The Mechanism of Hydrophilic and Hydrophobic Colloidal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hydrophobic Silica Fumed & Precipitated
AMSil Hydrophobic Silica Fumed & Precipitated www.appliedmaterialsolutions.com About AMS Applied Material Solutions offers high quality antifoam products, treated silicas, chemicals, and excellent customer service. AMS is the parent company of the Trans-Chemco “TCI Foam Control” brand, Performance Process Inc. (PPI), and Nottingham Company. In 1991, Performance Process, Inc. (PPI) was founded in improvements in mechanical and optical properties, pigment Mundelein, Illinois to produce fumed and precipitated treated stabilization and dispersion, and print definition. In addition, silicas. Nine years later we installed a new state-of-the-art improvements are achieved when it is used for processability, treated silica production unit at our Nottingham Company hydrophobicity control, thickening, thixotropy, rheology control, facility in Atlanta, Georgia, which more than doubled our and suspension and stability behavior. capacity and reduced delivery time for our customers in the Southeast. In 2015, AMS purchased PPI, and in 2016 we Excellent Quality expanded our silica production and consolidated facilities to The foundation of every product we develop is its formulation, our Burlington, WI plant. and ours lead the industry in accuracy, consistency and performance. In our cutting edge laboratory we have the Applications equipment needed to ensure that procedures are followed Our fumed and precipitated silicas are used in a wide range meticulously while testing and regulating our formulations. Our of applications that include adhesives, agriculture, cable gels, attention to detail throughout the process results in substantial coatings, cosmetics, defoamers, fire extinguishers, foods, savings for our customers in both time and costs. greases, inks, paints, plastics, polyester resins, silicone rubber, silicone sealants, toners, and more. -
Bernard P. Binks Surfactant & Colloid Group Department of Chemistry University of Hull Hull
COLLOIDAL PARTICLES AS EMULSION AND FOAM STABILISERS Bernard P. Binks Surfactant & Colloid Group Department of Chemistry University of Hull Hull. HU6 7RX. U.K. bubbles films drops 1 mm COLLOIDAL PARTICLES: nm - mm Particles may be surface-active Exception: but not amphiphilic Janus particles oil/air water HYDROPHILIC HYDROPHOBIC silica clay (disk) polymer latex carbon ADSORPTION OF PARTICLES AT FLUID INTERFACES Free energy gain by losing an area of fluid-fluid interface hydrophilic hydrophobic 3000 oil/air oil/air DG r2 1 cosq 2 2000 q q DG/kT water water r = 10 nm, 1000 = 36 mN m-1 0 0 30 60 90 120 150 180 q/o Particles strongly held at interfaces: irreversibly adsorbed Contact angle is particle equivalent of surfactant HLB number Planar air & oil-water interfaces Simple emulsions air/oil oil water water cleaning of apples SOLID PARTICLES mayonnaise AT LIQUID flotation of ores INTERFACES crude oil oil air water water water or oil Foams Multiple emulsions Surface modification of silica particles hydrophilic hydrophobic H3C H CH3 H O Si H Cl O Si Cl Si O Si DCDMS H SiO2 SiO2 O Si Si O O HCl H H Formationq < 10o of planar monolayers q = 60o - 160o (oil-water) monodisperse precipitatedCCD amorphouscamera silica particles VCR particles in isopropyl alcohol 3 particle density: 2 g/cm microscope computer particle diameter: 1 or 3 mm + image analysis oil (air) software Petri dish water particle monolayer Planar Monolayers 1 mm monodisperse silica particles octane-water interface q disordered monolayers ordered monolayers q 50 mm 50 mm 50 mm 50 mm q = 70o q = 115o q = 129o q = 150o Planar Monolayers 3 mm silica particles at octane-water hydrophilic pH = 5.7 hydrophobic no salt q = 65o no salt q =152o due to charges at particle-oil surface? oil loose aggregates L water 28 mm 50 mm repulsion through water long-range repulsion through oil Optical tweezers: close-packed aggregates Coulombic L-4 repulsive force 50 mm 10 mM NaCl 100 mM NaCl Spencer U. -
The Effect of Nanoparticle Hydrophobicity on the Rheology of Highly Concentrated Emulsions
The Effect of Nanoparticle Hydrophobicity on the Rheology of Highly Concentrated Emulsions N.N. Tshilumbu*, I. Masalova Department of Civil Engineering, Faculty of Engineering, Cape Peninsula University of Technology, PO Box 652, Cape Town 8000, Republic of South Africa * Corresponding author: [email protected] Fax: x27.21.4603990 Received: 18.2.2013, Final version: 7.8.2013 Abstract: A series of fumed silica nanoparticles were used as an additional emulsifier for highly concentrated (HC) water- in-oil (W/O) emulsions. These nanoparticles, with different hydrophobicity index (HI) in the 0.60 – 1.34 and HI >3 range, were mixed with the conventional low molecular weight surfactant, sorbitan monooleate (SMO), in the oil phase prior to the emulsification process. The rheological properties of these emulsions were measured and compared with the properties of emulsions stabilized with SMO alone. In the mixed emulsifier system, the changes in rheological parameters were clearly expressed as a function of HI. The mixture of silica nanoparti - cles and SMO significantly increases the yield stress and plateau modulus of fresh emulsion, compared to the SMO only system. The effect was found to be more pronounced with a decrease in the HI. This is probably relat - ed to the reduction in micelle content with the decrease in HI, owing to a concomitant increase in the amount of SMO adsorbed onto the particle surface. Then, interestingly, the Foudazi-Masalova model recently developed for surfactant-stabilized highly concentrated emulsions (HCE) was found to describe successfully the rheologi - cal behavior of emulsions in the presence of a mixture of surfactant and fumed nanosilica. -
Silica White Paper (PDF)
Jeff Cameron, P.E., Amy Blain, P.E. – To: Date: June 6, 2014 City of Longview Stephen Booth, Ph.D., Distribution System Water Quality Evaluation From: Melinda Friedman, P.E. – Project: Confluence Cc: Subject: Final – Silica White Paper 1 INTRODUCTION AND OBJECTIVES Since switching sources of supply from the surface water treated at the Filter Plant on Fishers Lane to a ground water supply treated at the new Mint Farm Regional Water Treatment Plant (MFRWTP), the City of Longview has received complaints due to white spot formation. The spots seem to be formed upon evaporation of water drops on the exterior of cars, plumbing fixtures, and kitchenware. Investigations conducted to date have shown that the white spots consist largely of silica and to a lesser degree calcium carbonate and other minerals. Although the MFRWTP water has a higher hardness level compared to the Cowlitz River source, it is classified as Moderately Hard on most hardness scales. The nature and degree of white spotting is not consistent with other ground waters with a hardness of approximately 90-100 mg/L as CaCO3 (calcium carbonate). Additional study has indicated that elevated silica levels in the ground- water supply (50 mg/L as SiO2 (silicon dioxide)) is the primary cause of the white spotting. The purpose of this white paper is to present background information on silica chemistry, to summarize information concerning silica treatment alternatives, and to discuss potential silica deposit modification alternatives. This document is not intended as an exhaustive review of the literature pertaining to silica, but rather as an overview of the key aspects of silica chemistry that may provide insights on the feasibility of removing silica from the water and methods customers of the City of Longview could use to reduce white spotting. -
Silica Nanoparticle-Based Coatings with Superhydrophilic and Superhydrophobic Properties Robert Andrew Fleming University of Arkansas, Fayetteville
University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 12-2012 Silica Nanoparticle-Based Coatings with Superhydrophilic and Superhydrophobic Properties Robert Andrew Fleming University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Electro-Mechanical Systems Commons, Nanoscience and Nanotechnology Commons, and the Polymer and Organic Materials Commons Recommended Citation Fleming, Robert Andrew, "Silica Nanoparticle-Based Coatings with Superhydrophilic and Superhydrophobic Properties" (2012). Theses and Dissertations. 580. http://scholarworks.uark.edu/etd/580 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. SILICA NANOPARTICLE-BASED COATINGS WITH SUPERHYDROPHILIC AND SUPERHYDROPHOBIC PROPERTIES SILICA NANOPARTICLE-BASED COATINGS WITH SUPERHYDROPHILIC AND SUPERHYDROPHOBIC PROPERTIES A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering By Robert A. Fleming University of Arkansas Bachelor of Science in Mechanical Engineering, 2009 December 2012 University of Arkansas ABSTRACT Superhydrophilic and superhydrophobic surfaces have potential for implementation into a variety of fields, including self-cleaning surfaces, anti-fogging transparent materials, and biomedical applications. -
FW: Seabrook Attachments: Alkali-Silica Reaction 5571E6f008ae7536374c6022.Pdf
SeabrookLANPEm Resource From: Morante, Richard J <[email protected]> Sent: Tuesday, October 24, 2017 3:28 PM To: Lehman, Bryce Subject: [External_Sender] FW: Seabrook Attachments: Alkali-Silica Reaction 5571e6f008ae7536374c6022.pdf From: Morante, Richard J Sent: Monday, July 18, 2016 11:47 AM To: Braverman, Joseph I Subject: Seabrook Joe, For your information. Rich 1 Hearing Identifier: Seabrook_LA_NonPublic Email Number: 162 Mail Envelope Properties (4909515901062646BE47A0C16E45C8673755A297) Subject: [External_Sender] FW: Seabrook Sent Date: 10/24/2017 3:27:35 PM Received Date: 10/24/2017 3:28:12 PM From: Morante, Richard J Created By: [email protected] Recipients: "Lehman, Bryce" <[email protected]> Tracking Status: None Post Office: EXMB3.bnl.gov Files Size Date & Time MESSAGE 175 10/24/2017 3:28:12 PM Alkali-Silica Reaction 5571e6f008ae7536374c6022.pdf 2107918 Options Priority: Standard Return Notification: No Reply Requested: No Sensitivity: Normal Expiration Date: Recipients Received: Cement and Concrete Research 76 (2015) 130–146 Contents lists available at ScienceDirect Cement and Concrete Research journal homepage: http://ees.elsevier.com/CEMCON/default.asp Alkali–silica reaction: Current understanding of the reaction mechanisms and the knowledge gaps Farshad Rajabipour a,⁎, Eric Giannini b, Cyrille Dunant c, Jason H. Ideker d, Michael D.A. Thomas e a Dept. of Civil and Environmental Engineering, Pennsylvania State University, University Park, PA 16802, USA b Dept. of Civil, Construction, and Environmental Engineering, The University -
Hydrophobic Silica Nanoparticles As Reinforcing Filler for Poly (Lactic Acid) Polymer Matrix
Hydrophobic silica nanoparticles as reinforcing filler for poly (lactic acid) polymer matrix Branka M. Pilić1, Tanja I. Radusin2, Ivan S. Ristić1, Clara Silvestre3, Vera L. Lazić1, Sebastian S. Baloš4, Donatella Duraccio3 1Faculty of Technology, University of Novi Sad, Novi Sad, Serbia 2Institute of Food Technology, University of Novi Sad, Novi Sad, Serbia 3Institute of Chemistry and Technology of Polymers (ICTP), National Research Council (CNR), Pozzuoli Naples, Italy 4Department of Production Engineering, Faculty of Technical Science, University of Novi Sad, Novi Sad, Serbia Abstract Properties of poly (lactic acid) (PLA) and its nanocomposites, with silica nanoparticles (SiO2) SCIENTIFIC PAPER as filler, were investigated. Neat PLA films and PLA films with different percentage of hyd- rophobic fumed silica nanoparticles (0.2, 0.5, 1, 2, 3 and 5 wt.%) were prepared by solution UDC 546.284–31:678.7:66:621 casting method. Several tools were used to characterize the influence of different silica content on crystalline behavior, and thermal, mechanical and barrier properties of PLA/ /SiO2 nanocomposites. Results from scanning electron microscope (SEM) showed that the Hem. Ind. 70 (1) 73–80 (2016) nanocomposite preparation and selection of specific hydrophobic spherical nano filler pro- vide a good dispersion of the silica nanoparticles in the PLA matrix. Addition of silica nano- doi: 10.2298/HEMIND150107015P particles improved mechanical properties, the most significant improvement being obs- erved for the lowest silica content (0.2 wt.%). Barrier properties were improved for all measured gases at all loadings of silica nanoparticles. The degree of crystallinity for PLA is slightly increased by adding 0.2 and 0.5 wt.% of nanofiller. -
Shear Thickening in Colloidal Silica Chemical Mechanical
SHEAR THICKENING IN COLLOIDAL SILICA CHEMICAL MECHANICAL POLISHING SLURRIES by Anastasia Krasovsky A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Chemical Engineering). Golden, Colorado Date _________________________ Signed: _________________________ Anastasia Krasovsky Signed: _________________________ Dr. Matthew W. Liberatore Thesis Advisor Golden, Colorado Date _________________________ Signed: _________________________ Dr. David W. M. Marr Professor and Head Department of Chemical and Biological Engineering ii ABSTRACT Chemical mechanical polishing (CMP) is used by the semiconductor manufacturing industry to polish materials under high shear for the fabrication of microelectronic devices such as computer chips. Under these high shear conditions, slurry particles can form agglomerates causing defects, which cost the semiconductor industry billions of dollars annually. The shear thickening behavior of colloidal silica CMP slurries (28-38 wt%) under high shear was studied using a rotating rheometer with parallel-plate geometry. The colloidal silica slurries showed continuous thickening and irreversible behavior at high shear rates (>10,000 s-1). Changing the silica concentration, adding monovalent chloride salts (NaCl, KCl, CsCl, and LiCl), adjusting the pH (pH 4 to pH 10.5), and mixing two particle sizes (d = 20 nm and 100 nm) within the slurry altered the thickening behavior of the slurries. Shear thickening behavior can be eliminated with certain large to small particle ratios. iii TABLE OF CONTENTS ABSTRACT…………………………………………………………………………………….. iii LIST OF FIGURES……………………………………………………………………………... vi LIST OF TABLES…………………………………………………………………………...... viii LIST OF SYMBOLS……………………………………………………………………………. ix LIST OF ABBREVIATIONS……………………………………………………………………. x CHAPTER 1 BACKGROUND………………………………………………………………… 1 1.1 Chemical Mechanical Polishing…………………………………………………. -
Development of Super Hydrophobic Surfaces Using Silica Nanoparticles
City University of New York (CUNY) CUNY Academic Works Dissertations and Theses City College of New York 2015 Development of Super Hydrophobic Surfaces using Silica Nanoparticles Muhammad Salman Saleem CUNY City College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/cc_etds_theses/699 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] 1 Chemical Engineering, CCNY Super Hydrophobic Surface Abstract The development of surfaces that have high water contact angles and hysteresis has always been of great importance in industrial applications. Various methods and techniques have been introduced to fabricate surfaces at nano-scale to support super hydrophobicity. Some of these techniques are expensive, some are very complex, most can be used for selective materials and substrate and some form surfaces with very poor wear resistance. This document represents a systematic study on fabrication of super hydrophobic surfaces on glass substrate (SiO2) using the functionalized silica (SiO2) nano particles. SU8, Polydimethylsiloxane (PDMS) and Methyphenyl Resin SR355 polymer are being used as binder for Silica nanoparticles to stick on glass substrate. Measurements of contact angle and contact angle hysteresis are presented along with the wear resistance tests. 2 Chemical Engineering, CCNY Super Hydrophobic Surface Super Hydrophobic Surfaces 3 Chemical Engineering, -
Structural and Functional Properties of Fluorinated Silica Hybrid Barrier Layers on Flexible Polymeric Foil
coatings Article Structural and Functional Properties of Fluorinated Silica Hybrid Barrier Layers on Flexible Polymeric Foil Kamila Startek 1,2,* , Anna Szczurek 3 , Thi Ngoc Lam Tran 4, Justyna Krzak 3 , Alicja Bachmatiuk 1 and Anna Lukowiak 2,* 1 Łukasiewicz Research Network—PORT Polish Center for Technology Development, Stablowicka 147, 50-066 Wroclaw, Poland; [email protected] 2 Institute of Low Temperature and Structure Research, PAS, Okolna 2, 50-422 Wroclaw, Poland 3 Department of Mechanics, Materials and Biomedical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-370 Wroclaw, Poland; [email protected] (A.S.); [email protected] (J.K.) 4 IFN-CNR CSMFO Lab. and FBK Photonics Unit, Via alla Cascata 56/C Povo, 38100 Trento, Italy; [email protected] * Correspondence: [email protected] (K.S.); [email protected] (A.L.) Abstract: The reported work was focused on sol–gel-derived organically modified and fluorinated silica coatings deposited on elastic polymeric foil. The structure and topography of the coatings were tested by infrared spectroscopy and microscopic studies. The functional properties were determined using thermal analysis, surface analysis, and oxygen permeability tests. The barrier feature of the investigated materials against oxygen was correlated with the properties of the coatings. The hybrid (organic–inorganic) structure of the coatings was proven, demonstrating the presence of a silica Citation: Startek, K.; Szczurek, A.; network modified with alkyl and fluoroalkyl groups since precursors with the isooctyl group or Tran, T.N.L.; Krzak, J.; different lengths of the fluoroalkyl chains were used for the syntheses. -
Colloidal Silica Filtration Case Study
NEW LOGIC RESEARCH Case Membrane Filtration of Colloidal Silica Study A cost-effective and efficient solution Background Raw Materials New Logic Research’s patented V✧SEP The main ingredient for amorphous membrane filtration system has been silica is regular quartz sand which can installed at Silica Gel processing plants. be found in abundance anywhere. This Vibrational membrane filtration is an in- sand is processed with Sodium novative new way to dewater or diafilter Carbonate, Na2CO3 which is made Silica product. V✧SEP can be used as using the Solvay process combining a pre-treatment for a spray dryer or salt, ammonia, carbon dioxide, and evaporator. It can replace other less re- limestone all naturally occurring liable pre-treatment systems such as substances. Centrifuges. Today’s Industrial Silica market is very competitive and effi- ciency in operating costs can make the Silica Gel: difference. The V✧SEP system con- Step One, sand is fused with Sodium Carbonate in a high temperature furnace. The result is sumes about 12 kW of electricity and Sodium Silicate and Carbon Dioxide gas. can reduce the gas consumption of a spray dryer by an average of 700,000 SiO2 + Na2CO3 = Na2O.SiO2 + CO2 Therms/year. Also, the power consump- Step 2, the Silica Gel is made using Sulfuric Acid: ✧ tion of a V SEP system is 10-20 times Na2O.SiO2 + H2SO4 = SiO2 + H2O + Na2SO4 lower than Centrifuges. small country one of the largest The result is an aqueous salty solution containing coastlines in the world, the surface area Silica colloids. The Sodium Sulfate salts must be New Logic’s vibrating Membrane of amorphous Silica is incredibly large washed using diafiltration and then the Silica must System is currently being used for be partially dewatered. -
Fabrication of Superhydrophobic Coatings on Glass Based on Poly(Dimethylsiloxane) and Fumed Silica
KASAPGİL E, NERAT A, POYRAZ BM, ANAÇ İ. JOTCSA. 2020; 7(2): 589-596. RESEARCH ARTICLE Fabrication of Superhydrophobic Coatings on Glass based on Poly(dimethylsiloxane) and Fumed Silica Esra KASAPGİL , Alper NERAT , Buse M. POYRAZ , İlke ANAÇ* Department of Materials Science and Engineering, Gebze Technical University, Gebze, Kocaeli, Turkey. Abstract: This study reports the preparation of superhydrophobic covalently attached poly(dimethylsiloxane)(PDMS)/fumed silica composite coatings on glass via spin-coating and subsequent heating. The effect of PDMS molecular weight and fumed silica type (hydrophilic and three different hydrophobic) on the wettability and morphology were studied in detail, and the wettability and morphology of the coatings were characterized by contact angle measurements and scanning electron microscopy (SEM). Superhydrophobic coatings which have advancing contact angles of 172-174° and contact angle hysteresis (CAH) as low as 7-8° were obtained using 4% (w/v) PDMS modified hydrophobic fumed silica and all kinds of PDMS. The surfaces which were prepared by 4% (w/v) hydrophilic and dimethylsiloxy- modified fumed silica had high advancing contact angles of 163-168°, but the CAH on these surfaces were higher than the ones prepared using PDMS modified fumed silica. It is due to the incompatibility of the hydrophilic and dimethylsiloxy-modified fumed silica with the PDMS matrix also confirmed with the SEM results. Keywords: poly(dimethylsiloxane), fumed silica, wetting, superhydrophobic coatings, contact angle, spin- coating Submitted: February 21, 2020. Accepted: June 07, 2020. Cite this: KASAPGİL E, NERAT A, POYRAZ BM, ANAÇ İ. Fabrication of Superhydrophobic Coatings on Glass based on Poly(dimethylsiloxane) and Fumed Silica.