Vol. 150, No. 4 · Research article

Climate Variability in Indonesia from 615 ka to present: First Insights from DIE ERDE Low-Resolution Coupled Model Journal of the Geographical Society Simulations of Berlin

Rima Rachmayani1, Matthias Prange2,3, Michael Schulz2,3, Nining Sari Ningsih1

1 Faculty of Sciences and Technology, Bandung Institute of Technology, Jl. Ganesha No. 10, 40132 Bandung, Indonesia, rrachmayani@.itb.ac.id, [email protected] 2 Faculty of Geosciences, University of Bremen, Klagenfurter Strasse, 28334 Bremen, Germany, [email protected], [email protected] 3 MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, 28359 Bremen, Germany

Manuscript submitted: 12 December 2018 / Accepted for publication: 16 August 2019 / Published online: 20 December 2019

Abstract We analyse the dynamics of Indonesian waters using the results of a set of 13 time-slice experiments simulated by the CCSM3-DGVM model. The experiments were carried out to study global climate variability between and within the Quaternary interglacials of Marine Isotope Stages (MIS) 1, 5, 11, 13, and 15. During boreal summer (June-July-August- September), in most of Indonesia, seasonal surface temperature anomalies can largely be explained by local insolation anomalies induced by the astronomical forcing. However, for some time slices, climate feedbacks may modify the surface temperature response in Indonesia, most pronounced in open water close to the Indian and Pacific Oceans. The warm- est boreal summer sea-surface temperature (SST) anomaly compared to Pre-Industrial (PI) conditions of up to 1 K was found in the Banda Sea at 125 ka (MIS 5) and 579 ka (MIS 15). The coolest boreal summer SST anomaly down to –2 K at 495 ka (MIS 13) is equally distributed in Indonesian waters. During boreal winter, most of the moderate cooling over large portions of the land and the waters of Indonesia is also associated with local insolation. The most interest- ing finding in this study, a dipole and tripole precipitation pattern with up to 3.6 mm/day of rainfall anomaly during boreal summer is identified in the western part of the Indonesian waters, Indian Ocean to Banda Sea, and the eastern part of Indonesian waters. The results of this study are expected to be used as basic information to predict the climate in Indonesia for the present and future. This may add to the assessment provided by the IPCC for a better understanding of future climate change in the region, which is a prerequisite for alleviating its impacts.

Zusammenfassung Wir analysieren die Dynamik indonesischer Gewässer anhand der Ergebnisse von 13 Zeitscheibenexperimen- ten, die mit dem CCSM3-DGVM-Modell durchgeführt wurden. Die Experimente helfen, globale Klimaschwan- kungen zwischen und innerhalb der quartären Interglaziale der Marinen Isotopenstufen (MIS) 1, 5, 11, 13 und 15 zu untersuchen. Während des borealen Sommers (Juni-Juli-August-September) können in den meisten Ge- - anomalien erklärt werden, die durch den astronomischen Antrieb hervorgerufen werden. Allerdings können bieten Indonesiens saisonale Oberflächentemperaturanomalien weitgehend durch lokale Sonneneinstrahlungs

Klimarückwirkungen für einige Zeitscheiben die Oberflächentemperaturen in und um Indonesien verändern, am stärksten im offenen Ozean in der Nähe des Indischen und Pazifischen Ozeans. Die wärmste Anomalie der Meeresoberflächentemperatur (SST) im borealen Sommer im Vergleich zu vorindustriellen Bedingungen um bis zu 1 K wurde in der Banda-See bei 125 ka (MIS 5) und 579 ka (MIS 15) gefunden. Die kühlste boreale Sommer- Rima Rachmayani, Matthias Prange, Michael Schulz, Nining Sari Ningsih to present: First Insights from Low-Resolution Coupled Model Simulations. – DIE ERDE 150 (4): 230-240 2019: Climate Variability in Indonesia from 615 ka

DOI:10.12854/erde-2019-428 230 DIE ERDE · Vol. 150 · 4/2019 Climate Variability in Indonesia from 615 ka to present: First Insights from Low-Resolution Coupled Model Simulations

- ensSST-Anomalie auch mit der um lokalen bis zu -2Sonneneinstrahlung K bei 495 ka (MIS 13) verbunden. ist in indonesischen Das interessanteste Gewässern Ergebnis gleichmäßig dieser verteilt. Studie, einWährend Dipol- des borealen Winters ist die meist moderate Abkühlung über weite Teile des Landes und der Gewässer Indonesi und Tripolniederschlagsmuster mit bis zu 3,6 mm/Tag Niederschlagsanomalie während des borealen Sommers, wird im westlichen Teil der indonesischen Gewässer, im Indischen Ozean bis zur Banda-See und im östlichen Teil- wertungder indonesischen für ein besseres Gewässer Verständnis identifiziert. des Die zukünftigen Ergebnisse Klimawandels dieser Studie insollen der Regionals Basisinformationen ergänzen, als eine dienen, wichtige um Voraussetzungdas Klima in Indonesien für die Abschwächung für die Gegenwart seiner und negativen Zukunft Auswirkungen. vorherzusagen. Dies kann die vom IPCC vorgelegte Be

Keywords Indonesia, surface temperature, precipitation, CCSM3

1. Introduction Mohtadi Abram and speleothem records (e.g. Partin Grif- 2010;fiths et al.Griffiths 2011a), corals ( et al. 2009), Pool (IPWP) which is known as the largest area of were collected from marine sedimentset al. off 2007; Sumatra, Indonesia is located within the Indo-PacificNiedermayer Warm westernet al. Indonesia, 2009; from et al.the Makassar 2010). Proxy Strait, records cen- De Deckker Wurster with tral Indonesia, and the Java Sea, southern Indonesia warmthe highest sea-surface precipitation temperatures on the entire (SST) Earth ( (Nieder- (Partin Griffiths Griffiths et al.mayer 2014; Wurster2016; et al.. 2019) Mohtadi Tierney Ayliffe plays a major role in the global atmospheric circula- et al.Konecky 2007; et al.Dubois 2009; et al.Rus- tion andet al. hydrologic 2014; cycle, andet al. the 2019) IPWPThus, can be the consid IPWP- 2010;sell et al.Steinke 2011a; Kuhntet al. 2012; ered as the largest source of atmospheric water vapor et al. 2013; et al. 2013; et al. 2014; - and latent heat. In Indonesia, marine and terrestrial ferentet al. regions 2014; in the Maritimeet al. 2014; Continent et al. dominated 2015). ecosystems are strongly dependent on the global and byThese large-scale reconstructions climate phenomena were accomplished such as ENSO for dif or - the monsoonal system to a different extent as it is donesian monsoon system and the migration of the observed today (Aldrian and Susanto - regional climate . Today, the Australian–In- constructions revealed that the monsoonal system nesia drive the seasonal cycle of the Indonesian cli- (Mohtadi 2003).Abram The re mateIntertropical (Wyrtki ConvergenceRobertson Zone (ITCZ) passingKwiatkowski Indo Niedermeyer over time.et al. 2011b), ENSO and the IOD ( et al. like the Indian 1961; Ocean Dipole (IOD)et al. ( Saji2011; 2009; et al. 2014) may have transformed andet al. El 2015). Niño-Southern Meanwhile, Oscillation positive (ENSO) climate events anomalies (Ras- With regard to the past interglacials, the present Holo- musson and Carpenter et al. 1999) or/ cene global climate pattern and its natural near future contribute to drier conditions and prolonged dry sea- is best comparable with Marine Isotope Stage (MIS) sons in Indonesia. Interaction 1982) have among been these suggested recurrent to Lisiecki and Raymo 2005) based on modes may generate a very complex climatic system over Indonesia. Along with the strong entanglement 19 at ~790–760 ka ( thevariations Holocene in bothclimate annual pattern and when seasonal the impacttemperatures; of inso- the region today and may have experienced similar lationthe MIS alone 11 (~424–373 is considered, ka) and climate warm pattern climates is inclose MIS to 5 climateof climate features phenomena, during theirthe past influence due to, varies for example, across - the topography of Indonesia and ocean–atmosphere est analogues to the future human-induced warm cli- mate(~130–70 (Yin ka)and and Berger MIS 92015). (~337–299 ka) make the clos (Aldrian and Susanto 2003), partly induced by insola- climate pattern may occur again in the future, result- tionfluxes, forcing. which are mainly imposed by SST variability ing in a similar climate patternThis as was insolation-induced observed in the past. Hence, investigating the mechanisms that have Paleoclimate conditions in Indonesia, particularly been essential in the past may help in understanding during the Holocene, have been studied with proxies the future (Doe Hay However, an- by using lacustrine (Konecky Russell 2014) and marine sediment cores (e.g. Linsley the climatic pattern1983; on Earthet al. also 1997). in the future, in et al. 2013; et al. thropogenic influence, as observed today, may modify DIE ERDE · Vol. 150 · 4/2019 et al. 231 Climate Variability in Indonesia from 615 ka to present: First Insights from Low-Resolution Coupled Model Simulations particular in Indonesia. Facing global climate change, ice, and (4) land surface (Collins the average temperature changes are projected to version, the horizontal resolution of the atmosphere rise by 3°C in Indonesia by 2100 relative to the aver- et al. 2006). In this T31 - to 140 cm by 2080 (BAPPENAS 2011). Hence, future elsand in land the componentsvertical and isnominal 3.75° with horizontal 26 vertical resolution layers age temperature of 1990; sea level height may rise up- ofin 3°.the Improvements atmosphere. The of landocean hydrology grid consists parameteriza of 25 lev- soonal precipitation (Jourdain Pachauri tions (Oleson - environmental changes may lead to intensifiedCollins 2005), mon ous studies (e.g. Rachmayani Rachmayani and altered agricultural activitieset al. in Indonesia 2013; (Nay- et al. 2008) were carried out as in previ loret al. 2014), shifted El Niño conditions ( for biogeophysics, biogeochemistry,et al. 2015; the hydrological security and nutrients supply to local people. cycleet al. 2016).and a DGVM The land based model on the consists Lund–Potsdam–Jena of components et al. 2007) which will result in a hampered food (LPJ) model (Sitch Levis Bonan Effects of environmental changes can be determined and Levis et al. 2003; et al. 2004; are of pivotal importance to simulate future climate 2006). scenariosby using climateand to identify simulations. dynamics Thus, and climate forcing models mech- 2.2 Experimental setup anisms of climate phenomena in response to orbital forcing and greenhouse gases (GHG) in order to un- A control simulation of standard Pre-industria (PI) derstand how climatic phenomena are interconnected was performed following PMIP (Paleoclimate Model- in the past, present, and future. Moreover, neither one ling Intercomparison Project) guidelines with regard of interglacial climate simulations focusing on Indo- to the forcing (see e.g. Braconnot - nesia have been performed in previous studies using Earth system models of intermediate complexity or trace gas concentrations from the 18et al.th century 2007). ( TheTable 1 as) fully coupled atmosphere–ocean general circulation astronomical well as parametersPI distributions of PI inof 1950 atmospheric AD, atmospheric ozone, models. In addition, earlier interglacial periods have sulfate aerosols, and carbonaceous aerosols (Otto- attained much less attention by climate modellers. Bliesner –2 - tion, 1000et al. years 2006) of the were PI control considered run were along integrated with the solarstarting constant from modern set to 1365 initial Wm conditions,. To begin except the simula for the kaThe to aim present of this related study to isorbital to investigate forcing and the GHG climate con- centrationsevolution in byIndonesia using the on Community long time-scales Climate from System 615 - Model version 3 (CCSM3) including a dynamic global cialvegetation time-slice which experiments started from were bare executed, soil. Branchingeach run- vegetation model (DGVM) following the previous ningoff from for 400year years. 600 of Table the PI1 comprisesspin-up run, the 13 appointed intergla work of Rachmayani time slices according to the astronomical parameters study are expected to be useful as basic information (Berger to understand the climate,et al. (2016).especially The in results Indonesia of our for - the present and future. Moreover, this research indi- sols, carbonaceous 1978) and GHGaerosols, concentrations, and solar constant whereas were ice- rectly plays a role in alleviating the impacts of climate prescribedsheet configuration, as in the PIozone control distribution, run. Here, sulfate we used aero the change (disaster mitigation) which is in line with mean of the last 100 simulation years of every experi- the goals of the Intergovernmental Panel on Climate Change (IPCC). slices was discussed in Rachmayani timement slices for analysis. were categorized The selection into of three interglacial groups time ac- cording to the insolation patterns whichet al. (2016). diverge The in 2. Experimental setup their seasonal distribution of incoming energy (Rach- mayani 2.1 Model et al. 2016). Group I is composed of 6 and 9 ka- (MIS 1), 125 ka (MIS 5), 405 and 416 ka (MIS 11), 504 Yeager anomaly.ka (MIS 13), Group and 579II consists ka (MIS of 15) dates time 115 slices ka which (MIS re5), To investigate the Indonesian climate dynamics, we flected high northern hemisphere summer insolation circulationconducted low-resolutionmodel (CGCM) T31comprised version of (four compoet al.- showed anomalies with low boreal summer insola- nents2006) representing simulations with(1) atmosphere, the CCSM3 (2) coupled ocean, general(3) sea 495 and 516 ka (MIS 13), and 609 ka (MIS 15) which

232 tion. Group III includes datesDIE 394 ERDE and · Vol. 615 150 ka, · 4/2019which Climate Variability in Indonesia from 615 ka to present: First Insights from Low-Resolution Coupled Model Simulations are characterized by changes in the sign of the north- 3. Results and discussion ern hemisphere insolation anomalies from spring to summer (Rachmayani 3.1 Surface temperature

Table 1 Atmospheric greenhouse gas (GHG) concentration et al. 2016). Figure 1 displays surface temperature anomalies dur- used in the interglacial experiments. Source: Rach- mayani et al. (2016) ing boreal summer (June-July-August-September) in Indonesia for each time slice. Rachmayani Group Stage Time slice CO CH N O divided the time slices into three groups based on the 2 4 2 et al. (2016) classiLication* (ka) (ppmv) (ppbv) (ppbv) insolation (see Section 2.2). As in Rachmayani Control run MIS 1 0 280 760 270 - ature anomalies can largely be interpreted by localet al. in- I 6 280 650 270 (2016),solation in anomalies most of Indonesia, induced by seasonal the astronomical surface temper forc- I 9 265 680 260 Fig. 2 in Rachmayani However, for some time slices such as at mid-Holocene II MIS 5 115 273 472 251 ing (not shown; see et al. 2016). I 125 276 640 263 (6 ka), at 394 ka and at 615 ka, climate feedbacks may III MIS 11 394 275 550 275 Indonesia, most pronounced in open waters close to have modified the surface temperature response in I 405 280 660 285 I 416 275 620 270 the Indian Ocean and the Pacific Ocean. II MIS 13 495 240 487 249 The warmest SST anomaly of up to 1 K is in the Banda I 504 240 525 278 toSea -2 at K, 125 equally ka (MIS distributed 5) and 579 in kaIndonesian (MIS 15) comparedwaters, is II 516 250 500 285 to PI conditions. The coolest SST anomaly of down January, February), the local insolation anomaly con- I MIS 15 579 252 618 266 tributescaptured to at the495 most ka. During of moderate boreal wintercooling (December, over large II 609 259 583 274 III 615 253 617 274 - portions of land and waters of Indonesia at 6, 9, 125,Fig. * Group I: 2394,). A 405,warmer 416, winter 504, and surface 579 temperatureka with maximum is observed cool High northern hemisphere summer insolation anomaly ing at 579 ka of down to -2.5 K, compared to PI ( Group II: Low northern hemisphere summer insolation anomaly K compared to PI. Meanwhile, surface temperature at 115, 609, and 615 ka with an anomaly of about 0.5 Group III: Changes in the sign of the northern hemisphere spring to summer insolation anomaly Duringanomaly boreal at 516 summerka is small in compared the Holocene, to PI. an abrupt CCSM3 simulations were performed on the SGI Al- warming of surface temperature can be associated tix supercomputer of the Norddeutscher Verbund with a weakening of the Asian summer monsoon and für Hoch- und Höchstleistungsrechnen (HLRN), Hannover, Germany, through the Priority Research negative IOD-like mean states (Abram - a more southerly displaced ITCZ, probably reflecting with Linsley et al. 2009) in Programme INTERDYNAMIC (SPP 1266). The com- the Indian Ocean. By contrast, during winter, in line pute node details comprise of 960 eight-core central et al. (2010), SST experiences a cooling processing unit (CPU) sockets sharing 48 GB of ran andduring associated the early monsoonal Holocene precipitation(9 ka) related as to discussed seasonal nodes.dom access memory (RAM). The total memory used inmigration Fan to a more northerly position of the ITCZ- in Hannover was 45 TB with 7680 internal service soon corresponding to a more positive IOD-like mean The computation time to run one single 1000 state inet al. the (2013)Indian andOcean a strong (Abram Asian summer mon years paleoclimate simulation by using the T31 low feedback mechanism such as an eastward shift of resolution of CCSM3-DVGM was ~5–6 days. et al. 2009). Some-

anthe upward Western mixing Pacific of Warm cold subsurface Pool (WPWP) waters or intensiwithin thefied Indonesian ENSO may waters contribute as suggested to the cooling by Rosenthal along with

DIE ERDE · Vol. 150 · 4/2019 et al.233 Climate Variability in Indonesia from 615 ka to present: First Insights from Low-Resolution Coupled Model Simulations

(2013). Here, we hypothesize that a similar phenom- -

WPWP.enon happened at 125, 416, 504, and 579 ka associ ated with a stronger change of ITCZ and larger shifted 5

0

−5 Latitude [°] 6−PI 9−PI 115−PI −10 (I) (I) (II)

5

0

−5 Latitude [°] 125−PI 394−PI 405−PI −10 (I) (III) (I)

5

0

−5 Latitude [°] 416−PI 495−PI 504−PI −10 (I) (II) (I)

5

0

−5 Latitude [°] 516−PI 579−PI 609−PI −10 (II) (I) (II) 100 110 120 130 140 100 110 120 130 140 Longitude [°] 5 Longitude [°]

0

−5 Latitude [°] 615−PI −10 (III) 100 110 120 130 140 Longitude [°]

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 Summer Surface−Temperature Anomaly (Kelvin) Fig. 1 Boreal summer (June–September) surface temperature anomalies (relative to Pre-industrial times, PI) for the different in- terglacial time slices (numbers are given in 1000 yrs). Classification as Groups I, II, and III according to Table 1 is indicated. Source: own elaboration

234 DIE ERDE · Vol. 150 · 4/2019 Climate Variability in Indonesia from 615 ka to present: First Insights from Low-Resolution Coupled Model Simulations

5

0

−5 Latitude [°] 6−PI 9−PI 115−PI −10 (I) (I) (II)

5

0

−5 Latitude [°] 125−PI 394−PI 405−PI −10 (I) (III) (I)

5

0

−5 Latitude [°] 416−PI 495−PI 504−PI −10 (I) (II) (I)

5

0

−5 Latitude [°] 516−PI 579−PI 609−PI −10 (II) (I) (II) 100 110 120 130 140 100 110 120 130 140 Longitude [°] 5 Longitude [°]

0

−5 Latitude [°] 615−PI −10 (III) 100 110 120 130 140 Longitude [°]

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 Winter Surface−Temperature Anomaly (Kelvin)

Fig. 2 As in Figure 1, but for boreal winter (December–February). Note: White area in the panel for 579-PI indicates values below -2.5 K. Source: own elaboration

3.2 Precipitation wet phase as an extension of the monsoon belt from northern Africa to India, via the Arabian Peninsula as discussed in Rachmayani presented in Figure 3 the two regions evidence dry conditions in Group II Borealin the northwestsummer (JJAS) and easternprecipitation region over of IndonesiaIndonesia inis with low boreal summer et al.insolation (2016). due Contrastingly, to a preces- Group I as a response. It to illustrates the high summerintensified insolation rainfall sion maximum (Rachmayani and Group III due to internal feedbacks. It reaches interesting part in this study, a dipole and tripole precipitation pattern is capturedet al. in 2016).the western The mostpart - ciatedthe maximum with low rainfall precession anomaly values at about(Rachmayani 3.6 mm/day eastern part of Indonesian waters during boreal sum- at 125, 504 and 579 ka compared to PI. This is asso mer.of Indonesian waters, Indian Ocean to Banda Sea and et al. 2016).DIE ERDE In · addition,Vol. 150 · 4/2019 these two regions experienced a 235 Climate Variability in Indonesia from 615 ka to present: First Insights from Low-Resolution Coupled Model Simulations

5

0

−5 Latitude [°] 6−PI 9−PI 115−PI −10 (I) (I) (II)

5

0

−5 Latitude [°] 125−PI 394−PI 405−PI −10 (I) (III) (I)

5

0

−5 Latitude [°] 416−PI 495−PI 504−PI −10 (I) (II) (I)

5

0

−5 Latitude [°] 516−PI 579−PI 609−PI −10 (II) (I) (II) 100 110 120 130 140 100 110 120 130 140 Longitude [°] 5 Longitude [°]

0

−5 Latitude [°] 615−PI −10 (III) 100 110 120 130 140 Longitude [°]

−3.6 −3 −2.4 −1.8 −1.2 −0.6 0 0.6 1.2 1.8 2.4 3 3.6 Summer Precipitation Anomaly (mm/day)

Fig. 3 As in Figure 1, but for precipitation. Source: own elaboration

As investigated in many studies, the tropical climate the monsoonal system (Gadgil Wang of Indonesia is controlled by t - ENSO (Philander ian–Indonesian monsoon system on a seasonal scale located farther south during El 2003;Niño and farther 2009) north and (Robertson he ITCZ andDai theand Austral Wigley during La Niña (Philander 1985). The positionSchneider of the ITCZ being 2000) and IOD (Saji Webster - et al. 2011), and ENSO ( donesia and eastern part 1985;of Indonesia is alsoet al. associ 2014).- is strongly controlledet al. by 1999;insolation (Wanneret al. 1999) atedThe intensifiedwith the WPWP. rainfall It isin characterizedthe northwest by region the warm of In- 2008)on an and interannual oceanic scale.energy The transport position (Broccoli of the ITCZ et al.- largest heat reservoir on Earth providing water vapor ture contrast (Chiang and Friedman 2012). Moreover,et al. andest SST latent (in heatthe Pacificto the atmosphere Ocean) and it(Chen is known as the it2006), is tightly which coupled affects to the large-scale interhemisphere phenomena tempera like Cravatte et al. 2004; et al. 2009) influencingDIE ERDE the ·tropical Vol. 150 ·climate 4/2019

236 Climate Variability in Indonesia from 615 ka to present: First Insights from Low-Resolution Coupled Model Simulations system such as in Indonesia at dates in Group I and ways) adopted by the IPCC are needed to project the future climate dynamics in Indonesia. - Groupsoonal III.system By contrast (wind strength, in Group precipitation II, the shifted intensity WPWP causesand the a onsetreduction of the of rainyrainfall season) in Indonesia. over Indonesia The mon is Acknowledgments

R. R. acknowledges the funding support from Deutsche oceaninfluenced movements by interannual of rainfall climate during from the the interglacials Indian and Forschungsgemeinschaft (DFG) within the COmparison of arePacific likely Oceans. affected Monsoon by the orbitalstrength parameters changes and and land– inso- INterglacials (COIN) project, grant number PR 1050/1-2 lation gradient resulting in changes in the meridional during her research period in Germany. Moreover, we ac- temperature gradient (e.g. Mohtadi

knowledge support received from the Institut Teknologi et al. 2016). - Bandung via their Program Penelitian dan Pengabdiaan 4. Conclusions nology, and Higher Education (Kemenristekdikti) of the Re- Masyarakat (P3MI) and from Ministry of Research, Tech public of Indonesia under the research program of Peneli- Since past climate variability in Indonesia is mostly studied by using proxies, this study is an attempt to tian Dasar Unggulan Perguruan Tinggi (PDUPT) 2019. investigate the climate variability in Indonesia by us- ing the fully coupled CCSM3-DGVM climate model. References - gion were analyzed with respect to climate variabil- Abram, N.J., H.V. McGregor, M.K. Gagan, W.S. Hantoro and B.W. ityThirteen between interglacial and within time Quaternary slices of the interglacials. Indonesia Were Suwargadi focused on the local and regional climate feedbacks - 2009: Oscillations in the southern extent of the which may modify the climate variability from the ex- ternary Science Reviews 28 Indo-Pacific warm pool during the mid-Holocene. – Qua ternal forcing of insolation and GHG concentrations. : 2794-2803, doi:10.1016/j. Aldrian, E. and R. Susanto - quascirev.2009.07.006 to the rainfall pattern in Indonesia involve the posi- nant rainfall regions within Indonesia and their relation- 2003: Identification of three domi The climate feedbacks that play a role in contributing- ship to sea surface temperature. – International Journal al system, and the WPWP. Compared to the past inter- of 23 glacials,tion of the the ITCZ, present the globalAustralian–Indonesian climate pattern and monsoon its near Ayliffe, L.K., M.K. Gagan, J.-X. Zhao, R.N. Drysdale, J.C. Hell- : 1435-1452, doi:10.1002/joc.950 strom, W.S. Hantoro, M.L. Griffiths, H. Scott-Gagan, E.S. and MIS 5 climate patterns. Periodic variations in the Pierre, J.A. Cowley and B.W. Suwargadi 2013: Rapid inter- future has similarities with the MIS 19, MIS 11, MIS 9 hemispheric climate links via the Australasian mon- - soon during the last deglaciation. – Nature Communica- distributionence them in of the insolation future. Facing strongly global influenced climate climaticchange, tions 4 patternsthe average on temperatureEarth in the past,is projected present to and rise will by 3°Cinflu in BAPPENAS (National Development Planning Agency) 2011: : 2908-2914, doi:10.1038/ncomms3908 Indonesia by 2100 relative to the average temperature Indonesia adaptation strategy improving capacity to adapt. – Online available at: https://www.bappenas. by 2080. Hence, future environmental changes may - in 1990, while sea level height may rise up to 140 cm go.id/files/6414/1171/7069/INDONESIA_ADAPTA El Niño conditions, and altered agricultural activi- TION_STRATEGY_-_Improving_Capacity_to_Adapt.pdf. – tieslead in to Indonesia, intensified resulting monsoonal in hampered precipitation, food security shifted Berger, A. accessed 07/03/2019 and nutrients supply to local people. With increasing and quaternary climatic changes. – Journal of the At- 1978: Long-term variations of daily insolation computer power, long-term simulations of interglacial mospheric Sciences 35 climates will become more common. Simulations with : 2362-2367, doi:10.1175/1520- a higher spatial resolution of the model will help to Braconnot, P., B. Otto-Bliesner, S. Harrison, S. Joussaume, J.-Y. 0469(1978)035<2362:LTVODI>2.0.CO;2. Peterchmitt, A. Abe-Ouchi, M. Crucifix, E. Driesschaert, T. complexity of interglacial climate variability in Indo- Fichefet, C.D. Hewitt, M. Kageyama, A. Kitoh, A. Laîné, M.-F. nesiadevelop during a significantly the past to deeperinvestigate understanding climate variation of the Loutre, O. Marti, U. Merkel, G. Ramstein, P. Valdes, S.L. We- of various regions in Indonesia. In addition, simula- ber, Y. Yu and Y. Zhao - tions with various GHG concentration trajectories by ulations of the mid-Holocene and last glacial maximum 2007: Results of PMIP2 coupled sim using the RCPs (Representative Concentration Path- – Part 1: experiments and large-scale features. – Climate

DIE ERDE · Vol. 150 · 4/2019

237 Climate Variability in Indonesia from 615 ka to present: First Insights from Low-Resolution Coupled Model Simulations

of the Past 3: Ayliffe, J.C. Hellstrom, W.S. Hantoro, S. Frisia, Y.-X. Feng, Bonan, G.B. and S. Levis - I. Cartwright, E.S. Pierre, M.J. Fischer and B.W. Suwargadi 261-277, doi:10.5194/cp-3-261-2007 munity Land and Atmosphere Models (CLM3 and CAM) - 2006: Evaluating aspects of the Com using a dynamic global vegetation model. – Journal of Cli- fall linked to early Holocene sea level rise. – Nature Geo- 2009: Increasing Australian–Indonesian monsoon rain mate 19 science 2 Broccoli, A.J., K.A. Dahl and R.J. Stouffer Griffiths, M.L., R.N. Drysdale, M.K. Gagan, S. Frisia, J.-X Zhao, : 2290-230, doi:10.1175/JCLI3741.1 : 636-639, doi:10.1038/ngeo605 - L.K. Ayliffe, W.S. Hantoro, J.C. Hellstrom, M.J. Fischer, Y.-X. 2006: Response of the search Letters 33 Feng and B.W. Suwargadi 2010: Evidence for Holocene ITCZ to northern hemisphere cooling. – Geophysical Re Chiang, J.C. and A.R. Friedman 2012: Extratropical cooling, changes in Australian–Indonesian monsoon rainfall : L01702 doi:10.1029/2005GL024546 interhemispheric thermal gradients, and tropical climate from stalagmite trace element and stable isotope ra- change. – Annual Review of Earth and Planetary Sciences tios. – Earth and Planetary Science Letters 292 40: : 27-38, Chen, G., C. Fang, C. Zhang and Y. Chen 2004: Observing the Hay, W., R.M. DeConto and C.N. Wold 383-412, doi:10.1146/annurev-earth-042711-105545 doi:10.1016/j.epsl.2010.01.002 coupling effect between warmpool and “rain pool” in the past key to the future? – Geologische Rundschau 86 1997: Climate: Is the 91: 153- : 471- Jourdain, N.C., A.S. Gupta, A.S. Taschetto, C.C. Ummenhofer, Pacific Ocean. – Remote Sensing of Environment 491, doi:10.1007/s005310050155 Collins, M. 2005: El Niño- or La Niña-like climate change? – A.F. Moise and K. Ashok - 159, doi:10.1016/j.rse.2004.02.010 Climate Dynamics 24: soon and its relationship to ENSO and IOD in reanalysis 2013: The Indo-Australian mon data and the CMIP3/CMIP5 simulations. – Climate Dy- 89-104, doi:10.1007/s00382-004- Collins, W.D., C.M. Bitz, M.L. Blackmon, G.B. Bonan, C.S. namics 41 0478-x Bretherton, J.A. Carton, P. Chang, S.C. Doney, J.J. Hack, T.B. Konecky, B.L., J.M. Russell, J.R. Rodysill, M. Vuille, S. Bijaksana : 3073-3102, doi:10.1007/s00382-013-1676-1 Henderson, J.T. Kiehl, W.G. Large, D.S. McKenna, B.D. Santer and Y. Huang - and R.D. Smith nesian rainfall over the past millennium. – Geophysical Re- 2013: Intensification of southwestern Indo Model version 3 (CCSM3). – Journal of Climate 19: 2122- search Letters 40 2006: The Community Climate System Kuhnt, W., A. Holbourn, J. Xu, B. Opdyke, P. De Deckker, U. Röhl : 386-391, doi:10.1029/2012GL054331 Cravatte, S., T. Delcroix, D. Zhang, M. McPhaden and J. Leloup and M. Mudelsee 2015: Southern hemisphere control on 2143, doi:10.1175/JCLI3761.1 - Australian monsoon variability during the late deglacia- 33 tion and Holocene. – Nature Communications 6 2009: Observed freshening and warming of the west ern Pacific warm pool. – Climate Dynamics : 565-589, : 5916, Dai, A. and T.M. Wigley 2000: Global patterns of ENSO-in- Kwiatkowski, C., M. Prange, V. Varma, S. Steinke, D. Hebbeln doi:10.1007/s00382-009-0526-7 doi:10.1038/ncomms6916 duced precipitation. – Geophysical Research Letters 27: and M. Mohtadi 2015: Holocene variations of thermocline conditions in the eastern tropical Indian Ocean. – Qua- De Deckker, P. ternary Science Reviews 114 - 1283-1286, doi:10.1029/1999GL011140 to world oceanography and world climate. – Geoscience cirev.2015.01.028 2016: The Indo-Pacific warm pool: critical : 33-42, doi:10.1016/j.quas Letters 3 Linsley, B.K., Y. Rosenthal and D.W. Oppo 2010: Holocene Doe, B.R. - - : 20 doi:10.1186/s40562-016-0054-3 chimica et Cosmochimica Acta 47 (8): 1341-1354, 3 1983: The past is the key to the future. – Geo evolution of the Indonesian throughflow and the west ern Pacific warm pool. – Nature Geoscience : 578-583, Dubois, N., D.W. Oppo, V.V. Galy, M. Mohtadi, S. van der Kaars, Lisiecki, L.E. and M.E. Raymo 2005: A pliocene-pleistone doi:10.1016/0016-7037(83)90293-4 doi:10.1038/ngeo920 J.E. Tierney, Y. Rosenthal, T.I. Eglinton, A. Luckge and B.K. stack of globally distributed benthic 18O records. – Linsley 2014: Indonesian vegetation response to changes Paleoceanography and Paleoclimatology 20: PA1003, in rainfall seasonality over the past 25,000 years. – Na- ture Geoscience 7 doi:10.1038/ngeo2182 Levis, S., G.B. Bonan, M. Vertenstein and K.W. Oleson 2004: doi:10.1029/2004PA001071 Fan, W., Z. Jian, F. Bassinot and Z. Chu 2013: Holocene cen- : 513-517, tennial-scale changes of the Indonesian and South China The Community Land Models Dynamic Global Vegetation - Model (CLM-DGVM): Technical Description and User’s Global and Planetary Change 111 der Sea throughflows: Evidences from the Makassar Strait. – Guide, NCAR Technical Note NCAR/TN-459+IA. – Boul Mohtadi, M., D.W. Oppo, A. Lückge, R. DePol-Holz, S. Steinke, : 111-117, doi:10.1016/j. Gadgil, S. J. Groeneveld, N. Hemme and D. Hebbeln 2011a: Recon- gloplacha.2013.08.017 Annual Review of Earth and Planetary Sciences 31 structing the thermal structure of the upper ocean: In- 2003: The Indian monsoon and its variability. – sights from planktic foraminifera shell chemistry and : 429- Griffiths, M.L., R.N. Drysdale, M.K. Gagan, J.-X. Zhao, L.K. alkenones in modern sediments of the tropical eastern 467, doi:10.1146/annurev.earth.31.100901.141251

238 DIE ERDE · Vol. 150 · 4/2019 Climate Variability in Indonesia from 615 ka to present: First Insights from Low-Resolution Coupled Model Simulations

Indian Ocean. – Paleoceanography and Paleoclimatology Atmospheric Sciences 42 26 : 2652-2662, doi:10.1175/1520- Mohtadi, M., D.W. Oppo, S. Steinke, J.-B. Stuut, R. De Pol-Holz, D. Rachmayani, R., M. Prange and M. Schulz 2015: North African : PA3219, doi:10.1029/2011PA002132. 0469(1985)042<2652:ENALN>2.0.CO;2 Hebbeln and A. Luckge 2011b: Glacial to Holocene swings vegetation–precipitation feedback in early and mid-Hol- of the Australian-Indonesian monsoon. – Nature Geosci- ocene climate simulations with CCSM3-DGVM. – Climate ence 4: 540-544, doi:10.1038/ngeo1209 of the Past 11 Mohtadi, M., M. Prange and S. Steinke - Rachmayani, R., M. Prange and M. Schulz - : 175-185, doi:10.5194/cp-11-175-2015 sights into forcing and response of monsoon rainfall. – Na- glacial climate variability: Model simulations of marine 2016: Palaeoclimatic in 2016: Intra-inter ture 533 isotope stages 1, 5, 11, 13, and 15. – Climate of the Past Naylor, R.L., D.S. Battisti, D.J. Vimont, W.P. Falcon and M.B. 12 : 191-199, doi:10.1038/nature17450 Burke - Rasmusson, E.M. and T.H. Carpenter : 677-695, doi:10.5194/cp-12-677-2016 mate change for Indonesian rice agriculture. – Proceed- tropical sea surface temperature and surface wind 2007: Assessing risks of climate variability and cli 1982: Variations in ings of the National Academy of Sciences 104 El Niño. – Monthly Weather Review 110: 354-384, : 7752-7757, fields associated with the Southern Oscillation/ Niedermeyer, E.M., A.L. Sessions, S.J. Feakins and M. Mohtadi doi:10.1073/pnas.0701825104 doi:10.1175/1520-0493(1982)110<0354:VITSST>2.0. pool during the past 24,000 years. – Proceedings of Robertson, A., V. Moron, J.-H. Qian, C.P. Chang, F. Tangang, E. 2014: Hydroclimate of the western Indo-Pacific warm CO;2 the National Academy of Sciences 111 Aldrian, T.Y. Koh and L. Juneng - nent monsoon. – In: Chang, C. P., Y. Ding, N. C. Lau, R. John- : 9402-9406, 2011: The maritime conti Oleson, K.W., G.Y. Niu, Z.L. Yang, D.M. Lawrence, P.E. Thorn- son, B. Wang and T. Yasunari doi:10.1073/pnas.1323585111 ton, P.J. Lawrence, R. Stockli, R.E. Dickinson, B. Bonan, S. System – Research and Forecast. – Singapore (Hrsg.): The Global Monsoon Levis, A. Dai and T. Qian 2008: Improvements to the com- Rosenthal, Y., B.K. Linsley and D.W. Oppo munity land model and their impact on the hydrological heat content during the past 10,000 years. – Science 342: 2013: Pacific ocean cycle. – Journal of Geophysical Research 113: G01021, Russell, J.M., H. Vogel, B.L. Konecky, S. Bijaksana, Y. Huang, M. 617-621, doi:10.1126/science.1240837 Otto-Bliesner, B.L., R. Tomas, E.C. Brady, C. Ammann, Z. Melles, N. Wattrus, K. Costa and J.W. King 2014: Glacial doi:10.1029/2007JG000563 Kothavala and G. Clauzet moderate and low–resolution versions of CCSM3 to pre- 2006: Climate sensitivity of forcing of central Indonesian hydroclimate since 60,000 industrial forcings. – Journal of Climate 19 111 y B.P. – Proceedings of the National Academy of Sciences Saji, N.H., B.N. Goswami, P.N. Vinayachandran and T. Yama- : 2567-2583, : 5100-5105, doi:10.1073/pnas.1402373111 Pachauri, R.K., M.R. Allen, V. Barros, J. Broome, W. Cramer, gata doi:10.1175/JCLI3754.1 R. Christ, J. Church, L. Clarke, Q. Dahe, P. Dasgupta, N.K. – Nature 401 1999: A dipole mode in the tropical Indian Ocean. Dubash, O. Edenhofer, I. Elgizouli, C.B. Field, P. Forster, P. Schneider, T., T. Bischoff and G.H. Haug 2014: Migrations and : 360-363, doi:10.1038/43854 Friedlingstein, J. Fuglestvedt, L. Gomez-Echeverri, S. Halle- dynamics of the intertropical convergence zone. – Nature gatte, G. Hegerl, M. Howden, K. Jiang, B. Jimenez Cisneroz, V. 513 Kattsov, H. Lee, K.J. Mach, J. Marotzke, M.D. Mastrandrea, L. Sitch, S., B. Smith, I.C. Prentice, A. Arneth, A. Bondeau, W. Cram- : 45-53, doi:10.1038/nature13636 Meyer, J. Minx, Y. Mulugetta, K. O‘Brien, M. Oppenheimer, J.J. er, J.O. Kaplan, S. Levis, W. Lucht, M.T. Sykes, K. Thonicke Pereira, R. Pichs-Madruga, G.K. Plattner, H.O. Pörtner, S.B. and S. Venevsky 2003: Evaluation of ecosystem dynamics, Power, B. Preston, N.H. Ravindranath, A. Reisinger, K. Riahi, plant geography and terrestrial carbon cycling in the LPJ M. Rusticucci, R. Scholes, K. Seyboth, Y. Sokona, R. Stavins, 9: T.F. Stocker, P. Tschakert, D. van Vuuren and J.P. van Ypserle dynamic vegetation model. – Global Change 2014: Climate change 2014: Synthesis report. Contribu- Steinke, S., M. Mohtadi, M. Prange, V. Varma, D. Pittauerova 161-185, doi:10.1046/j.1365-2486.2003.00569.x and H.W. Fischer 2014: Mid- to late-Holocene Austral- report of the intergovernmental panel on climate change. ian–Indonesian summer monsoon variability. – Quater- tion of working groups I, II and III to the fifth assessment – Online available at: https://www.ipcc.ch/site/assets/ nary Science Reviews 93 -

: 142-154, doi:10.1016/j.quasci Tierney, J.E., D.W. Oppo, A.N. LeGrande, Y. Huang, Y. Rosenthal uploads/2018/02/SYR_AR5_FINAL_full.pdf – accessed rev.2014.04.006 Partin, J.W., K.M. Cobb, J.F. Adkins, B. Clark and D.P. Fernandez and B.K. Linsley - 07/03/2019 mospheric circulation on warm pool hydroclimate during 2012: The influence of Indian ocean at hydrology since the last glacial maximum. – Nature 449: the Holocene epoch. – Journal of Geophysical Research: 2007: Millennial-scale trends in west Pacific warm pool Atmospheres 117 Philander, S.G. Wang, P. 452-455, doi:10.1038/nature06164 : D19108, doi:10.1029/2012JD018060 1985: El Niño and La Niña. – Journal of the 2009: Global monsoon in a geological perspective. DIE ERDE · Vol. 150 · 4/2019

239 Climate Variability in Indonesia from 615 ka to present: First Insights from Low-Resolution Coupled Model Simulations

54 9 – Chinese Science Bulletin , 1113-1136, doi:10.1007/ vanna in equatorial Borneo during the late Pleistocene. Wanner, H., J. Beer, J. Bütikofer, T.J. Crowley, U. Cubasch, J. s11434-009-0169-4 – Scientific Reports : 6392 doi:10.1038/s41598-019- Flückiger, H. Goosse, M. Grosjean, F. Joos, J.O. Kaplan, M. Wyrtki, K., 42670-4 Küttel, S.A. Müller, I.C. Prentice, O. Solomina, T.F. Stocker, Asian Waters. – Online available at: https://escholarship. 1961: Physical Oceanography of the Southeast P. Tarasov, M. Wagner and M. Widmann 2008: Mid- to late Holocene climate change: an overview. – Quaternary Yeager, S.G., C.A. Shields, W.G. Large and J.J. Hack 2 org/uc/item/49n9x3t4 – accessed 07/03/2019 Science Reviews 27 - low-resolution CCSM3. – Journal of Climate 19: 2545- 006: The 10.1175/JCLI3744.1 , 1791-1828, doi:10.1016/j.quasci Webster, P.J., A.M. Moore, J.P. Loschnigg and R.R. Leben Yin, Q.Z. and A. Berger 2015: Interglacial analogues of the rev.2008.06.013 2566, doi: Coupled ocean-atmosphere dynamics in the Indian Ocean Holocene and its natural near future. – Quaternary 1999: 401 10.1038/43848 Science Reviews 120: Wurster, C.M., H. Rifai, B. Zhou, J. Haig and M.I. Bird - 2015.04.008 during 1997-98. – Nature : 356-360, doi: 28-46, doi:10.1016/j.quascirev. 2019: Sa

240 DIE ERDE · Vol. 150 · 4/2019