Design of a Centrifugal Pump for an Expander Cycle Rocket Engine
Total Page:16
File Type:pdf, Size:1020Kb
Università degli Studi della Basilicata SCUOLA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA Tesi di Laurea in Macchine e Sistemi Energetici DESIGN OF A CENTRIFUGAL PUMP FOR AN EXPANDER CYCLE ROCKET ENGINE Relatore: Prof. Ing. Aldo BONFIGLIOLI Correlatore: Ing. Angelo LETO Laureando: Antonio CANTIANI Matricola: 41036 ANNO ACCADEMICO 2014/2015 List of contents Chapter 1 1.1 Definitions and fundamentals (2) .................................................................................... 1 1.1.2 Thrust ............................................................................................................................ 2 1.2 Liquid-fuel rocket engines cycles ........................................................................................ 3 1.3 Expander cycle engines ........................................................................................................ 5 1.3.1 Closed expander cycle ................................................................................................... 6 1.3.2 Closed split expander cycle (5) (6) ................................................................................ 8 1.3.3 Closed dual expander cycle ........................................................................................... 8 1.3.4 Open expander cycle ..................................................................................................... 9 1.4 Existing expander cycle systems ........................................................................................ 10 1.4.1 The RL10 engine .................................................................................................... 10 1.4.2 The LE-5 engine .................................................................................................... 12 1.4.3 Vinci ............................................................................................................................ 13 1.5 Liquid propellants .............................................................................................................. 15 1.4.3 Liquid oxygen ........................................................................................................ 18 1.4.4 Liquid hydrogen ..................................................................................................... 19 1.4.5 Methane .................................................................................................................. 19 Chapter 2 2.1 Introduction ........................................................................................................................ 21 2.2 Pump description ................................................................................................................ 23 2.3 Cavitation ........................................................................................................................... 25 2.4 Pump parameters ................................................................................................................ 27 2.5 Pump design methods......................................................................................................... 40 2.5.1 Method 1 ..................................................................................................................... 40 2.5.2 Method 2 ..................................................................................................................... 41 2.5.3 Method 3 ..................................................................................................................... 42 2.6 Volute design ...................................................................................................................... 43 2.6.1 Effect of the volute design on efficiency .................................................................... 44 2.6.2 Volute geometry esteem .............................................................................................. 46 Chapter 3 3.1 Introduction ........................................................................................................................ 48 3.2 Impulse turbines ................................................................................................................. 49 3.3 Velocity-compounded impulse turbine .............................................................................. 49 3.4 Reaction turbine ................................................................................................................. 50 3.5 Impulse turbines design ...................................................................................................... 50 Chapter 4 4.1 Introduction ........................................................................................................................ 55 4.2 CoolProp libraries .............................................................................................................. 55 4.3 MatLab functions: pump.m ................................................................................................ 59 4.4 MatLab functions: bladesNumber.m .................................................................................. 66 4.5 Software test-case ............................................................................................................... 68 Chapter 5 5.1 Turbopump specifics and applications ............................................................................... 73 5.2 Conclusions ........................................................................................................................ 76 Appendix Appendix A – MatLab additional functions ............................................................................. 77 Appendix B – RL10-3-3A LH2 pump output parameters........................................................ 81 Appendix C– RL10-3-3A LO2 pump output parameters......................................................... 84 Appendix D: Designed methane pump output parameters ....................................................... 86 Introduction The present work is aimed at designing a centrifugal pump for an expander cycle engine fed system. In particular, the pump has been designed to work with liquid methane. The choice of this type of cryogenic working fluid has been driven by the characteristic required by a rocket propulsion system: the methane has a lower cost and a higher density with respect to the more commonly used hydrogen. The lower cost is obviously a very appreciated feature; in addition to this, the higher density allows the design of more compact stages, which reduces the total weigh and the aerodynamic drag. The design phase led to the development of a software in MatLab environment. This software aims to be a tool capable of providing a preliminary design of a generic centrifugal pump, given certain input data. The CoolProp libraries have played a key role in the software development. These libraries are an open source tool that, once implemented in MatLab, enabled to easily determine the thermodynamic variables required for the software calculations. The developed software passed through a validation process, in which we have performed various design simulation based on the known data of the hydrogen and oxygen pump of a RL10A-3-3A; the results have shown an acceptable error margin. Later, we moved to the design of the methane pump. It has been design with input data that should provide comparable performances to those of the methane pump developed by the Italian company AVIO for the LM10-Mira engine, which is currently under development in collaboration with the Russian KBKhA. In addition to the various graph of the velocity triangles and 2-Dimensional models of the impeller, a 3-Dimensional model of the pump has been developed through the use of SolidWorks Chapter 1 Liquid-fuel rocket engines Since the beginning of the “rocket era” liquid-fuel engines have been the most widely used rocket engines. They passed through a long improvement process, which has led to engines that develop higher thrust, weigh less and are more reliable. The main goal of interest is to increase the payload, cost reduction, reliability improvement and design reusable launch vehicles (1). 1.1 Definitions and fundamentals (2) The function of rockets engines is to convert the chemical energy provided by the propellant into thrust, through the combustion process. The total impulse It is defined as the thrust force F (which may be time dependent) integrated over the burning time t, as shown by equation (1.1). 푡 퐼푡 = ∫ 퐹(푡) 푑푡 (1.1) 0 The total impulse is proportional to the energy released by the propellant. For constant thrust force and negligible start and stop transients, equation (1.1) reduces to: 퐼푡 = 퐹 푡 (1.2) The specific impulse Isp is the total impulse per unit of weight flow rate of propellant. It is an important parameter that describes the performances of the rocket propulsion system. If we denote by 0 the acceleration of gravity at sea-level and by 푚̇ the mass flow rate of propellant, then equation (1.3) returns the specific impulse. 푡 퐹 푑푡 ∫0 퐼푠푝 = 푡 (1.3) 0 ∫0 푚̇ 푑푡 This expression gives a time-averaged specific impulse value. For constant thrust and propellant flow, the equation (1.3) can be simplified as follows: 퐼푡 퐼푠푝 = (1.4) 푚푝 0 where 푚푝 is the total effective propellant mass. 1 Chapter 1 __________________________________________________________________ In the SI system Isp is expressed in seconds, however it does not represent a measure of elapsed time. The exhaust velocity in the rocket nozzle is not