(12) United States Patent (10) Patent No.: US 6,706,855 B1 Collins Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 6,706,855 B1 Collins Et Al USOO6706855B1 (12) United States Patent (10) Patent No.: US 6,706,855 B1 Collins et al. (45) Date of Patent: Mar. 16, 2004 (54) ANTIMICROBIAL POLYMER (56) References Cited (75) Inventors: Andrew Neale Collins, Manchester U.S. PATENT DOCUMENTS (GB); Brian David Bothwell, 5,235,045 A 8/1993 Lewis et al. Manchester (GB); Graham John 5,498,547 A 3/1996 Blake et al. McPherson, Manchester (GB) FOREIGN PATENT DOCUMENTS (73) Assignee: Avecia Limited, Manchester (GB) JP 56 167383 A 12/1981 SU 619 489 A 7/1978 (*) Notice: Subject to any disclaimer, the term of this WO WO 94/09357 4/1994 patent is extended or adjusted under 35 WO WO 94/09360 4/1994 U.S.C. 154(b) by 40 days. WO WO 98/02492 1/1998 (21) Appl. No.: 10/070,152 OTHER PUBLICATIONS (22) PCT Filed: Jul. 25, 2000 S.C. Chang et al., Bioorg. Med. Chem. Lett. (1993) vol. 3, (86) PCT No.: PCT/GB00/02864 No. 4, pp. 555-556. S371 (c)(1), Primary Examiner Duc Truong (2), (4) Date: Mar. 4, 2002 (74) Attorney, Agent, or Firm- Pillsbury Winthrop LLP (87) PCT Pub. No.: WO01/17356 (57) ABSTRACT An antimicrobial polymer, characterised in that it carries a PCT Pub. Date: Mar. 15, 2001 covalently bound chromophoric marker. The antimicrobial (30) Foreign Application Priority Data polymer is preferably a cationic antimicrobial polymer, especially a poly(hexamethylenebiguanide). Also claimed Sep. 3, 1999 (GB) ............................................. 992O774 are compositions containing the antimicrobial polymer, a (51) Int. Cl." ......................... C08G 73/00; CO8G 73/06 method for treating a medium using the antimicrobial poly (52) U.S. Cl. ....................... 528/422; 528/423: 528/425; mer and a method for detecting the antimicrobial polymer in 528/272; 528/288; 428/690; 428/917 a medium. (58) Field of Search ................................. 528/422, 423, 528/425, 272, 288; 428/690,917 23 Claims, No Drawings US 6,706,855 B1 1 2 ANTIMICROBIAL POLYMER been removed during the Washing process. Such detection therefore needs to be Sensitive to ppb concentrations of the CROSS REFERENCE TO RELATED antimicrobial material. APPLICATIONS However, the polymeric nature of polymeric antimicro bial compounds makes accurate determination of the con This application is a national phase application based on centration difficult and time consuming. This is especially PCT/GB00/02864, filed Jul 25, 2000, and which further true of cationic polymeric antimicrobial compounds because claims priority from British Application No. 992.0774.8, the cationic groups tend to associate themselves with a filed Sep. 3, 1999. These applications in their entirety are Surface to which they are applied. To determine the concen incorporated herein by reference. tration of the antimicrobial compound on a Surface, for The present invention relates to antimicrobial polymers example on the Surface of fruit, it is necessary to extract the which carry a chromophoric marker, more particularly to antimicrobial compound from the Surface and analyse the cationic antimicrobial polymers carrying a covalently bound extract, for example using gel permeation chromatography. chromophoric marker and to methods for detecting the However, because most antimicrobial polymers comprise a antimicrobial polymers on or in a medium. mixture of polymer chains of different lengths, this proce Antimicrobial polymeric compounds are used in a wide 15 dure often gives a misleading result of the concentration range of media to control or eliminate micro-organisms, for because the extraction method tends to preferentially extract example industrial media Such as cooling water, metal the shorter polymer chains. working fluids, latices, Surface coatings, and geological Furthermore, polymeric antimicrobial compounds are drilling fluids, recreational waterS Such as Swimming pools often used in media which contain numerous other compo and Spas, and in personal care formulations Such as Soaps nents which can interfere with the analysis method used to and cosmetics. The antimicrobial polymers are used in Such estimate the concentration of the polymeric antimicrobial media as preservatives, disinfectants, Slimicides and algi compound. For example, in Swimming pools poly cides. Antimicrobial polymers, especially cationic antimi (hexamethylenebiguanide) (PHMB) is commonly used as a crobial polymers are particularly useful and offer a number primary Sanitizer. A known calorimetric method for estimat of advantages over molecular quaternary ammonium 25 ing the PHMB in the pool is based on, the interaction of compounds, because they are of relatively low toxicity and PHMB with bromophenol blue or Eosin dyestuffs. However, exhibit reduced foaming when added to a liquid medium this test also detects quaternary ammonium compounds Such as water. which are often present in Swimming pools and thereby To prevent the proliferation of microorganisms in or on a gives a false measure of concentration of the PHMB. medium containing an antimicrobial compound it is neces There is therefore a need for a polymeric antimicrobial Sary to ensure that the concentration of antimicrobial com material which provides good protection against the growth pound is Sufficient to give an antimicrobial effect In the of undesirable micro-organisms and which can be readily medium. However, in most media, especially Swimming detected In or a medium to which it has been applied. pools, the concentration of antimicrobial compound reduces 35 We have found that by covalently binding a chromophoric with time through a number of mechanisms, for example marker on, or in, an antimicrobial polymer enables the adsorption; chemical break down caused by interaction of antimicrobial compounds to be detected with greater, the antimicrobial compound with micro-organisms or with accuracy, especially at low concentration without adversely other components present in the medium; and in the case of affecting the antimicrobial properties of the polymer. recirculating water Systems Such as Swimming pools and 40 According to a first aspect of the present invention there Spas by dilution when fresh water is added to the System. is provided an antimicrobial polymer, characterised in that it This can result in loss of the antimicrobial protection pro carries a covalently bound chromophoric marker Vided by the antimicrobial compound and the Subsequent (hereinafter “The Polymer”). proliferation of micro-organisms. Preferably The Polymer is a cationic antimicrobial To ensure that a medium remains protected by the anti 45 polymer, more preferably a poly(quaternary ammonium) microbial compound it is therefore important that the con compound, a polymeric guanide or especially a polymeric centration of antimicrobial compound in, or on, a medium biguanide. can be accurately determined to ensure that Sufficient con The chromophoric marker comprises a chromophoric centration of the antimicrobial; compound is maintained. group which absorbs and/or emits radiation at wavelengths Antimicrobial compounds are typically used at very low 50 characteristic of the chromophoric group. The wavelength of concentrations, often less than 10 ppm. Therefore, the SyS absorbtion and/or emission provides a reproducible "Signa tem used to measure the concentration of antimicrobial ture' associated with The Polymer by means of which it is compound must be able to detect ppm levels of the possible to detect the presence of The Polymer using a compound, otherwise inaccurate readings will be obtained Suitable optical or spectroscopic detection method. This leading to incorrect dosage levels of the antimicrobial mate 55 Signature is preferably different from any absorption or rial. emission bands inherent in the antimicrobial polymer which In Some applications there is a need to detect the presence does not contain the chromophoric marker, because this of the antimicrobial compound at even lower levels. For enables more accurate detection of the chromophoric example antimicrobial compounds are often used to protect marker, particularly at low concentrations of The Polymer in fruit against microbial degradation during Storage and trans 60 a medium portation. However, before the fruit is sold to consumers it Preferably the chromophoric group has a major absorp is necessary to wash the fruit to remove the antimicrobial tion and/or emission band in the UV, visible or near infrared compounds from the fruit. Typically the Washing process is range of the electromagnetic spectrum. A Suitable absorption required to reduce the concentration of the antimicrobial and/or emission range is from 275 to 1500 nm, preferably compounds to about 1 to 10 ppb. In this application there is 65 from 390 to 1100 nm, more preferably from 400 to 800 nm. a need for accurate detection of the antimicrobial compound When the chromophoric group emits radiation, it may do to ensure that all or Substantially all of the compound has So via phosphorescence or more preferably fluorescence. US 6,706,855 B1 3 4 Suitable chromophoric groups comprise an azo, When the chromophoric marker is present as a pendant or anthraquinone, pyrroline, phthalocyanine, polymethine, terminal group on the polymer chain, the covalent bond aryl-carbonium, triphenodioxazine, diarylmethane, between the polymer and the marker is preferably formed by triarylmethane, anthraquinone, phthalocyanine, methine, means of a reactive functional group on the chromophoric polymethine, rhodamine, indoaniline, indophenol, Stilbene, marker which is capable of forming a covalent bond with the Squarilium, coumarin, aminoketone, Xanthene,
Recommended publications
  • Recent Developments in Antimicrobial Polymers: a Review
    materials Review Recent Developments in Antimicrobial Polymers: A Review Madson R. E. Santos 1, Ana C. Fonseca 1, Patrícia V. Mendonça 1, Rita Branco 2, Arménio C. Serra 1, Paula V. Morais 2 and Jorge F. J. Coelho 1,* 1 CEMUC, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal; [email protected] (M.R.E.S.); [email protected] (A.C.F.); [email protected] (P.V.M.); [email protected] (A.C.S.) 2 CEMUC, Department of Life Sciences, University of Coimbra, Coimbra 3001-401, Portugal; [email protected] (R.B.); [email protected] (P.V.M.) * Correspondence: [email protected]; Tel.: +351-239-798-744 Academic Editor: Fernão D. Magalhães Received: 30 April 2016; Accepted: 14 July 2016; Published: 20 July 2016 Abstract: Antimicrobial polymers represent a very promising class of therapeutics with unique characteristics for fighting microbial infections. As the classic antibiotics exhibit an increasingly low capacity to effectively act on microorganisms, new solutions must be developed. The importance of this class of materials emerged from the uncontrolled use of antibiotics, which led to the advent of multidrug-resistant microbes, being nowadays one of the most serious public health problems. This review presents a critical discussion of the latest developments involving the use of different classes of antimicrobial polymers. The synthesis pathways used to afford macromolecules with antimicrobial properties, as well as the relationship between the structure and performance of these materials are discussed. Keywords: antimicrobial polymers; biocide polymers; multidrug resistant microbes 1. Introduction Nowadays, microbial infections are a great concern because they are one of the main primary causes of death worldwide, especially in healthcare institutions, where people are generally more vulnerable [1–3].
    [Show full text]
  • Antimicrobial Food Packaging with Biodegradable Polymers and Bacteriocins
    molecules Review Antimicrobial Food Packaging with Biodegradable Polymers and Bacteriocins Małgorzata Gumienna * and Barbara Górna Laboratory of Fermentation and Biosynthesis, Department of Food Technology of Plant Origin, Pozna´nUniversity of Life Sciences, Wojska Polskiego 31, 60-624 Pozna´n,Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-61-848-7267 Abstract: Innovations in food and drink packaging result mainly from the needs and requirements of consumers, which are influenced by changing global trends. Antimicrobial and active packaging are at the forefront of current research and development for food packaging. One of the few natural polymers on the market with antimicrobial properties is biodegradable and biocompatible chitosan. It is formed as a result of chitin deacetylation. Due to these properties, the production of chitosan alone or a composite film based on chitosan is of great interest to scientists and industrialists from various fields. Chitosan films have the potential to be used as a packaging material to maintain the quality and microbiological safety of food. In addition, chitosan is widely used in antimicrobial films against a wide range of pathogenic and food spoilage microbes. Polylactic acid (PLA) is considered one of the most promising and environmentally friendly polymers due to its physical and chemical properties, including renewable, biodegradability, biocompatibility, and is considered safe (GRAS). There is great interest among scientists in the study of PLA as an alternative food packaging film with improved properties to increase its usability for food packaging applications. The aim of this review article is to draw attention to the existing possibilities of using various components in combination Citation: Gumienna, M.; Górna, B.
    [Show full text]
  • Unexpected Enhancement of Antimicrobial Polymer Activity Against Staphylococcus Aureus in the Presence of Fetal Bovine Serum
    molecules Communication Unexpected Enhancement of Antimicrobial Polymer Activity against Staphylococcus aureus in the Presence of Fetal Bovine Serum Iva Sovadinová 1 , Kenichi Kuroda 2,* and Edmund F. Palermo 3,* 1 RECETOX, Faculty of Science, Masaryk University, Kamenice 3, CZ-62500 Brno, Czech Republic; [email protected] 2 Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA 3 Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA * Correspondence: [email protected] (K.K.); [email protected] (E.F.P.) Abstract: Cationic and amphiphilic polymers are known to exert broad-spectrum antibacterial activ- ity by a putative mechanism of membrane disruption. Typically, nonspecific binding to hydrophobic components of the complex biological milieu, such as globular proteins, is considered a deterrent to the successful application of such polymers. To evaluate the extent to which serum deactivates an- tibacterial polymethacrylates, we compared their minimum inhibitory concentrations in the presence and absence of fetal bovine serum. Surprisingly, we discovered that the addition of fetal bovine serum (FBS) to the assay media in fact enhances the antimicrobial activity of polymers against Gram-positive bacteria S. aureus, whereas the opposite is the case for Gram-negative E. coli. Here, we present these Citation: Sovadinová, I.; Kuroda, K.; unexpected trends and develop a hypothesis to potentially explain this unusual phenomenon. Palermo, E.F. Unexpected Enhancement of Antimicrobial Keywords: antimicrobial; polymer; S. aureus; serum Polymer Activity against Staphylococcus aureus in the Presence of Fetal Bovine Serum. Molecules 2021, 26, 4512. https://doi.org/10.3390/ 1. Introduction molecules26154512 The emergence of antibiotic multidrug-resistant bacterial infections has significantly complicated treatment, which presents a looming threat to public health worldwide [1].
    [Show full text]
  • Combination Therapy Using Synthetic Antimicrobial Polymers: a Platform to Combat Multidrug-Resistant Bacteria Rashin Namivandi Z
    Combination Therapy Using Synthetic Antimicrobial Polymers: A Platform to Combat Multidrug-Resistant Bacteria Rashin Namivandi Zangeneh A thesis in fulfilment of the requirements for the degree of Doctor of Philosophy School of Chemical Engineering Faculty of Engineering April 2020 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Namivandi Zangeneh First name: Rashin Other name/s: Abbreviation for degree as given in the University calendar: PhD School: School of Chemical Engineering Faculty: Faculty of Engineering Title: Combination Therapy Using Synthetic Antimicrobial Polymers: A Platform to Combat Multidrug-Resistant Bacteria Abstract 350 words maximum: The widespread failure of antibiotics in the treatment of multidrug-resistant (MDR) or biofilm-associated infections is a critical global healthcare issue. Thus, there is an urgent need for the development of novel and effective antimicrobial agents or strategies. This dissertation explores the use of a potent synthetic antimicrobial polymer that consists of biocompatible oligo(ethylene glycol), hydrophobic ethylhexyl and cationic primary amine functional groups as a potential alternative to currently available antibiotics. In particular, this work investigates the advantages of combination therapy involving synthetic antimicrobial polymers and other antimicrobial agents as a novel therapeutic approach against bacterial infections. Firstly, a potent antibiofilm agent was developed by incorporating NO donor moieties into the structure of the synthetic antimicrobial polymer. The NO-loaded polymer showed dual-action capability as it could release NO to disperse biofilm, while the polymer caused membrane disruption. A synergistic effect in biofilm dispersal, planktonic and biofilm killing activities was observed against the Gram-negative bacteria Pseudomonas aeruginosa (P.
    [Show full text]
  • Antimicrobial Polymers with Metal Nanoparticles
    Int. J. Mol. Sci. 2015, 16, 2099-2116; doi:10.3390/ijms16012099 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Antimicrobial Polymers with Metal Nanoparticles Humberto Palza Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beauchef 850, Santiago 8320000, Chile; E-Mail: [email protected]; Tel.: +56-22-978-4085; Fax: +56-22-699-1084 Academic Editor: Antonella Piozzi Received: 24 November 2014 / Accepted: 9 January 2015 / Published: 19 January 2015 Abstract: Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms. Keywords: antimicrobial metals; polymer nanocomposites; copper; silver 1.
    [Show full text]
  • Antimicrobial Polymer Composites for Medical Applications
    ANTIMICROBIAL POLYMER COMPOSITES FOR MEDICAL APPLICATIONS PETER KAALI Doctoral Thesis Stockholm, Sweden 2011 AKADEMISK AVHANDLING Som med tillstånd av Kungliga Tekniska Högskolan i Stockholm framlägges till offentlig granskning för avläggande av teknisk doktorsexamen Fredagen den 13 Maj 2011, kl. 13.00 i sal F3, Lindstedtsvägen 23, KTH, Stockholm. Avhandlingen försvaras på engelska. Contact information: KTH Chemical Science and Engineering Department of Fibre and Polymer Technology Royal Institute of Technology Teknikringen 56-58 SE-100 44 Stockholm Sweden Copyright PETER KAALI All rights reserved Paper I © 2010 Paper II © 2010 Paper III © 2011 Paper IV © 2011 Book Chapter © 2011 Printed by AJ E-print AB Stockholm, Sweden, 2011 TRITA-CHE-Report 2011:19 ISSN 1654-1081 ISBN 978-91-7415-899-1 www.kth.se To My Family ANTIMICROBIAL POLYMER COMPOSITES FOR MEDICAL APPLICATIONS PETER KAALI Department of Fibre and Polymer Technology Chemical Science and Engineering Royal Institute of Technology (KTH) SE-100 44 Stockholm, Sweden ISBN 978-91-7415-899-1, ISSN 1654-1081, TRITA-CHE-Report 2011:19 ABSTRACT The current study and discuss the long-term properties of biomedical polymers in vitro and in vivo and presents means to design and manufacture antimicrobial composites. Antimicrobial composites with reduced tendency for biofilm formation should lead to lower risk for medical device associated infection. The first part analyse in vivo degradation of invasive silicone rubber tracheostomy tubes and presents degradation mechanism, degradation products and the estimated lifetime of the materials.. It was found that silicone tubes undergo hydrolysis during the long-term exposure in vivo, which in turn results in decreased stability of the polymer due to surface alterations and the formation of low molecular weight compounds.
    [Show full text]
  • Solution-Mediated Modulation of Pseudomonas Aeruginosa Biofilm Formation by a Cationic Synthetic Polymer
    antibiotics Article Solution-Mediated Modulation of Pseudomonas aeruginosa Biofilm Formation by a Cationic Synthetic Polymer Leanna L. Foster 1, Shin-ichi Yusa 2 and Kenichi Kuroda 1,3,* 1 Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI 48109, USA; [email protected] 2 Department of Applied Chemistry, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan; [email protected] 3 Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA * Correspondence: [email protected] Received: 18 April 2019; Accepted: 8 May 2019; Published: 10 May 2019 Abstract: Bacterial biofilms and their associated infections are a continuing problem in the healthcare community. Previous approaches utilizing anti-biofilm coatings suffer from short lifetimes, and their applications are limited to surfaces. In this research, we explored a new approach to biofilm prevention based on the hypothesis that changing planktonic bacteria behavior to result in sub-optimal biofilm formation. The behavior of planktonic Pseudomonas aeruginosa exposed to a cationic polymer was characterized for changes in growth behavior and aggregation behavior, and linked to resulting P.aeruginosa biofilm formation, biomass, viability,and metabolic activity. The incubation of P.aeruginosa planktonic bacteria with a cationic polymer resulted in the aggregation of planktonic bacteria, and a reduction in biofilm development. We propose that cationic polymers may sequester planktonic bacteria away from surfaces, thereby preventing their attachment and suppressing biofilm formation. Keywords: biofilms; antimicrobial polymers; materials 1. Introduction Synthetic surfaces of medical devices and implants are susceptible to microbial colonization and biofilm formation [1–5], which contribute to at least 60% of healthcare-acquired infections [6].
    [Show full text]
  • Antimicrobial Polymers in Solution and on Surfaces: Overview and Functional Principles
    Polymers 2012, 4, 46-71; doi:10.3390/polym4010046 OPEN ACCESS polymers ISSN 2073-4360 www.mdpi.com/journal/polymers Review Antimicrobial Polymers in Solution and on Surfaces: Overview and Functional Principles Felix Siedenbiedel and Joerg C. Tiller * BCI, TU Dortmund, Emil-Figge-Str. 66, 44227 Dortmund, Germany; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-231-755-2479; Fax: +49-231-755-2480. Received: 28 November 2011; in revised form: 23 December 2011 / Accepted: 4 January 2012 / Published: 9 January 2012 Abstract: The control of microbial infections is a very important issue in modern society. In general there are two ways to stop microbes from infecting humans or deteriorating materials—disinfection and antimicrobial surfaces. The first is usually realized by disinfectants, which are a considerable environmental pollution problem and also support the development of resistant microbial strains. Antimicrobial surfaces are usually designed by impregnation of materials with biocides that are released into the surroundings whereupon microbes are killed. Antimicrobial polymers are the up and coming new class of disinfectants, which can be used even as an alternative to antibiotics in some cases. Interestingly, antimicrobial polymers can be tethered to surfaces without losing their biological activity, which enables the design of surfaces that kill microbes without releasing biocides. The present review considers the working mechanisms of antimicrobial polymers and of contact-active antimicrobial surfaces based on examples of recent research as well as on multifunctional antimicrobial materials. Keywords: antimicrobial polymers; antimicrobial surfaces; biocides; bacteria; fungi 1.
    [Show full text]
  • LIFE Antimicrobial Polymer Additives
    LIFE Antimicrobial Polymer Additives Life Material Technologies Limited is the leading supplier of antimicrobial additives for polymer applications, offering a wide range of silver inorganics, synthetic organics, and natural botanics. The additives have global registrations, are effective against bacteria, fungi and algae, and are supplied as powders, liquids, and pelletized masterbatches Antimicrobial additives are widely used in polymers to protect against the growth of micro-organisms: • Fiber manufacturers are using • Antimicrobial additives are them to stop growth of bacteria used in plastics for kitchens and that cause bad smell in clothing. other food handling areas where people are concerned about • Makers of PU- and PVC-coated contamination. textiles are using antimicrobials to stop the growth of stain- • Food packaging manufacturers causing fungi. are starting to use antimicrobials to help extend shelf life of • Antimicrobials are widely used certain foods. in medical polymers to reduce the presence of microbes in LIFE supplies antimicrobial hospitals. additives for these and many other applications. • Home appliance companies are using antimicrobials in plastic parts to eliminate smell in air conditioners and washing machines. LIFE’s antimicrobial polymer additives comply with the requirements of the European Union’s Biocidal Products Regulation 528/2012, which is administered by the European Chemical Agency, and the US Federal Insecticide, Fungicide and Rodenticide Act, which is administered by the Environmental Protection Agency. LIFE supplies products in powder, liquid and pelletized masterbatch form for film blowing, fiber and sheet extrusion, rotational molding, injection molding, and compression molding. LIFE has the broadest offering of antimicrobial polymer additives in the marketplace, covering three major categories: Silver Inorganics: This group and algae, and can also deliver of inorganic additives uses the strong antibacterial activity.
    [Show full text]
  • The Antimicrobial Activity and Cellular Pathways Targeted by P-Anisaldehyde and Epigallocatechin Gallate in the Opportunistic Human Pathogen Pseudomonas Aeruginosa
    The University of Southern Mississippi The Aquila Digital Community Faculty Publications 12-6-2019 The Antimicrobial Activity and Cellular Pathways Targeted By p-anisaldehyde and Epigallocatechin Gallate in the Opportunistic Human Pathogen Pseudomonas aeruginosa Yetunde Adewumni University of Southern Mississippi Sanchirmaa Namjilsuren University of Southern Mississippi William D. Walker University of Southern Mississippi Dahlia N. Amato University of Southern Mississippi Douglas V. Amato University of Southern Mississippi FSeeollow next this page and for additional additional works authors at: https:/ /aquila.usm.edu/fac_pubs Part of the Microbiology Commons Recommended Citation Adewumni, Y., Namjilsuren, S., Walker, W. D., Amato, D. N., Amato, D. V., Mavrodi, O. V., Patton, D. L., Mavrodi, D. V. (2019). The Antimicrobial Activity and Cellular Pathways Targeted By p-anisaldehyde and Epigallocatechin Gallate in the Opportunistic Human Pathogen Pseudomonas aeruginosa. Applied and Environmental Microbiology. Available at: https://aquila.usm.edu/fac_pubs/16858 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Faculty Publications by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. Authors Yetunde Adewumni, Sanchirmaa Namjilsuren, William D. Walker, Dahlia N. Amato, Douglas V. Amato, Olga V. Mavrodi, Derek L. Patton, and Dmitri V. Mavrodi This article is available at The Aquila Digital Community: https://aquila.usm.edu/fac_pubs/16858 1 2 The antimicrobial activity and cellular pathways targeted by p-anisaldehyde and 3 epigallocatechin gallate in the opportunistic human pathogen Pseudomonas aeruginosa. 4 5 Yetunde Adewunmi1, Sanchirmaa Namjilsuren1, William D. Walker2, Dahlia N.
    [Show full text]
  • Antibacterial Polymers: a Mechanistic Overview
    Antibacterial Polymers: A Mechanistic Overview Ao Chen,1,3 Hui Peng,1,3Idriss Blakey,1,2 Andrew K. Whittaker1,2,3* 1Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072 2Centre for Advanced Imaging, The University of Queensland, Brisbane Qld 4072 3ARC Centre of Excellence in Convergent Bio-Nanoscience and Technology Bacterial fouling on surfaces is considered a major problem in modern society. Conventional methods to prevent biofilm formation often have little effect and may induce further contamination. In response to this challenge, antibacterial polymers have been designed and applied as an alternative approach to kill or inhibit bacteria and prevent the formation of biofilm. These polymers can be grouped into three broad classes, namely antibiotic-releasing polymers, polymeric antibiotics and antibiotic polymers. Antibiotic polymers are effective against bacteria both in solution and as coatings, through different mechanisms of action. In order to enhance their efficacy, antibacterial polymers have been designed with single or combined antibacterial and antibiofouling actions. The current review summarizes the mechanisms of action of antibacterial polymers, especially antibiotic polymers, both in solution and as coatings. It also discusses the antibacterial polymers with multiple functionalities. KEYWORDS: Antibacterial polymers, biofilms, mechanisms of action, testing 1. Introduction 1 Microbial fouling on the surface of materials is one of the major causes of poor hygiene. Such
    [Show full text]
  • Fast Disinfecting Antimicrobial Surfaces
    1060 Langmuir 2009, 25, 1060-1067 Fast Disinfecting Antimicrobial Surfaces Ahmad E. Madkour,† Jeffery M. Dabkowski,†,‡ Klaus Nu¨sslein,‡ and Gregory N. Tew*,† Department of Polymer Science & Engineering and Department of Microbiology, UniVersity of Massachusetts, Amherst, Massachusetts 01003 ReceiVed September 8, 2008. ReVised Manuscript ReceiVed October 30, 2008 Silicon wafers and glass surfaces were functionalized with facially amphiphilic antimicrobial copolymers using the “grafting from” technique. Surface-initiated atom transfer radical polymerization (ATRP) was used to grow poly(butylmethacrylate)-co-poly(Boc-aminoethyl methacrylate) from the surfaces. Upon Boc-deprotection, these surfaces became highly antimicrobial and killed S. aureus and E. coli 100% in less than 5 min. The molecular weight and grafting density of the polymer were controlled by varying the polymerization time and initiator surface density. Antimicrobial studies showed that the killing efficiency of these surfaces was independent of polymer layer thickness or grafting density within the range of surfaces studied. Introduction were successfully applied as antimicrobial layers over glass14 15 Hospital-acquired infections pose a major global healthcare and poly(ethylene terephthalate) surfaces. Polymers containing issue. Over 2 million cases are reported annually in the USA QACs have been previously covalently attached onto different materials such as glass,14,16-19 polymers,20,21 paper,19 and alone, leading to 100 000 deaths and adding nearly 5 billion 22 dollars to U.S. healthcare costs.1,2 Contamination of medical metals. devices (catheters, implants, etc.) is responsible for 45% of these The killing mechanism of bacteria by those surfaces, and infections.3 Sources of infectious bacteria can be traced to surgical especially the effect of polymer length on killing efficiency, is equipment, medical staff clothing, resident bacteria on the patient’s still under debate.
    [Show full text]