers; biocide polymers; multidrug resistant microbes 1. Introduction Nowadays, microbial infections are a great concern because they are one of the main primary causes of death worldwide, especially in healthcare institutions, where people are generally more vulnerable [1–3].
    [Show full text]
  • Antimicrobial Food Packaging with Biodegradable Polymers and Bacteriocins
    molecules Review Antimicrobial Food Packaging with Biodegradable Polymers and Bacteriocins Małgorzata Gumienna * and Barbara Górna Laboratory of Fermentation and Biosynthesis, Department of Food Technology of Plant Origin, Pozna´nUniversity of Life Sciences, Wojska Polskiego 31, 60-624 Pozna´n,Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-61-848-7267 Abstract: Innovations in food and drink packaging result mainly from the needs and requirements of consumers, which are influenced by changing global trends. Antimicrobial and active packaging are at the forefront of current research and development for food packaging. One of the few natural polymers on the market with antimicrobial properties is biodegradable and biocompatible chitosan. It is formed as a result of chitin deacetylation. Due to these properties, the production of chitosan alone or a composite film based on chitosan is of great interest to scientists and industrialists from various fields. Chitosan films have the potential to be used as a packaging material to maintain the quality and microbiological safety of food. In addition, chitosan is widely used in antimicrobial films against a wide range of pathogenic and food spoilage microbes. Polylactic acid (PLA) is considered one of the most promising and environmentally friendly polymers due to its physical and chemical properties, including renewable, biodegradability, biocompatibility, and is considered safe (GRAS). There is great interest among scientists in the study of PLA as an alternative food packaging film with improved properties to increase its usability for food packaging applications. The aim of this review article is to draw attention to the existing possibilities of using various components in combination Citation: Gumienna, M.; Górna, B.
    [Show full text]
  • Unexpected Enhancement of Antimicrobial Polymer Activity Against Staphylococcus Aureus in the Presence of Fetal Bovine Serum
    molecules Communication Unexpected Enhancement of Antimicrobial Polymer Activity against Staphylococcus aureus in the Presence of Fetal Bovine Serum Iva Sovadinová 1 , Kenichi Kuroda 2,* and Edmund F. Palermo 3,* 1 RECETOX, Faculty of Science, Masaryk University, Kamenice 3, CZ-62500 Brno, Czech Republic; [email protected] 2 Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA 3 Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA * Correspondence: [email protected] (K.K.); [email protected] (E.F.P.) Abstract: Cationic and amphiphilic polymers are known to exert broad-spectrum antibacterial activ- ity by a putative mechanism of membrane disruption. Typically, nonspecific binding to hydrophobic components of the complex biological milieu, such as globular proteins, is considered a deterrent to the successful application of such polymers. To evaluate the extent to which serum deactivates an- tibacterial polymethacrylates, we compared their minimum inhibitory concentrations in the presence and absence of fetal bovine serum. Surprisingly, we discovered that the addition of fetal bovine serum (FBS) to the assay media in fact enhances the antimicrobial activity of polymers against Gram-positive bacteria S. aureus, whereas the opposite is the case for Gram-negative E. coli. Here, we present these Citation: Sovadinová, I.; Kuroda, K.; unexpected trends and develop a hypothesis to potentially explain this unusual phenomenon. Palermo, E.F. Unexpected Enhancement of Antimicrobial Keywords: antimicrobial; polymer; S. aureus; serum Polymer Activity against Staphylococcus aureus in the Presence of Fetal Bovine Serum. Molecules 2021, 26, 4512. https://doi.org/10.3390/ 1. Introduction molecules26154512 The emergence of antibiotic multidrug-resistant bacterial infections has significantly complicated treatment, which presents a looming threat to public health worldwide [1].
    [Show full text]
  • Combination Therapy Using Synthetic Antimicrobial Polymers: a Platform to Combat Multidrug-Resistant Bacteria Rashin Namivandi Z
    Combination Therapy Using Synthetic Antimicrobial Polymers: A Platform to Combat Multidrug-Resistant Bacteria Rashin Namivandi Zangeneh A thesis in fulfilment of the requirements for the degree of Doctor of Philosophy School of Chemical Engineering Faculty of Engineering April 2020 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Namivandi Zangeneh First name: Rashin Other name/s: Abbreviation for degree as given in the University calendar: PhD School: School of Chemical Engineering Faculty: Faculty of Engineering Title: Combination Therapy Using Synthetic Antimicrobial Polymers: A Platform to Combat Multidrug-Resistant Bacteria Abstract 350 words maximum: The widespread failure of antibiotics in the treatment of multidrug-resistant (MDR) or biofilm-associated infections is a critical global healthcare issue. Thus, there is an urgent need for the development of novel and effective antimicrobial agents or strategies. This dissertation explores the use of a potent synthetic antimicrobial polymer that consists of biocompatible oligo(ethylene glycol), hydrophobic ethylhexyl and cationic primary amine functional groups as a potential alternative to currently available antibiotics. In particular, this work investigates the advantages of combination therapy involving synthetic antimicrobial polymers and other antimicrobial agents as a novel therapeutic approach against bacterial infections. Firstly, a potent antibiofilm agent was developed by incorporating NO donor moieties into the structure of the synthetic antimicrobial polymer. The NO-loaded polymer showed dual-action capability as it could release NO to disperse biofilm, while the polymer caused membrane disruption. A synergistic effect in biofilm dispersal, planktonic and biofilm killing activities was observed against the Gram-negative bacteria Pseudomonas aeruginosa (P.
    [Show full text]
  • Antimicrobial Polymers with Metal Nanoparticles
    Int. J. Mol. Sci. 2015, 16, 2099-2116; doi:10.3390/ijms16012099 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Antimicrobial Polymers with Metal Nanoparticles Humberto Palza Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beauchef 850, Santiago 8320000, Chile; E-Mail: [email protected]; Tel.: +56-22-978-4085; Fax: +56-22-699-1084 Academic Editor: Antonella Piozzi Received: 24 November 2014 / Accepted: 9 January 2015 / Published: 19 January 2015 Abstract: Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms. Keywords: antimicrobial metals; polymer nanocomposites; copper; silver 1.
    [Show full text]
  • Theatre Monday July 9Th
    Theatre Monday July 9th Agilent session Chair: D.M. Haddleton 10.30-11.00 Professor Craig Hawker Materials Research Laboratory, UCSB PL1 Generating Complex Nanoscale Patterns through Bottom-up Self-Assembly 11.00-11.30 Professor Jean Frechet King Abdullah University of Science and Technology PL2 Functional macromolecules in energy conversion. 11.30-12.00 Professor Fraser Stoddart Northwestern University PL3 Positive Cooperativity in the Template-Directed Synthesis of Monodisperse Macromolecules 12.00-12.30 Professor Krzysztof Matyjaszewski Carnegie Mellon PL4 ATRP under biorelevant conditions 12.30-1.00 Professor Xi Zhang Tsinghua University PL5 Supramolecular Polymerization Driven by Host-Enhanced Noncovalent Interactions Aldrich Session Chair: J.C.M. Van Hest 2.00-2.30 Professor Eva Harth Vanderbilt University I1 Functionalized Polyester and Glycidol Polymers with Control in Branching: Synthesis of Monomers and Supramolecular Network Formation. 2.30-3.00 Professor Harm-Anton Klok Ecole Polytechnique Fédérale de Lausanne (EPFL) I2 Interactive and responsive polymer brushes prepared via surface-initiated polymerization Chair: E.M. Harth 3.30-4.00 Professor Thomas Davis Aus. Centre for NanoMedicine and CAMD, UNSW I11 New Synthesis of Biodegradable Nanoparticles based on Dextran 4.05-4.20 Dr Tim Smith Lubrizol Ltd C1 Leading polymer development for the lubricants industry 4.20-4.35 Dr Nico Bruns University of Basel, Department of Chemistry C2 ATRPases: Enzymes that catalyze atom transfer radical polymerization 4.35-4.50 Dr Lei Tao Tsinghua University C3 Self-healing hydrogels for bio-applications 9 4.55-5.10 Dr Simon Harrisson Université de Paris Sud XI C4 Copper-mediated preparation of alkoxyamines and the SET/ARGET debate 5.10-5.25 Professor Jose A.
    [Show full text]
  • Antimicrobial Polymer Composites for Medical Applications
    ANTIMICROBIAL POLYMER COMPOSITES FOR MEDICAL APPLICATIONS PETER KAALI Doctoral Thesis Stockholm, Sweden 2011 AKADEMISK AVHANDLING Som med tillstånd av Kungliga Tekniska Högskolan i Stockholm framlägges till offentlig granskning för avläggande av teknisk doktorsexamen Fredagen den 13 Maj 2011, kl. 13.00 i sal F3, Lindstedtsvägen 23, KTH, Stockholm. Avhandlingen försvaras på engelska. Contact information: KTH Chemical Science and Engineering Department of Fibre and Polymer Technology Royal Institute of Technology Teknikringen 56-58 SE-100 44 Stockholm Sweden Copyright PETER KAALI All rights reserved Paper I © 2010 Paper II © 2010 Paper III © 2011 Paper IV © 2011 Book Chapter © 2011 Printed by AJ E-print AB Stockholm, Sweden, 2011 TRITA-CHE-Report 2011:19 ISSN 1654-1081 ISBN 978-91-7415-899-1 www.kth.se To My Family ANTIMICROBIAL POLYMER COMPOSITES FOR MEDICAL APPLICATIONS PETER KAALI Department of Fibre and Polymer Technology Chemical Science and Engineering Royal Institute of Technology (KTH) SE-100 44 Stockholm, Sweden ISBN 978-91-7415-899-1, ISSN 1654-1081, TRITA-CHE-Report 2011:19 ABSTRACT The current study and discuss the long-term properties of biomedical polymers in vitro and in vivo and presents means to design and manufacture antimicrobial composites. Antimicrobial composites with reduced tendency for biofilm formation should lead to lower risk for medical device associated infection. The first part analyse in vivo degradation of invasive silicone rubber tracheostomy tubes and presents degradation mechanism, degradation products and the estimated lifetime of the materials.. It was found that silicone tubes undergo hydrolysis during the long-term exposure in vivo, which in turn results in decreased stability of the polymer due to surface alterations and the formation of low molecular weight compounds.
    [Show full text]
  • Imaging Delicate Coatings Under Water Using Atomic Force Microscopy Erica J
    Imaging Delicate Coatings under Water using Atomic Force Microscopy Erica J. Wanless tomic Force Microscopy has revolutionised our understanding of coatings consisting of adsorbed surface-active molecules or colloidal particles at the solid-liquid interface. These Adelicate structures may be present wherever the solution contacts a solid material. 46 Issue 16 DeCeMBeR 2009 47 Introduction to Atomic Force topography or as a force map. Importantly in the Microscopy latter case, an atomically flat but heterogeneous The atomic force microscope (AFM) was invented surface can still yield a useful and interesting image. by Binnig, Quate & Gerber (1986) following It is this inherent force measurement which can be closely after the invention by Binnig & Rohrer of translated into an image that has made AFM such the scanning tunnelling microscope (STM) in 1981. a valuable tool for surface and colloid science, Both techniques were developed at the Zurich with its fundamental basis in understanding the IBM laboratories and were made possible by new intermolecular forces between materials. piezoelectric ceramic materials which exhibited very linear expansion and contraction on a Imaging Adsorbed Surfactant subnanometre scale under an applied voltage. These Micelles materials formed the basis of the high resolution One of the most fascinating classes of molecules from a surface chemistry point of view is raster scanning of the sample inherent in these Fig. 1. The soft-contact AFM imaging method illustrated for adsorbed sodium dodecylsulfate hemimicelles on graphite. The force curve between new scanning probe microscopes. A great increase surfactants. You may know of these molecules the tip and sample shows the soft-contact and hard-contact imaging regions.
    [Show full text]
  • (MPC) with 2-(Diisopropylamino)Ethyl Methacrylate (DPA), for Intracellular Delivery Applications
    J Mater Sci: Mater Med (2015) 26:150 DOI 10.1007/s10856-015-5480-9 DELIVERY SYSTEMS Nanoprecipitation of polymeric nanoparticle micelles based on 2-methacryloyloxyethyl phosphorylcholine (MPC) with 2-(diisopropylamino)ethyl methacrylate (DPA), for intracellular delivery applications 1 1 2 1 Jonathan P. Salvage • Christopher Thom • Andrew L. Lewis • Gary J. Phillips • Andrew W. Lloyd1 Received: 8 January 2015 / Accepted: 1 March 2015 Ó The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Biodistribution of nanoparticle-based intracel- cellular toxicity, and an apparent cellular uptake was ob- lular delivery systems is mediated primarily by particle size served via confocal laser scanning microscopy. This paper and physicochemical properties. As such, overcoming the presents the first report of an optimised nanoprecipitation rapid removal of these by the reticuloendothelial system methodology for the formation of MPC–DPA nanoparticle remains a significant challenge. To date, a number of micelles, and in doing so achieved monodisperse systems copolymer nanoparticle systems based on 2-methacryloy- with the size and physicochemical characteristics seen as loxyethyl phosphorylcholine (MPC) with 2-(diisopropy- desirable for long circulating therapeutic delivery vehicles. lamino)ethyl methacrylate (DPA), displaying biomimetic and pH responsive properties, have been published, how- ever these have been predominately polymersome based, 1 Introduction whilst micelle systems have remained relatively unex- plored. This study utilised nanoprecipitation to investigate The research and development of systemically adminis- the effects of solvent and buffer choice upon micelle size trable nanoparticulate-based intracellular delivery systems and polydispersity, and found using methanol produced (NIDS) is driven by the need to overcome a number of key monodisperse micelles of circa 70 nm diameter, whilst challenges.
    [Show full text]
  • Solution-Mediated Modulation of Pseudomonas Aeruginosa Biofilm Formation by a Cationic Synthetic Polymer
    antibiotics Article Solution-Mediated Modulation of Pseudomonas aeruginosa Biofilm Formation by a Cationic Synthetic Polymer Leanna L. Foster 1, Shin-ichi Yusa 2 and Kenichi Kuroda 1,3,* 1 Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI 48109, USA; [email protected] 2 Department of Applied Chemistry, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan; [email protected] 3 Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA * Correspondence: [email protected] Received: 18 April 2019; Accepted: 8 May 2019; Published: 10 May 2019 Abstract: Bacterial biofilms and their associated infections are a continuing problem in the healthcare community. Previous approaches utilizing anti-biofilm coatings suffer from short lifetimes, and their applications are limited to surfaces. In this research, we explored a new approach to biofilm prevention based on the hypothesis that changing planktonic bacteria behavior to result in sub-optimal biofilm formation. The behavior of planktonic Pseudomonas aeruginosa exposed to a cationic polymer was characterized for changes in growth behavior and aggregation behavior, and linked to resulting P.aeruginosa biofilm formation, biomass, viability,and metabolic activity. The incubation of P.aeruginosa planktonic bacteria with a cationic polymer resulted in the aggregation of planktonic bacteria, and a reduction in biofilm development. We propose that cationic polymers may sequester planktonic bacteria away from surfaces, thereby preventing their attachment and suppressing biofilm formation. Keywords: biofilms; antimicrobial polymers; materials 1. Introduction Synthetic surfaces of medical devices and implants are susceptible to microbial colonization and biofilm formation [1–5], which contribute to at least 60% of healthcare-acquired infections [6].
    [Show full text]
  • Ecis 2015 29Th Conference of the European Colloid and Interface Society
    ECIS 2015 29TH CONFERENCE OF THE EUROPEAN COLLOID AND INTERFACE SOCIETY BORDEAUX 6-11 SEPTEMBER, 2015 New Ecis Handbook.indd 1 jeudi23/07/15 18:11 PARTNERS We would like to thank our partners for their generous support of the 29th ECIS: 2 3 New Ecis Handbook.indd 2 jeudi23/07/15 18:11 SPONSORS We would like to thank our sponsors for their generous support of the 29th ECIS: Research 2 3 New Ecis Handbook.indd 3 jeudi23/07/15 18:11 CONTENTS Welcome 6 Surrounding Area 7 Venue Guide 9 Social Program 10 General Information 11 Plenary Speakers 13 Keynote Speakers 19 Program 29 Posters Topics 46 Posters Session A 47 Posters Session B 54 Posters Session C 62 Partners Directory 69 Sponsors Directory 70 4 5 New Ecis Handbook.indd 4 jeudi23/07/15 18:11 COMMITTEES ECIS SCIENTIFIC COMMITTEE S. ARMES University of Sheffield (United Kingdom) S. BON University of Warwick (United Kingdom) H. CÖLFEN University of Konstanz (Germany) N. DENKOV University of Sofia (Bulgaria) O. GLATTER Karm Franzens University (Austria) K. LANDFESTER Max Planck Institut Mainz (Germany) D. LANGEVIN University of Orsay Paris Sud (France) E. MARQUES University of Porto (Portugal) U. OLSSON University of Lund (Sweden) V. PAUNOV University of Hull (United Kingdom) P. PERRIN ESPCI Paris Tech (France) W. RICHTERING University of Aachen (Germany) F. SCHEFFOLD University of Fribourg (Switzerland) C. SOLANS University of Barcelona (Spain) O. VELEV North Carolina University (United States) T. ZEMB University of Montpellier (France) THE LOCAL ORGANIZING COMMITTEE Marion BAILLOT Valérie HÉROGUEZ Stéphane MORNET Reiko ODA Serge RAVAINE Valérie RAVAINE Jean-Baptiste SALMON Véronique SCHMITT Stéphane UGAZIO 4 5 New Ecis Handbook.indd 5 jeudi23/07/15 18:11 WELCOME! Welcome, The organizing committee is delighted to welcome you to Bordeaux-Mérignac, France, for the 29th Conference of the European Colloid and Interface Society (ECIS).
    [Show full text]