Assignment of Viral Polypeptides to RNA Segments

Total Page:16

File Type:pdf, Size:1020Kb

Assignment of Viral Polypeptides to RNA Segments JOURNAL OF VIROLOGY, Jan. 1979, p. 361-373 Vol. 29, No. 1 0022-538X/79/01-0361/13$02.00/0 Influenza B Virus Genome: Assignment of Viral Polypeptides to RNA Segments VINCENT R. RACANIELLO AND PETER PALESE* Department ofMicrobiology, Mount Sinai School ofMedicine, City University of New York, New York, New York 10029 Received for publication 1 August 1978 It was shown that all eight RNA segments of influenza B viruses are most likely monocistronic and code for eight virus-specific polypeptides. A genetic map of the influenza B virus genome was established, and six polypeptides (P1 protein, nucleoprotein, hemagglutinin, neuraminidase, M protein, and nonstructural pro- tein) were unambiguously assigned to specific RNA segments. Molecular weight estimates ofthe eight individual genes were obtained by using the glyoxal method. These results suggest that each influenza B virus RNA segment has a greater molecular weight than the influenza A virus RNA segment which codes for the analogous gene product. Influenza B viruses were first isolated in 1940 cluding a previously unrecognized viral non- from patients afflicted with respiratory illness structural (NS) protein (30). (10, 22). Since then influenza B viruses have We now report our complete results on the been recognized as important human pathogens. establishment of a genetic map of the influenza Although influenza due to the type A virus is B viruses. Our analysis shows that there are more frequent than influenza B, the clinical at- most likely eight virus-specific polypeptides tack rate of influenza B can be very high (24), coded for by the eight influenza B virus RNA and influenza B virus infections occur in every segments. In addition to the surface proteins HA month of the year (16). Furthermore, influenza and NA, three P polypeptides, a nucleoprotein B viruses have been associated with Reye's syn- (NP), the M protein, and one NS protein can be drome, an acute encephalopathy in children (9). distinguished. (The nomenclature for these pro- Extensive serological studies on different in- teins is the same as that for the influenza A fluenza B virus isolates have demonstrated a viruses.) The genes coding for P1 protein, NP, lesser degree of antigenic variation than among NA, M protein, and NS protein are assigned to the influenza A viruses (5, 6, 14, 34). Other specific RNA segments. Finally, molecular biochemical studies on influenza B viruses have weight estimates of influenza B virus RNA seg- been scarce. Four to six influenza B virus poly- ments and influenza B virus-specific polypep- peptides have been identified previously (4, 12, tides are presented, and the gene structure of 13, 15, 20, 26, 37), and very little is known about influenza B viruses is compared with that of the genome of influenza B viruses (31). influenza A viruses. As part of a study to characterize the genome (This work was carried out by V.R.R. in par- of influenza B viruses and to compare it with tial fulfillment of the requirements for a Ph.D. that of influenza A viruses, we recently began degree in biomedical sciences at the Mount Sinai work on the establishment of a genetic map for School of Medicine of the City University of influenza B viruses. Our earlier observation (31) New York.) that the RNA of influenza B virus consists of eight segments was confirmed (30), and in a MATERIALS AND METHODS preliminary report we showed that RNA 5 of Cells and medium. Madin-Darby canine kidney influenza B viruses codes for the hemagglutinin cells (MDCK; 17) were propagated in Earle-based (HA) polypeptide (30). Our finding that RNA 5 minimal essential medium (Grand Island Biological of influenza B viruses codes for HA was con- Co.) supplemented with 10% fetal bovine serum. Viruses. Seed stocks of influenza B/Lee/40 firmed by Ueda et al. (38). Furthermore, these (B/Lee) and B/Maryland/59 (B/Md) viruses were authors succeeded in identifying RNA 6 of influ- prepared by inoculation of the allantoic cavity of 11- enza B viruses as the gene coding for the neur- day-old embryonated hen eggs as described previously aminidase (NA) polypeptide. We also presented (31). evidence for seven virus-coded polypeptides, in- Isolation ofrecombinant viruses. Recombinants 361 362 RACANIELLO AND PALESE J. VIROL. between B/Lee and B/Md viruses were isolated by by 23 cm by 1.5 mm and consisted of a resolving gel using techniques employed for the isolation of influ- with a 5 to 13% gradient of polyacrylamide and a 0 to enza A virus recombinants (27). Briefly, MDCK mono- 20% sucrose gradient. The spacer gel was 5% polyacryl- layers on 25-cm2 plastic dishes were mixedly infected amide. The gels also contained 6 M urea, 0.37% with B/Lee and B/Md viruses. It has been noted (35) (vol/vol) Triton X-100, and 5% acetic acid. The run- that, in such a mixed infection with influenza A viruses, ning buffer was 5% acetic acid. Pulse-labeled infected the multiplicity of infection (MOI) can influence the cell pellets were dissolved in a mixture containing 6 M gene composition of the resulting recombinants. urea, 5% acetic acid, 4% /3-mercaptoethanol, 0.02% Therefore, depending on which parental RNAs we pyronine Y, and 0.37% (vol/vol) Triton X-100. Elec- wished to predominate in the recombinant, one parent trophoresis was performed at room temperature at 100 was present at a MOI of 10 PFU/cell and the other V until the dye front left the resolving gel (length, 20 parent was present at 1 PFU/cell. After a 45-min cm). After electrophoresis, gels were dried and exposed adsorption at 37°C, monolayers was washed, and to X-ray film. maintenance medium was added. Cells were washed One-dimensional peptide maps. Individual viral again after 3 h and incubated at 37°C for an additional polypeptides from pulse-labeled infected cells or from 14 h until most cells were detached. Culture fluids continuously labeled purified virus preparations were were centrifuged briefly to remove cell debris and then subjected to one-dimensional peptide mapping by the plaqued in MDCK cells in the presence of hyperim- procedure of Cleveland et al. (7) with minor modifi- mune rabbit antisera directed against the surface pro- cations. After labeled viral polypeptides were sub- teins of B/Lee or B/Md virus. The resulting plaques jected to electrophoresis on a polyacrylamide gel as were picked and grown up in MDCK cells, and seeds described above, the gel was stained, and two lanes were made in 11-day-old embryonated hen eggs. which contained samples of infected and uninfected Serological analysis. The derivation of the sur- cells were cut out, dried, and autoradiographed. The face proteins of recombinant viruses was identified by labeled viral polypeptides were located on the film, HA inhibition and NA inhibition assays (2, 40). To which was used to identify viral polypeptides in the avoid steric interference of the viral HA in NA inhi- remaining lanes of the wet, stained gel. (The HA, NP, bition assays, purified virus was used which was and NS and M proteins could often be identified by treated with Pronase to destroy the viral HA (6). staining alone.) Bands were then cut out from the wet Labeling and extraction of viral RNA. The gel and subjected to partial digestion in the stack of a RNA of recombinant viruses and their parents was second polyacrylamide gel (the resolving gel contained labeled with 32p in MDCK cells and extracted from a 10 to 15% gradient of acrylamide). The enzymes used purified virus as described previously for influenza A were Staphylococcus aureus V8 protease (0.5 ytg/slot) viruses (28, 29). and chymotrypsin (20 tig/slot). All enzyme solutions Polyacrylamide gel electrophoresis of viral used to overlay the gel slices contained 2% /8-mercap- RNA. 32P-labeled RNAs of parent and recombinant toethanol (19). Gels were subjected to electrophoresis viruses were separated on 2.6% polyacrylamide gels at 80 V until the dye front reached the resolving gel containing 6 M urea under established conditions (32). and then run at 100 V until the dye marker ran off the Labeling of viral polypeptides. Pulse-labeling of resolving gel (length, 15 cm). Gels were then fluoro- influenza B virus-infected cell polypeptides with L- graphed (3), dried onto Whatman 3MM filter paper, [35S]methionine was performed as described previ- and exposed at -70°C to Kodak X-Omat RC film. ously (33). Unless indicated otherwise, at 6 h postin- Estimation of molecular weights of viral RNA fection cells were first incubated for 15 min in Earle segments and viral polypeptides. The method of salt solution containing an additional 150 mM NaCl. Weber and Osborn (39) was used to determine molec- The use of hypertonic medium to selectively suppress ular weights of viral polypeptides. Pulse-labeled poly- host protein synthesis in RNA virus-infected cells has peptides of B/Lee virus-infected cells were analyzed been reported previously (25). For pulse-labeling ex- on a SDS-polyacrylamide gel with a 3% stacking gel periments L-[35S]methionine was added directly to the and a gradient-resolving gel of 5 to 13% polyacryl- medium after a 15-min preincubation in hypertonic amide. The discontinuous buffer system used was that medium. Virus continuously labeled with L-[u5S]me- of Laemmli (18). Marker proteins used and their mo- thionine was purified as described previously for influ- lecular weights were: phosphorylase a, 94,000; bovine enza A viruses (33). serum albumin, 67,000; ovalbumin, 45,000; lactic de- Polyacrylamide gel electrophoresis of viral hydrogenase, 36,000; chymotrypsinogen, 25,000; and polypeptides.
Recommended publications
  • The Long Road to a Universal Influenza Virus Vaccine †
    Abstract The Long Road to a Universal Influenza Virus Vaccine † Peter Palese Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; [email protected] † Viruses 2020 - Novel Concepts in Virology, Barcelona, Spain, 5–7 February 2020. Published: 8 July 2020 Abstract: Seasonal and pandemic influenza virus infections can cause significant disease worldwide. Current vaccines only provide limited, short-lived protection, and antigenic drift/shift in the hemagglutinin (HA) surface glycoprotein necessitates their annual reformulation and re-administration. To overcome these limitations, universal influenza virus vaccine strategies aim at eliciting broadly protective antibodies to conserved epitopes of the HA. We have developed two approaches. (1) The first is based on “chimeric” HA constructs that retain the conserved stalk domain of the HA and have exotic HA heads. Vaccination and boosting with such constructs successfully redirects the immune system in animals and in humans towards the conserved immune sub-dominant domains of the HA stalks; this results in an antigenic silencing of the HA heads and a protective immune response facilitated by the conserved HA stalks. In mice and ferrets, such a strategy protects the animals against homo-subtypic and hetero-subtypic challenge with influenza A strains as well as against influenza B variants. It is hoped that vaccine constructs expressing three components (i.e., conserved group 1 HA stalks, conserved group 2 HA stalks, and conserved influenza B HA stalks) will be protective against all future seasonal and pandemic strains. (2) The “mosaic” HA approach is based on antigenic silencing of the major immunodominant antigenic sites of the HA heads by only replacing those epitopes with corresponding sequences of exotic avian HAs, yielding “mosaic” HAs.
    [Show full text]
  • Toward a Universal Influenza Virus (Revised)
    TOWARDS A UNIVERSAL INFLUENZA VIRUS VACCINE Peter Palese Icahn School of Medicine at Mount Sinai New York OPTIONS IX 8-26-16 ISIRV - Options IX for the Control of Influenza Peter Palese, PhD Professor and Chair Department of Microbiology Icahn School of Medicine, New York Mount Sinai has submitted patent applications for a universal influenza virus vaccine Work has been supported by the NIH, The Bill & Melinda Gates Foundation, GSK My presentation does not include discussion of off-label or investigational use. Similar variation for influenza, HIV and HCV F. Krammer EIGHTEEN SUBTYPES OF INFLUENZA A VIRUS HEMAGGLUTININS Group 2 Influenza A Influenza B Group 1 bat HAs Influenza viruses circulating in the human population B pH1N1 H3N2 (Group2) A ? H2N2 (Group1) H1N1 (Group1) 1918 1940 1960 1980 2000 AVIAN INFLUENZA VIRUSES INFECTING HUMANS H5N6 China 2016 H7N9 China 2015, 2014, 2013 H10N8 China 2013 H6N1 Taiwan 2013 H10N7 Australia,Egypt 2010,2004 H7N3 Mexico,UK,Canada,Italy 2012,2006,04,03 H7N2 UK,USA 2007,2003 H9N2 Hong Kong 1999 H5N1 Asia,Europe,Africa, Hong Kong 2015-2003 , 1997 H7N7 Netherlands,UK,USA,Austr.,USA 2003,96,80,77,59 INFLUENZA VIRUS VACCINES INACTIVATED LIFE ATTENUATED RECOMBINANT INFLUENZA VIRUS VACCINE STRAINS 2016-2017 A/California/7/2009 (H1N1)pdm09 A/Hong Kong/4801/2014 (H3N2) B/Phuket/3073/2013 B/Brisbane/60/2008 • INFLUENZA VIRUS VACCINES ARE UNIQUE. • THEY HAVE TO BE GIVEN ANNUALLY, BECAUSE NOVEL VACCINE FORMULATIONS HAVE TO BE PREPARED REFLECTING THE RAPID ANTIGENIC CHANGE OF THE VIRUS. Antigenic diversity: analysis
    [Show full text]
  • Sequence of the 1918 Pandemic Influenza Virus Nonstructural Gene (NS) Segment and Characterization of Recombinant Viruses Bearing the 1918 NS Genes
    Sequence of the 1918 pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses bearing the 1918 NS genes Christopher F. Basler*†, Ann H. Reid*‡, Jody K. Dybing*§¶, Thomas A. Janczewski‡, Thomas G. Fanning‡, Hongyong Zheng†, Mirella Salvatore†, Michael L. Perdue§ʈ**, David E. Swayne§, Adolfo Garcı´a-Sastre†ʈ, Peter Palese†ʈ, and Jeffery K. Taubenberger‡ʈ †Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029; ‡Division of Molecular Pathology, Department of Cellular Pathology, Armed Forces Institute of Pathology, Washington, DC 20306; and §Southeast Poultry Research Laboratory, United States Department of Agriculture, Athens, GA 30605 Contributed by Peter Palese, December 5, 2000 The influenza A virus pandemic of 1918–1919 resulted in an generation of influenza viruses from cloned cDNAs allow re- estimated 20–40 million deaths worldwide. The hemagglutinin combinant influenza viruses bearing genes of the 1918 pandemic and neuraminidase sequences of the 1918 virus were previously virus to be constructed. The resulting viruses can be studied in determined. We here report the sequence of the A͞Brevig Mission͞ vitro or in animal models (12, 13). 1͞18 (H1N1) virus nonstructural (NS) segment encoding two pro- The full-length sequences of the two predominant surface teins, NS1 and nuclear export protein. Phylogenetically, these proteins of the 1918 virus, hemagglutinin (HA) and neuramin- genes appear to be close to the common ancestor of subsequent idase (NA), have recently been described (2, 9). These sequences human and classical swine strain NS genes. Recently, the influenza were determined first because influenza pandemics are thought A virus NS1 protein was shown to be a type I IFN antagonist that to result from the emergence of influenza virus strains with novel plays an important role in viral pathogenesis.
    [Show full text]
  • Antigenic Sites in Influenza H1 Hemagglutinin Display Species- Specific Immunodominance
    Antigenic sites in influenza H1 hemagglutinin display species- specific immunodominance Sean T.H. Liu, … , Florian Krammer, Peter Palese J Clin Invest. 2018. https://doi.org/10.1172/JCI122895. Concise Communication In-Press Preview Immunology Virology Hemagglutination inhibition (HI) titers are a major correlate of protection for influenza-related illness. The influenza virus hemagglutinin possesses antigenic sites that are the targets of HI active antibodies. Here, a panel of mutant viruses each lacking a classically defined antigenic site was created to compare the species-specific immunodominance of the antigenic sites in a clinically relevant hemagglutinin. HI active antibodies of antisera from influenza-virus infected mice targeted sites Sb and Ca2. HI active antibodies of guinea pigs were not directed against any specific antigenic site, although trends were observed towards Sb, Ca2, and Sa. HI titers of antisera from infected ferrets were significantly affected by site Sa. HI active antibodies of adult humans followed yet another immunodominance pattern, where sites Sb and Sa were immunodominant. When comparing the HI profiles between different species by antigenic cartography, animals and humans grouped separately. This study provides characterizations of the antibody-mediated immune responses against the head domain of a recent H1 hemagglutinin in animals and humans. Find the latest version: https://jci.me/122895/pdf 1 Title 2 Antigenic sites in influenza H1 hemagglutinin display species-specific immunodominance 3 4 Sean T. H. Liu1,2, Mohammad Amin Behzadi1, †, Weina Sun1, †, Alec Freyn1, Wen-Chun Liu1, Felix Broecker1, 5 Randy A. Albrecht1,3, Nicole M. Bouvier1,2, Viviana Simon1,3, Raffael Nachbagauer1, Florian Krammer1, and 6 Peter Palese1 7 1Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
    [Show full text]
  • Adolfo García-Sastre Professor, Department of Microbiology
    Adolfo García-Sastre Professor, Department of Microbiology Fishberg Professor, Department of Medicine, Division of Infectious Diseases Director, Global Health and Emerging Pathogens Institute Icahn School of Medicine at Mount Sinai 1468 Madison Avenue, New York, NY 10029 [email protected]; Short Bio; Dr. Adolfo García-Sastre is Professor in the Departments of Microbiology and Medicine and Director of the Global Health and Emerging Pathogens Institute of Icahn School of Medicine at Mount Sinai in New York. He received his BSc and PhD from University of Salamanca, Spain and postdoctoral training at the Laboratory of Peter Palese at Mount Sinai School of medicine in New York City. Area of Research; For the past 30 years, his research interest has been focused on the molecular biology of influenza viruses and several other negative strand RNA viruses. During his post-doctoral training in the early 1990s, he developed, for the first time, novel strategies for expression of foreign antigens by a negative strand RNA virus, influenza virus. He has made major contributions to the influenza virus field, including 1) the development of reverse genetics techniques allowing the generation of recombinant influenza viruses from plasmid DNA, (studies in collaboration with Dr. Palese); 2) the generation and evaluation of negative strand RNA virus vectors as potential vaccine candidates against different infectious diseases, including malaria and AIDS, and 3) the identification of the biological role of the non structural protein NS1 of influenza virus during infection: the inhibition of the type I interferon (IFN) system. His studies provided the first description and molecular analysis of a viral- encoded IFN antagonist among negative strand RNA viruses.
    [Show full text]
  • Dynavax and Mount Sinai Announce Collaboration to Develop a Universal Influenza Vaccine Candidate with Cpg 1018 Adjuvant
    Dynavax and Mount Sinai Announce Collaboration to Develop a Universal Influenza Vaccine Candidate with CpG 1018 Adjuvant July 16, 2020 Development funded under contract award from NIAID/NIH as part of the CIVICs program Currently no approved universal influenza vaccine CDC estimates 35.5 million people were infected with influenza in U.S. during 2018-2019 season Collaboration will combine Dynavax’s CpG 1018 with influenza antigens designed to protect against all strains of influenza NEW YORK and EMERYVILLE, Calif., July 16, 2020 (GLOBE NEWSWIRE) -- Dynavax Technologies Corporation (NASDAQ: DVAX), a biopharmaceutical company focused on developing and commercializing novel vaccines, and the Icahn School of Medicine at Mount Sinai (“Mount Sinai”) today announced they have entered into a collaboration to develop a universal influenza (flu) vaccine. Mount Sinai’s current work in this area is funded under a contract award from the National Institute of Allergy and Infectious Diseases (NIAID) of the National Institutes of Health (NIH), as part of the Collaborative Influenza Vaccine Innovation Centers (CIVICs) program established by NIAID. The Mount Sinai CIVICs team will evaluate a novel approach they have developed called chimeric hemagglutinin (cHA) designed to protect against all strains of influenza in combination with Dynavax’s CpG 1018TM adjuvant. The development program will support an Investigational New Drug (IND) application for Phase I clinical trials. Drs. Peter Palese, PhD, Professor and Chair of the Department of Microbiology at Mount Sinai, Adolfo-Garcia-Sastre, PhD, Director of the Global Health and Emerging Pathogens Institute, and the Irene and Dr. Arthur M. Fishberg Professor of Microbiology and Medicine (Infectious Diseases) at Mount Sinai, and Florian Krammer, PhD, Professor of Microbiology at Mount Sinai will be leading the development of the program.
    [Show full text]
  • Making Better Influenza Virus Vaccines? Peter Palese*
    Making Better Influenza Virus Vaccines? Peter Palese* Killed and live influenza virus vaccines are effective in 361/2002 viruses. Changes in the HA of circulating virus- preventing and curbing the spread of disease, but new es (antigenic drift) require periodic replacement of the vac- technologies such as reverse genetics could be used to cine strains during interpandemic periods. The World improve them and to shorten the lengthy process of prepar- Health Organization publishes semiannual recommenda- ing vaccine seed viruses. By taking advantage of these tions for the strains to be included for the Northern and new technologies, we could develop live vaccines that would be safe, cross-protective against variant strains, and Southern Hemispheres (2). To allow sufficient time for require less virus per dose than conventional vaccines. manufacture, in the United States the US Food and Drug Furthermore, pandemic vaccines against highly virulent Administration (FDA) determines in February which vac- strains such as the H5N1 virus can only be generated by cine strains should be included in the following winter’s reverse genetics techniques. Other technologic break- vaccine. Unfortunately, FDA recommendations are not throughs should result in effective adjuvants for use with always optimal. For example, in 2003 FDA rejected the killed and live vaccines, increasing the number of available use of the most appropriate H3N2 strain, A/Fujian/411/ doses. Finally, universal influenza virus vaccines seem to 2002, and instead again used the same strain as in the 2002 be within reach. These new strategies will be successful if formulation. This decision was made primarily because the they are supported by regulatory agencies and if a robust market for influenza virus vaccines against interpandemic A/Fujian/411/2002 strain had first been isolated in Madin and pandemic threats is made and sustained.
    [Show full text]
  • The Underdog Covid‑19 Vaccines That the World
    News in focus clinical-trial holds in future. The transparency individual, but still provides a summary of the released prematurely, it could present a bias bar should be set much higher than this latest clinical issues that arose, and the conclusions to the clinicians involved in them, says Griffin. example, says Kieny. “When, ultimately, a vac- the committee reached about the implications The integrity of the trials is on the line, he adds. cine will be made available, public trust will be for the study, he says. “It is of concern that they Griffin expects the pause to have little impact paramount to ensure public-health impact. sought to avoid doing so,” says Komesaroff. on the UK trials’ overall timeline. And trust needs transparency.” The University of Oxford and AstraZeneca But it has not been reported when trials of have not yet responded to requests for com- the vaccine in the United States and South Leading vaccine ment on this criticism. Africa will restart. A spokesperson for Astra- The vaccine, AZD1222, is one of the leading Although the university and AstraZeneca Zeneca told Nature that the company “will be candidates being developed to protect against have not released information about the guided by health authorities across the globe the virus that causes COVID-19, and one of a adverse event to the public, Pascal Soriot, as to when other clinical trials of the vaccine handful of immunizations in the final stages AstraZeneca’s chief executive, reportedly can resume”. of clinical testing. The pause in global trials told investors on a telephone call last week So far, some 18,000 people globally have sent a shudder around the world.
    [Show full text]
  • CURRICULUM VITAE June 2021
    CURRICULUM VITAE June 2021 PETER PALESE Professor and Chairman Department of Microbiology Icahn School of Medicine at Mount Sinai One Gustave L. Levy Place, Box 1124 New York, NY 10029 ACADEMIC DEGREES 1969 University of Vienna, Ph.D., Chemistry 1970 University of Vienna Pharmacy (Mag. Pharm. Degree) PROFESSIONAL APPOINTMENTS 1970 - 1971 Postdoctoral Fellow, Roche Institute of Molecular Biology, Department of Cell Biology, Nutley, NJ 1971 - 1974 Assistant Professor, Department of Microbiology, Icahn School of Medicine at Mount Sinai (formerly Mount Sinai School of Medicine), New York, NY 1974 - 1977 Associate Professor, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 1976 - Present Visiting Associate Professor, Department of Microbiology and Immunology, School of Medicine, University of California, Los Angeles 1978 - Present Professor, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 1987 - Present Chairman, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 2006 - Present Chairman, Department of Microbiology and Professor, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY SELECTED AWARDS AND PROFESSIONAL ACTIVITIES 1980 Gustave Stern Award for Virology 1978-1981 Member, NSF Grant Review Panel for Genetic Biology 1977-2001 Associate Editor of Virology 1984-2001 Editorial Board, Virus Research 1988-2001 Editorial Board, Journal of Virology 1990-1994, 1999-2003 Member, Virology Study Section, NIAID 1990-1996 Section
    [Show full text]
  • SARS-Cov-2 Induces Double-Stranded RNA-Mediated Innate Immune Responses in Respiratory Epithelial-Derived Cells and Cardiomyocytes
    SARS-CoV-2 induces double-stranded RNA-mediated innate immune responses in respiratory epithelial-derived cells and cardiomyocytes Yize Lia,b,1,2,3, David M. Rennera,b,1, Courtney E. Comara,b,1, Jillian N. Whelana,b,1, Hanako M. Reyesa,b, Fabian Leonardo Cardenas-Diazc,d, Rachel Truittc,e, Li Hui Tanf, Beihua Dongg, Konstantinos Dionysios Alysandratosh, Jessie Huangh, James N. Palmerf, Nithin D. Adappaf, Michael A. Kohanskif, Darrell N. Kottonh, Robert H. Silvermang, Wenli Yangc, Edward E. Morriseyc,d, Noam A. Cohenf,i,j, and Susan R. Weissa,b,2 aDepartment of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; bPenn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; cDepartment of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; dPenn-CHOP Lung Biology Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; eInstitute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; fDepartment of Otorhinolaryngology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; gDepartment of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; hDepartment of Medicine, The Pulmonary Center, Center for Regenerative Medicine, Boston University School of Medicine, Boston, MA 02118; iDivision of Otolaryngology,
    [Show full text]
  • Network-Based Virus-Host Interaction Prediction with Application to SARS-Cov-2
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.09.375394; this version posted November 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Network-based Virus-Host Interaction Prediction with Application to SARS-CoV-2 Hangyu Du†, Feng Chen†, Hongfu Liu*, and Pengyu Hong* 1Department of Computer Science, Brandeis University, Waltham, Massachusetts, United States †These authors contribute equally *Correspondence: [email protected], [email protected] COVID-19, caused by Severe Acute Respiratory Syndrome above two goals for new zoonotic viruses, which we believe Coronavirus 2 (SARS-CoV-2), has quickly become a global can be done by leveraging the knowledge and data about health crisis since the first report of infection in December of known viruses highly relevant to the new ones. 2019. However, the infection spectrum of SARS-CoV-2 and its The research community has accumulated a great deal comprehensive protein-level interactions with hosts remain un- of knowledge about several other human coronaviruses clear. There is a massive amount of under-utilized data and (including SARS-CoV (7–15), HCoV-HKU1 (15), HCoV- knowledge about RNA viruses highly relevant to SARS-CoV-2 OC43 (16, 17), HCoV-NL63 (18), MERS-CoV (19–23)) and and their hosts’ proteins. More in-depth and more compre- hensive analyses of that knowledge and data can shed new in- has collected a large amount of data about them.
    [Show full text]
  • Chimeric Hemagglutinin-Based Live-Attenuated Vaccines Confer Durable Protective Immunity Against Influenza a Viruses in a Preclinical Ferret Model
    Article Chimeric Hemagglutinin-Based Live-Attenuated Vaccines Confer Durable Protective Immunity against Influenza A Viruses in a Preclinical Ferret Model Wen-Chun Liu 1,2,3, Raffael Nachbagauer 1,4, Daniel Stadlbauer 1, Shirin Strohmeier 1, Alicia Solórzano 1, Francesco Berlanda-Scorza 5,6, Bruce L. Innis 3, Adolfo García-Sastre 1,2,7,8 , Peter Palese 1,7 , Florian Krammer 1 and Randy A. Albrecht 1,2,* 1 Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; [email protected] (W.-C.L.); [email protected] (R.N.); [email protected] (D.S.); [email protected] (S.S.); [email protected] (A.S.); [email protected] (A.G.-S.); [email protected] (P.P.); fl[email protected] (F.K.) 2 Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA 3 Biomedical Translation Research Center, Academia Sinica, Taipei 11571, Taiwan; [email protected] 4 Moderna Therapeutics, Inc., Cambridge, MA 02141, USA 5 PATH US, Seattle, WA 98121, USA; [email protected] 6 GSK Vaccine Institute for Global Health (GVGH), 53100 Siena, Italy 7 Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA 8 The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA * Correspondence: [email protected] Citation: Liu, W.-C.; Nachbagauer, Abstract: Epidemic or pandemic influenza can annually cause significant morbidity and mortality R.; Stadlbauer, D.; Strohmeier, S.; in humans.
    [Show full text]