3D 프로그래머를 위한 커브 입문서 : 직선에서 곡면까지 1St Edition

Total Page:16

File Type:pdf, Size:1020Kb

3D 프로그래머를 위한 커브 입문서 : 직선에서 곡면까지 1St Edition CURVE 3D 프로그래머를 위한 커브 입문서 : 직선에서 곡면까지 1st Edition lifeisforu [email protected] http://lifeisforu.tistory.com 1 목차 목차 .................................................................................................................................................................................................... 2 들어 가며 ........................................................................................................................................................................................ 4 1. Combination ...................................................................................................................................................................... 6 1.1. Linear combination ...................................................................................................................................... 6 1.2. Linear independence .................................................................................................................................. 7 1.3. Cartesian coordinate system .............................................................................................................. 8 1.4. Convex combination .................................................................................................................................... 9 2. Polynomial & interpolation .............................................................................................................................. 13 2.1. Linear interpolation .................................................................................................................................. 16 2.2. Polynomial interpolation ..................................................................................................................... 17 2.3. Method of undetermined coefficients ...................................................................................... 18 2.4. Lagrange interpolation .......................................................................................................................... 19 2.5. Divided difference ...................................................................................................................................... 21 2.5.1. Linear interpolation .................................................................................................................... 21 2.5.2. Quadratic interpolation ........................................................................................................... 22 2.5.3. Divided difference & General intepolation............................................................ 23 2.6. Newton interpolation .............................................................................................................................. 25 2.7. Problem of polynomial interpolation ........................................................................................ 26 2.8. Spline interpolation .................................................................................................................................. 28 2.8.1. Cubic spline interpolation ..................................................................................................... 29 2.8.2. Solving natural cubic spline ............................................................................................... 31 3. Parametric equation & continuity ............................................................................................................. 33 3.1. Parametric equation ................................................................................................................................ 34 3.2. Parametric continuity ............................................................................................................................. 37 3.3.Geometric Continuity ................................................................................................................................ 40 4. Bé zier curve ................................................................................................................................................................... 42 4.1. Linear Bé zier curve ................................................................................................................................... 43 4.2. Quadratic Bé zier curve .......................................................................................................................... 43 4.3. Cubic Bé zier curve ..................................................................................................................................... 45 4.4. Composite Bezier curve ........................................................................................................................ 48 5. Spline Curve ................................................................................................................................................................... 50 5.1. Linear spline curve .................................................................................................................................... 50 5.2. Quadratic spline curves ........................................................................................................................ 51 5.3. Spline curves of higher degrees ................................................................................................... 53 2 6. Hermite spline .............................................................................................................................................................. 56 6.1. Finite difference ........................................................................................................................................... 58 6.2. Cardinal spline ............................................................................................................................................... 58 6.3. Catmul-Rom spline .................................................................................................................................... 58 6.4. Kochanek-Bartels spline ...................................................................................................................... 59 6.5. Monotone cubic interpolation ......................................................................................................... 60 7. B-Spline( Basis spline ) ....................................................................................................................................... 61 8. Nonuniform rational B-Spline( NURBS ) ............................................................................................. 65 8.1. Nonuniform B-spline ................................................................................................................................ 65 8.1.1. Uniform knot vector ................................................................................................................... 65 8.1.2. Open uniform knot vector .................................................................................................... 66 8.1.3. Non-uniform knot vector ....................................................................................................... 67 8.2. Rational curve ................................................................................................................................................ 68 8.3. Non-Uniform Rational B-Spline ..................................................................................................... 71 8.4. Construction of the basis functions ........................................................................................... 72 8.5. General form of a NURBS curve .................................................................................................... 76 8.6. General form of a NURBS surface ............................................................................................... 76 9. Subdivision Surface ................................................................................................................................................ 76 3 들어 가며 대부분의 3D 프로그래머들은 커브를 다뤄 본 적이 있을 것입니다. 그런데 안타깝게도 커브의 개 념을 제대로 이해하고 사용하는 사람들은 많지 않습니다. 저도 그런 부류 중의 하나입니다. 대부 분 그냥 라이브러리에 있는 기능을 사용하든지 구글링을 해서 찾은 코드를 사용합니다. 그러다 보니 다음과 같은 요청에 대응할 수가 없습니다. "점을 찍으면 자동으로 path 가 생성되게 해 주세요." "Path 를 원하는 대로 제어할 수 있게 해 주세요." "Path 를 따라 움직이는 오브젝트가 등속도 운동을 하게 해 주세요." "Path 가 부드럽게 연결되게 해 주세요." "이럴 땐 어떤 커브를 사용해야 하나요?" 위와 같은 요청에 응답하기 위해서 코드를 보면 뭔가 곱하고 더하고 난리도 아닙니다. 그리고 모 르는 용어가 자꾸 나오니 이해하기도 어렵습니다. 또한 값을 좀만 바꿔도 원하지 않는 매듭 모양 이 나오거나 깨집니다. 코드를 이거 건드려 보고 저거 건드려 보고, 값을 이리 바꾸고 저리 바꾸고, 삽질을 하다가 보면 시간은 흘러가고 작업 마감일은 다가 옵니다. 그렇다고 제대로 공부하기에는 시간도 부족한 것 같고 참고 자료도 마땅치 않습니다. 특히나 저 같은 문과 출신들에게는 그것이 엄청난 벽으로 다 가 옵니다. 왜냐하면 어디서부터 시작해서 어디에서 끝내야 할지 모르기 때문입니다. 사실 커브 및 서피스에 대한 내용은 수학적인 카테고리로 볼 때 수치해석( numerical analysis ) 과 관계가 깊습니다. 인문계 출신들은 그런 분야의 존재 자체를 모르는 사람도 많을 것입니다. 저만 해도 그런 과목이 있다는 것은 들어는 봤지만, 실제 무슨 내용인지는 이 문서를 정리하면서 수치해석의 내용이 무엇인지 알게 되었습니다. 그러므로 이쪽에 대해 전문가 수준으로 알고자 한 다면 수치해석 책 하나 보시는 것이 깔끔할 것이라 생각합니다. 물론 비전공자가 보기에는 친절 하지 않을 수도 있습니다. 그런데 그저 개념만 파악하고자 하거나 간단한 참고서가 필요하다는 생각을 하실 수 있습니다. 이 글은 ( 저를 포함한 ) 그런 사람들에게 샛길이라도 제공하기 위해서 작성되었습니다. 그러므 로 독자들이 이런 분야에 대한 지식을 많이 가지고 있지 않다는 전제를 깔고 글을 작성하도록 하 겠습니다. 이 글의 내용은 직접 작성한 부분도 있지만 거의 대부분은 참고자료를 번역하거나 정리한 것입니 다. 그리고 정확한 내용을 담고 있지 않을 수 있음을 죄송하게 생각합니다. 제가 수학과 영어에 전문가가 아니기 때문에 잘못된 지식들도 포함되어 있을 수 있습니다. 그러므로 이해가 안 간다 4 싶으면 적당히 다른 참고 문헌들을 참조하시기 바랍니다. 궁금한 사항이 있으시거나 잘못된 내용을 제보해 주시려고 한다면, 저에게 메일 ( [email protected] )을 보내 주시면 됩니다. 다시 한 번 말씀드리지만 전문적인 영역에 접근하는 책은 아니므로
Recommended publications
  • Shape Preserving Piecewise Cubic Interpolation
    Western Michigan University ScholarWorks at WMU Dissertations Graduate College 12-1990 Shape Preserving Piecewise Cubic Interpolation Thomas Bradford Sprague Western Michigan University Follow this and additional works at: https://scholarworks.wmich.edu/dissertations Part of the Physical Sciences and Mathematics Commons Recommended Citation Sprague, Thomas Bradford, "Shape Preserving Piecewise Cubic Interpolation" (1990). Dissertations. 2102. https://scholarworks.wmich.edu/dissertations/2102 This Dissertation-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. SHAPE PRESERVING PIECEWISE CUBIC INTERPOLATION by Thomas Bradford Sprague A Dissertation Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Department of Mathematics and Statistics Western Michigan University Kalamazoo, Michigan December 1990 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. SHAPE PRESERVING PIECEWISE CUBIC INTERPOLATION Thomas Bradford Sprague, Ph.D. Western Michigan University, 1990 Given a set of points in the plane, {(xo5yo)> • • • ( xniUn)}i where ?/i = f(xi), and [xo,a:n] = [a,&], one frequently wants to construct a function /, satisfying yi = f(xi). Typically, the underlying function / is inconvenient to work with, or is completely unknown. Of course this interpolation problem usually includes some additional constraints; for instance, it is usually expected that || / — /|| will converge to zero as the norm of the partition of [a, 6] tends to zero. Beyond merely interpolating data, one may also require that the inter- polant / preserves other properties of the data, such as minimizing the number of changes in sign in the first derivative, the second derivative or both.
    [Show full text]
  • Nomenclature
    Appendix A Nomenclature A.1 Roman Letters AL2 area; A˛ L2T 2 Helmholtz free energy of ˛phase; BL aquifer thickness; bL hydraulic aperture; 3 1bk bk .ML / Freundlich sorption coefficient of species k; bk 1 Freundlich sorption exponent of species k; p bk rate constants of species k, .p D 0;1;:::;N/; CL1=2T 1 Chezy roughness coefficient; CL1 moisture capacity; C 1 L inverse moisture capacity; 3 Ck ML mass concentration of species k; 3 Cks ML maximum mass concentration of species k; 3 Ckw ML prescribed concentration of species k at well point xw; Cr 1 Courant number; cL2T 2%1 specific heat capacity; cF 1 Forchheimer form-drag constant; D spatial dimension; DL diameter or thickness; D 2nd-order differential operator or dispersion coeffi- cient; 2 1 Dk L T tensor of hydrodynamic dispersion of species k; ? 2 1 Dk L T nonlinear (extended) tensor of hydrodynamic disper- sion of species k; 3 1 DN k L T D B Dk, depth-integrated tensor of hydrodynamic dispersion of species k; H.-J.G. Diersch, FEFLOW, DOI 10.1007/978-3-642-38739-5, 809 © Springer-Verlag Berlin Heidelberg 2014 810 A Nomenclature 2 1 Dk;0 L T tensor of diffusion of species k; 2 1 Dmech L T tensor of mechanical dispersion; 3 1 DN mech L T D B Dmech, depth-integrated tensor of mechanical dispersion; 2 1 Dk L T coefficient of molecular diffusion of species k in porous medium; 2 1 DM k L T coefficient of molecular diffusion of species k in open fluid body; 2 1 s D L T D Œ" C .1 "/ =."c/, thermal diffusivity; 1 1 T d T D 2 Œrv C .rv/ , rate of deformation (strain) tensor; dL characteristic length,
    [Show full text]
  • Splines in Euclidean Space and Beyond Release 0.1.0-14-Gb1a6741
    Splines in Euclidean Space and Beyond Release 0.1.0-14-gb1a6741 Matthias Geier 2021-06-05 Contents 1 Polynomial Curves in Euclidean Space 2 1.1 Polynomial Parametric Curves.................................. 2 1.2 Lagrange Interpolation....................................... 4 1.3 Hermite Splines........................................... 12 1.4 Natural Splines........................................... 30 1.5 Bézier Splines............................................ 38 1.6 Catmull–Rom Splines........................................ 55 1.7 Kochanek–Bartels Splines..................................... 87 1.8 End Conditions........................................... 102 1.9 Piecewise Monotone Interpolation................................ 107 2 Rotation Splines 121 2.1 Quaternions............................................. 121 2.2 Spherical Linear Interpolation (Slerp).............................. 124 2.3 De Casteljau’s Algorithm..................................... 129 2.4 Uniform Catmull–Rom-Like Quaternion Splines........................ 131 2.5 Non-Uniform Catmull–Rom-Like Rotation Splines....................... 136 2.6 Kochanek–Bartels-like Rotation Splines............................. 140 2.7 “Natural” End Conditions..................................... 142 2.8 Barry–Goldman Algorithm.................................... 144 2.9 Cumulative Form.......................................... 147 2.10 Naive 4D Quaternion Interpolation................................ 151 2.11 Naive Interpolation of Euler Angles..............................
    [Show full text]
  • Parametric Curves & Surfaces
    Parametric Curves & Surfaces Parametric / Implicit Parametric Curves (Splines) Parametric Surfaces Subdivision Marc Neveu ± LE2I ± Université de Bourgogne 1 2 ways to define a circle Parametric Implicit F>0 F=0 u F<0 xu=r.cosu F x ,y= x2 y2−r 2 {yu=r.sinu 2 - Representations of a curve (2D) Explicit : y = y(x) y=mx+b y=x2 must be a function (x->y) : important limitation Parametric : (x,y)=x(u),y(u)) (x,y) = (cos u, sin u) + easy to specify - hidden additional variable u : the parameter Implicit : f(x,y) = 0 x2+y2-r2=0 + y can be a multivalued function of x - difficult to specify, modify, control 3 - Representations of curves and surfaces (3D) x2+y2+z2-1=0 · Implicit Representation x-y=0 · Curves : f(x,y,z) = 0 and g(x,y,z) =0 · Surfaces : f(x,y,z) =0 · Parametric Representation · Curves : x = f(t), y = g(t), z = h(t) · Surfaces : x = f(u,v), y = g(u,v), z = h(u,v) · Cubic Curve : 3 2 · x= axt + bxt + cxt + dx 3 2 · y = ayt + byt + cyt + dy 3 2 · z = azt + bzt + czt + dz 4 xt =x R.cos2.t 0 Helicoid : yt =y R.sin2 .t 0 u∈ℝ ,v∈ℝ = {z t z0 p.t x=v.cosu y=v.sinu Helix passing by (x ,y ,z ), radius R, 0 0 0 {z=u pitch p 5 Representation of Surfaces Parametric Surface ± (x(u,v),y(u,v),z(u,v)) Ex : plane, sphere, cylinder, torus, bicubic surface, sweeping surface parametric functions allow moving onto the surface modifying u and v (eg in nested loops) Easy for polygonal meshes, etc Terrific for intersections (ray/surface), testing points inside/border, etc Implicit Surface F(x,y,z)=0 Ex : plane, sphere, cylinder, torus, blobs Terrific for
    [Show full text]
  • 1 Cubic Hermite Spline Interpolation
    cs412: introduction to numerical analysis 10/26/10 Lecture 13: Cubic Hermite Spline Interpolation II Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mark Cowlishaw, Nathanael Fillmore 1 Cubic Hermite Spline Interpolation Recall in the last lecture we presented a special polynomial interpolation problem. Problem 1.1. Given an interval [L, R] and a function f :[L, R] → R, find the cubic polynomial p ∈ Π3 with p(L) = f(L) p(R) = f(R) p0(L) = f 0(L) p0(R) = f 0(R) Recall that we found a solution to problem 1.1 of the form: 2 2 p(t) =a ˜1(t − L) (t − R) +a ˜2(t − L) +a ˜3(t − L) +a ˜4 (1) Last time we saw that we can bound the error on p for t ∈ [L, R] using: ° ° °f (4)° |E(t)| ≤ ∞,[L,R] · (R − L)4 384 To approximate a function f over an interval [a, b], we can split the interval [a, b] into N subintervals using partition points ~x = (x0, x1, . , xN ), and solve problem 1.1 for every subinterval [xi, xi+1]. More formally, we can define the following cubic Hermite spline interpolation problem. Problem 1.2 (Cubic Hermite Spline Interpolation). Given an interval [a, b], a function f :[a, b] → 0 R, with derivative f :[a, b] → R, and a set of partition points ~x = (x0, x1, . , xN ) with a = x0 < x1 < ··· < xN = b, find a set of polynomials p0, p1, . , pN−1 (a cubic Hermite spline) with pi(xi) = f(xi) pi(xi+1) = f(xi+1) 0 0 pi(xi) = f (xi) 0 0 pi(xi+1) = f (xi+1) for i = 0, 1,...,N − 1.
    [Show full text]
  • Equivalence Between Forward Rate Interpolations and Discount Factor Interpolations for the Yield Curve Construction
    Article Equivalence between forward rate interpolations and discount factor interpolations for the yield curve construction Jherek Healy * Correspondence: [email protected] Received: December 2019 Abstract: The traditional way of building a yield curve is to choose an interpolation on discount factors, implied by the market tradable instruments. Since then, constructions based on specific interpolations of the forward rates have become the trend. We show here that some popular interpolation methods on the forward rates correspond exactly to classical interpolation methods on discount factors. This paper also aims at clarifying the differences between interpolations in terms of discount factors, instantaneous forward rates, discrete forward rates, and constant period forward rates. Keywords: monotone interpolation; cubic spline; yield curve; finance 1. Introduction The traditional way of building a yield curve is to choose an interpolation on discount factors, implied by the market tradable instruments [1,2]. Since then, with the introduction of the monotone convex interpolation by Hagan and West [3], constructions based on specific interpolations of the discrete forward rates have become the trend, mostly because the discrete forward rates are more directly related to the market observables. We show here that some popular interpolation methods on the consecutive discrete forward rates, or on instantaneous forward rates, correspond actually to classic interpolation methods on discount factors. The equivalence was suggested in [4]. The aim of this paper is to clarify this equivalence further, and to show in particular that the smart quadratic interpolation, often used in banks, and described in [5] is equivalent to a Hermite spline interpolation on the logarithm of discount factors, and the area-preserving quadratic spline interpolation of Hagan [5] is equivalent to a cubic spline interpolation of class C2 on the logarithm of discount factors.
    [Show full text]
  • A Curve Tutorial for Introductory Computer Graphics
    A Curve Tutorial for Introductory Computer Graphics Michael Gleicher Department of Computer Sciences University of Wisconsin, Madison October 7, 2003 Note to 559 Students: These notes were put together rather hastily. Some sections are still missing. However, the ones that are important for this class are here (or in Fundamentals of Computer Graphics). Sometimes I refer to the old 559 textbook Computer Graphics by Hearn and Baker. Be sure to check for errata - I hope I didn't make many mistakes, but realistically, . 1 Curves Mathematically, a curve is: A continuous map from a one-dimensional space to an n-dimensional space. Intuitively, think of a curve as something you can draw with a (thin) pen on a piece of paper. You cannot create ¯lled regions, but you can create the outlines of things. A curve is an in¯nitely large set of points. The points in a curve have a property that any point has 2 neighbors, except for a small number of points that have one neighbor (these are the endpoints). Some curves have no endpoints, either because they are in¯nite (like a line) or they are closed (loop around and connect to themselves). The problem that we need to address is how to describe a curve - to give \names" or representations to all curves so that we can represent them on a computer. For some curves, the problem of naming them is easy since they have known shapes: line segments, circles, elliptical arcs, etc. A general curve that doesn't not have a \named" shape is sometimes called a free-form curve.
    [Show full text]
  • Splines Curve Representations Parameterization of a Curve
    Roller coaster CSCI 420 Computer Graphics Lecture 8 • Next programming assignment involves creating a 3D roller coaster animation Splines • We must model the 3D curve describing the Hermite Splines roller coaster, but how? Bezier Splines Catmull-Rom Splines Other Cubic Splines [Angel Ch 12.4-12.12] Jernej Barbic University of Southern California 1 2 Modeling Complex Shapes What Do We Need From Curves in Computer Graphics? • We want to build models of very complicated objects • Complexity is achieved • Local control of shape using simple pieces (so that easy to build and modify) – polygons, • Stability – parametric curves and surfaces, or • Smoothness and continuity – implicit curves • Ability to evaluate derivatives and surfaces • Ease of rendering • This lecture: parametric curves 3 4 Curve Representations Parameterization of a Curve y x2 y mx b • Explicit: y = f(x) = = + • Parameterization of a curve: how a change in u – Must be a function (single-valued) moves you along a given curve in xyz space. – Big limitation—vertical lines? • Parametric: (x,y) = (f(u),g(u)) • Parameterization is not unique. It can be slow, fast, with continuous / discontinuous speed, clockwise + Easy to specify, modify, control (CW) or CCW… – Extra “hidden” variable u, the parameter (x, y) = (cosu,sin u) parameterization • Implicit: f(x,y) = 0 u=0 + y can be a multiple valued function of x u=1 – Hard to specify, modify, control 2 2 2 x + y − r = 0 u=0.3 u=0.8 u=0 u=1 5 6 1 Polynomial Interpolation Splines: Piecewise Polynomials • A spline is a piecewise polynomial: • An n-th degree polynomial Curve is broken into consecutive fits a curve to n+1 points segments, each of which is a – called Lagrange Interpolation low-degree polynomial interpolating – result is a curve that is too (passing through) the control points wiggly, change to any control point affects entire • Cubic piecewise polynomials are the curve (non-local) most common: – this method is poor source: Wikipedia – They are the lowest order polynomials that a spline • We usually want the curve Lagrange interpolation, 1.
    [Show full text]
  • Real-Time Interpolation of Streaming Data
    Computer Science • 21(4) 2020 https://doi.org/10.7494/csci.2020.21.4.3932 Roman Dębski REAL-TIME INTERPOLATION OF STREAMING DATA Abstract One of the key elements of the real-time C1-continuous cubic spline interpola- tion of streaming data is an estimator of the first derivative of the interpolated function that is more accurate than those based on finite difference schemas. Two such greedy look-ahead heuristic estimators, based on the calculus of vari- ations (denoted as MinBE and MinAJ2), are formally defined (in closed form), along with the corresponding cubic splines that they generate. They are then comparatively evaluated in a series of numerical experiments involving different types of performance measures. The presented results show that the cubic Her- mite splines generated by heuristic MinAJ2 significantly outperformed those that were based on finite difference schemas in terms of all of the tested per- formance measures (including convergence). The proposed approach is quite general. It can be directly applied to streams of univariate functional data like time-series. Multi-dimensional curves that are defined parametrically (after splitting) can be handled as well. The streaming character of the algorithm means that it can also be useful in processing data sets that are too large to fit in the memory (e.g., edge computing devices, embedded time-series databases). Keywords streaming algorithm, online algorithm, spline interpolation, cubic Hermite spline Citation Computer Science 21(4) 2020: 513–532 Copyright © 2020 Author(s). This is an open access publication, which can be used, distributed and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.
    [Show full text]
  • Monotonicity Preserving Interpolation Using Rational Spline Muhammad Abbas,Ahmad.Abd Majid,Mohd Nain Hj Awang and Jamaludin.Md.Ali
    Monotonicity Preserving Interpolation using Rational Spline Muhammad Abbas,Ahmad.Abd Majid,Mohd Nain Hj Awang and Jamaludin.Md.Ali Abstract—The main spotlight of this work is to visualize The problem of monotonicity preserving has been the monotone data to envision of very smooth and pleasant considered by number of authors [1]-[19] and references monotonicity preserving curves by using piecewise rational therein. Hussain & Sarfraz [1] has developed monotonicity cubic function. The piecewise rational cubic function has three shape parameters in each interval. We derive a simpler con- preserving interpolation by rational cubic function with strains on shape parameters which assurance to preservation four shape parameters which are arranged as two are free of the monotonicity curve of monotonic data. The free shape and the other two are automated shape parameters. The parameters will provide the extra freedom to the user to authors derived data dependent constraints on automated interactively generate visually more pleasant curves as desired. shape parameters which ensure the monotonicity and also The smoothness of the interpolation is C1 continuity. provide very pleasant curves but one automated shape Index Terms—Rational cubic function, monotone data, shape parameter is dependent on the other and hence the scheme parameters, free shape parameters, Interpolation. is economically very expensive. I. INTRODUCTION Fritch & Carlson [2] and Butland [3] have developed Moothness and pleasant shape preserving curves is very a piecewise cubic polynomials monotonicity preserving S important in Computer aided Geometric design (CAGD), interpolation. With positive derivatives and increasing data Computer Graphics (CG), and Data Visualization (DV).In in the cubic Hermite Polynomials they still violate the these fields, it is often needed to produce a monotonicity necessary monotonicity condition.
    [Show full text]
  • Nonnegativity-, Monotonicity-, Or Convexity-Preserving Cubic and Quintic Hermite Interpolation*
    mathematics of computation volume 52, number 186 april 1989, pages 471-494 Nonnegativity-, Monotonicity-, or Convexity-Preserving Cubic and Quintic Hermite Interpolation* By Randall L. Dougherty**, Alan Edelman***, and James M. Hyman Dedicated to Professor Eugene Isaacson on the occasion of his 70th birthday Abstract. The Hermite polynomials are simple, effective interpolants of discrete data. These interpolants can preserve local positivity, monotonicity, and convexity of the data if we restrict their derivatives to satisfy constraints at the data points. This paper de- scribes the conditions that must be satisfied for cubic and quintic Hermite interpolants to preserve these properties when they exist in the discrete data. We construct algorithms to ensure that these constraints are satisfied and give numerical examples to illustrate the effectiveness of the algorithms on locally smooth and rough data. 1. Introduction. Piecewise polynomial interpolants, especially those based on Hermite polynomials (polynomials determined by their values and values of one or more derivatives at both ends of an interval), have a number of desirable properties. They are easy to compute once the derivative values are chosen. If the derivative values are chosen locally (e.g., by finite difference methods), then the interpolant at a given point will depend only on the given data at nearby mesh points. If the derivatives are computed by spline methods, then the interpolant will have an extra degree of continuity at the mesh points. In either case, the interpolant is linear in the given function values and has excellent convergence properties as the mesh spacing decreases. These methods, however, do not necessarily preserve the shape of the given data.
    [Show full text]
  • Hermite Interpolation Solved Examples
    Hermite Interpolation Solved Examples Ephrem remains Darwinism: she tonsures her subaltern retreat too formerly? Sometimes smart-aleck Chaddie Bullyingcountersunk Jess her evangelising passing gravitationally, that carpetbagger but octennially overwhelm Hakeem meekly spatterand mistimed saltirewise elusively. or disquiet introductorily. Hermite interpolation hermite collocation conditions is shown tend to confirm this It to hermite polynomials do not. You would use the debugger to confirm that fact. The input parameters: is the function with a fuzzy root derf is weight first derivative of is this initial dodge, and AD will hear the loom of some patch. Example 2 On the interval 1 1 let us interpolate the function fx sin2x at 22. Function numder implements the method introduced in this section. Nevertheless, and cut warehouse and distribution facility in Pawtucket, one boundary. Matlab has the data points except one example of a little bit lower triangular or the tijuana institute of computational examples of the difference between the following formulae are consenting to include a polynomial. Interpolation methods Paul Bourke. By adding the natural input parameter tol you space force MATLAB to compute the zero of afunction with the use error tolerance tol. Somehow we must therefore, consider the hermite data outside it are solved must be a position between the nuclei? Interpolation process that always produces a band of polynomials that converge uniformly tothe interpolated function as foreman of the interpolating polynomial tends to infinity. Matlab programming by itself a hermite numbers you need to solve for solving a research that corner. One of the zero of bicubic hermite interpolation by requiring that has been published by linear interpolants actually works, point plot of combinatorial theory.
    [Show full text]