Review Outline for the Final Exam

Total Page:16

File Type:pdf, Size:1020Kb

Review Outline for the Final Exam Math 20B Final Exam Review Outline Winter 2020 The final exam is cumulative and will test your mastery of all of the course material, however, there will be a slight emphasis on the material that we covered after the second midterm exam; in particular, around 40% of the problems come from the material in sections 10.3, 10.4, 10.5, 10.6, and 10.8. Below is a summary of the topics/skills you need to master from each of the sections. We suggest that you start by solving the examples from your lecture notes, and then moving on to re-doing enough of the assigned homework problems from each section in order to feel confident about the main concepts. When you are solving the aforementioned problems, it is of the utmost importance that you attempt to solve them without looking at our solutions or solutions/hints on Webassign. This is the only way to really make the solutions your own. If you are able to understand and solve all of the lecture examples and the homework problems on your own and without any assistance, then you should do very well on this exam. • Section 5.6: Given a velocity function, know how to use definite integrals to calculate displacement and total distance travelled. • Section 5.7: Know how to evaluate integrals using u-substitution. If you are using u-substitution to evaluate a definite integral, don't forget to change the limits of integration. • Section 6.1: Know how to find the area of a plane region, e.g. the area between two curves, by setting up and solving a definite integral. It is usually helpful to sketch the region first; see the list of prerequisite skills a the end of this review outline. • Section 6.2: Know how to find the volume of a solid with a given base and given cross-sections by setting up and solving a definite integral. Know how to calculate the average value of a given function over a specified interval. • Section 6.3: Know how to find the volume of a solid of revolution by setting up and solving a definite integral. Remember that solids can be generated by rotating a plane region about the x-axis, the y-axis, or any other vertical or horizontal line, so practice all of the possible variations. • Section 7.1: Know how to evaluate integrals using integration by parts. Remember that for some problems you need to apply integration by parts more than once and/or combine integration by parts with u-substitution. • Section 11.3: Given the Cartesian coordinates of a point, know how to find its polar coordinates and vice versa. Know how to plot points using their polar coordinates. (You won't have an exam question that resembles the homework from section 11.3, but you need to understand the 11.3 material to do the area problems from 11.4, and you may have a exam question that resembles the homework from section 11.4). • Section 11.4: Know how to find the area of a region described by polar equations. Note that we will not ask you to sketch the graph of any polar equation; if you are asked to find such an area, the graph would be provided for you. • Supplement 1: { Know how to write a complex number a + bi in the polar form r(cos θ + i sin θ), and vice versa. { Know how to find the nth power of a given complex number using DeMoivre's Theorem. { Know how to find all of the nth roots of a given complex number. • Supplement 2: Know how to write a complex number a + bi in the form reiθ, and vice versa. Know how to integrate a complex exponential function, e.g. R e2ix dx. • Supplement 3: Know how to solve integrals such as R cos(2x) sin(5x) dx or R e7ix cos(4x) dx using eix + e−ix eix − e−ix the formulas cos x = and sin x = . 2 2i 1 2 • Section 7.2: Know how to solve integrals such as R sin3(x) cos4(x) dx and R sec4(x) tan5(x) dx using a combination of a u-sub and the trig identities: sin2 x + cos2 x = 1 or sec2 x − tan2 x = 1 • Section 7.3: Know how to solve integrals using trig substitutions. There are three types of trig subs that you can use, so you need to be able to pick the correct one: x = a sin θ or x = a tan θ or x = a sec θ. Remember that at the end of most of these problems, you need to use your little triangle to write your final antiderivative in terms of x. • Section 7.5 and Supplement 5: Know how to find the partial fraction expansion (PFE) of a given rational function and then use the PFE to integrate the function. Remember that if the degree of the numerator is equal to or greater than the degree of the denominator, then you must do long division before the PFE. • Section 7.7: { Know how to use the definition of an improper integral as a limit to determine whether it converges or diverges. Know how to handle both types of improper integrals: continuous function but infinite interval of integration OR finite interval of integration but integrand is discontinuous at one of the endpoints. On the finite interval of integration problems, you should write a one-sided limit, not a two-sided limit. { Know how to determine convergence or divergence using the Comparison Test for Improper Integrals. • Section 10.1: { Know how to write out the first few terms of a sequence. { Know how to determine if a given sequence converges or diverges (often we need to use Math 20A techniques such as L'Hopital's Rule). { If a sequence converges, know how to find its limit. • Section 10.2: { Know how to find the first few partial sums of a given series. { Given a geometric series in shorthand summation notation P arn or in longhand notation a+ar+ar2 +ar3 +··· , be able to find its common ratio and identify if it converges or diverges. { Be able to find the sum of a convergent geometric series. { Be able to use a partial fraction expansion to find a formula for the N th partial sum of a telescoping series and then find the sum of the series (e.g. like problem 4 in 10.2 online homework). 1 X th { Remember: If lim an 6= 0, then the series an diverges (the N Term Test for Divergence). n=1 • Section 10.3: { Be able to use the Integral Test to determine if a series converges or diverges. { Be able to use the Comparison Test to determine if a series converges or diverges. { Be able to use the Limit Comparison Test to determine if a series converges or diverges. Note that you can only use the 10.3 tests on series with all positive terms. Also note that on your final, you will not be instructed as to which tests to use, so you may need to try more than one test in order to understand which tests will actually be helpful. When you are using p-series or geometric series in the context of the Comparison Test or the Limit Comparison Test, you are free to state (without any proof) that p-series converge if p > 1 and diverge if p ≤ 1 and that a geometric series with common ratio r converges if jrj < 1 and diverges if jrj ≥ 1. 3 • Section 10.4: Given a series with some negative terms, be able to determine if it converges absolutely OR converges conditionally OR diverges. Remember: { The N th Term Test for Divergence can still be used on series which contain some negative terms. { The Alternating Series Test (also called the Leibniz Test) can only be used to show that an alternating series converges, but it cannot be used to show divergence or absolute convergence. • Section 10.5: Be able to use the Ratio Test and the Root Test to determine if a series converges absolutely or diverges. • Section 10.6: { Know how to find the radius of convergence of a given power series. { Know how to find the interval of convergence of a given power series; don't forget to check whether or not the series converges at the endpoints of the interval of convergence. { Know how to use the geometric series formula together with substitution to write a function as a power series with center c = 0 and find its interval of convergence, e.g. you can apply this 2 method to find the power series representation of f(x) = . 9 − x2 • Section 10.8: { Given a function f, know how to find its Taylor series with center c by taking the derivatives of f and then using the formula for a Taylor series, namely: f 00(c) f 000(c) f (4)(c) f(x) = f(c) + f 0(c)(x − c) + (x − c)2 + (x − c)3 + (x − c)4 + ··· 2! 3! 4! Note that if f is a polynomial, the resulting Taylor series will be a polynomial of the same degree as f. { Know how to find a Taylor series by using an already known Taylor series together with substitution, e.g. given the MacLaurin series for cos(x), find the MacLaurin series for cos(3x) Note that on problems which ask you for a Taylor series, you can either write your answer in shorthand (summation) notation, or you can write your answer longhand.
Recommended publications
  • Topic 7 Notes 7 Taylor and Laurent Series
    Topic 7 Notes Jeremy Orloff 7 Taylor and Laurent series 7.1 Introduction We originally defined an analytic function as one where the derivative, defined as a limit of ratios, existed. We went on to prove Cauchy's theorem and Cauchy's integral formula. These revealed some deep properties of analytic functions, e.g. the existence of derivatives of all orders. Our goal in this topic is to express analytic functions as infinite power series. This will lead us to Taylor series. When a complex function has an isolated singularity at a point we will replace Taylor series by Laurent series. Not surprisingly we will derive these series from Cauchy's integral formula. Although we come to power series representations after exploring other properties of analytic functions, they will be one of our main tools in understanding and computing with analytic functions. 7.2 Geometric series Having a detailed understanding of geometric series will enable us to use Cauchy's integral formula to understand power series representations of analytic functions. We start with the definition: Definition. A finite geometric series has one of the following (all equivalent) forms. 2 3 n Sn = a(1 + r + r + r + ::: + r ) = a + ar + ar2 + ar3 + ::: + arn n X = arj j=0 n X = a rj j=0 The number r is called the ratio of the geometric series because it is the ratio of consecutive terms of the series. Theorem. The sum of a finite geometric series is given by a(1 − rn+1) S = a(1 + r + r2 + r3 + ::: + rn) = : (1) n 1 − r Proof.
    [Show full text]
  • Writing Mathematical Expressions in Plain Text – Examples and Cautions Copyright © 2009 Sally J
    Writing Mathematical Expressions in Plain Text – Examples and Cautions Copyright © 2009 Sally J. Keely. All Rights Reserved. Mathematical expressions can be typed online in a number of ways including plain text, ASCII codes, HTML tags, or using an equation editor (see Writing Mathematical Notation Online for overview). If the application in which you are working does not have an equation editor built in, then a common option is to write expressions horizontally in plain text. In doing so you have to format the expressions very carefully using appropriately placed parentheses and accurate notation. This document provides examples and important cautions for writing mathematical expressions in plain text. Section 1. How to Write Exponents Just as on a graphing calculator, when writing in plain text the caret key ^ (above the 6 on a qwerty keyboard) means that an exponent follows. For example x2 would be written as x^2. Example 1a. 4xy23 would be written as 4 x^2 y^3 or with the multiplication mark as 4*x^2*y^3. Example 1b. With more than one item in the exponent you must enclose the entire exponent in parentheses to indicate exactly what is in the power. x2n must be written as x^(2n) and NOT as x^2n. Writing x^2n means xn2 . Example 1c. When using the quotient rule of exponents you often have to perform subtraction within an exponent. In such cases you must enclose the entire exponent in parentheses to indicate exactly what is in the power. x5 The middle step of ==xx52− 3 must be written as x^(5-2) and NOT as x^5-2 which means x5 − 2 .
    [Show full text]
  • Series: Convergence and Divergence Comparison Tests
    Series: Convergence and Divergence Here is a compilation of what we have done so far (up to the end of October) in terms of convergence and divergence. • Series that we know about: P∞ n Geometric Series: A geometric series is a series of the form n=0 ar . The series converges if |r| < 1 and 1 a1 diverges otherwise . If |r| < 1, the sum of the entire series is 1−r where a is the first term of the series and r is the common ratio. P∞ 1 2 p-Series Test: The series n=1 np converges if p1 and diverges otherwise . P∞ • Nth Term Test for Divergence: If limn→∞ an 6= 0, then the series n=1 an diverges. Note: If limn→∞ an = 0 we know nothing. It is possible that the series converges but it is possible that the series diverges. Comparison Tests: P∞ • Direct Comparison Test: If a series n=1 an has all positive terms, and all of its terms are eventually bigger than those in a series that is known to be divergent, then it is also divergent. The reverse is also true–if all the terms are eventually smaller than those of some convergent series, then the series is convergent. P P P That is, if an, bn and cn are all series with positive terms and an ≤ bn ≤ cn for all n sufficiently large, then P P if cn converges, then bn does as well P P if an diverges, then bn does as well. (This is a good test to use with rational functions.
    [Show full text]
  • Appendix a Short Course in Taylor Series
    Appendix A Short Course in Taylor Series The Taylor series is mainly used for approximating functions when one can identify a small parameter. Expansion techniques are useful for many applications in physics, sometimes in unexpected ways. A.1 Taylor Series Expansions and Approximations In mathematics, the Taylor series is a representation of a function as an infinite sum of terms calculated from the values of its derivatives at a single point. It is named after the English mathematician Brook Taylor. If the series is centered at zero, the series is also called a Maclaurin series, named after the Scottish mathematician Colin Maclaurin. It is common practice to use a finite number of terms of the series to approximate a function. The Taylor series may be regarded as the limit of the Taylor polynomials. A.2 Definition A Taylor series is a series expansion of a function about a point. A one-dimensional Taylor series is an expansion of a real function f(x) about a point x ¼ a is given by; f 00ðÞa f 3ðÞa fxðÞ¼faðÞþf 0ðÞa ðÞþx À a ðÞx À a 2 þ ðÞx À a 3 þÁÁÁ 2! 3! f ðÞn ðÞa þ ðÞx À a n þÁÁÁ ðA:1Þ n! © Springer International Publishing Switzerland 2016 415 B. Zohuri, Directed Energy Weapons, DOI 10.1007/978-3-319-31289-7 416 Appendix A: Short Course in Taylor Series If a ¼ 0, the expansion is known as a Maclaurin Series. Equation A.1 can be written in the more compact sigma notation as follows: X1 f ðÞn ðÞa ðÞx À a n ðA:2Þ n! n¼0 where n ! is mathematical notation for factorial n and f(n)(a) denotes the n th derivation of function f evaluated at the point a.
    [Show full text]
  • How to Write Mathematical Papers
    HOW TO WRITE MATHEMATICAL PAPERS BRUCE C. BERNDT 1. THE TITLE The title of your paper should be informative. A title such as “On a conjecture of Daisy Dud” conveys no information, unless the reader knows Daisy Dud and she has made only one conjecture in her lifetime. Generally, titles should have no more than ten words, although, admittedly, I have not followed this advice on several occasions. 2. THE INTRODUCTION The Introduction is the most important part of your paper. Although some mathematicians advise that the Introduction be written last, I advocate that the Introduction be written first. I find that writing the Introduction first helps me to organize my thoughts. However, I return to the Introduction many times while writing the paper, and after I finish the paper, I will read and revise the Introduction several times. Get to the purpose of your paper as soon as possible. Don’t begin with a pile of notation. Even at the risk of being less technical, inform readers of the purpose of your paper as soon as you can. Readers want to know as soon as possible if they are interested in reading your paper or not. If you don’t immediately bring readers to the objective of your paper, you will lose readers who might be interested in your work but, being pressed for time, will move on to other papers or matters because they do not want to read further in your paper. To state your main results precisely, considerable notation and terminology may need to be introduced.
    [Show full text]
  • 9.4 Arithmetic Series Notes
    9.4 Arithmetic Series Notes Pre­AP Algebra 2 9.4 Arithmetic Series *Objective: Define arithmetic series and find their sums When you know two terms and the number of terms in a finite arithmetic sequence, you can find the sum of the terms. A series is the indicated sum of the terms of a sequence. A finite series has a first terms and a last term. An infinite series continues without end. Finite Sequence Finite Series 6, 9, 12, 15, 18 6 + 9 + 12 + 15 + 18 = 60 Infinite Sequence Infinite Series 3, 7, 11, 15, ... 3 + 7 + 11 + 15 + ... An arithmetic series is a series whose terms form an arithmetic sequence. When a series has a finite number of terms, you can use a formula involving the first and last term to evaluate the sum. The sum Sn of a finite arithmetic series a1 + a2 + a3 + ... + an is n Sn = /2 (a1 + an) a1 : is the first term an : is the last term (nth term) n : is the number of terms in the series Finding the Sum of a finite arithmetic series Ex1) a. What is the sum of the even integers from 2 to 100 b. what is the sum of the finite arithmetic series: 4 + 9 + 14 + 19 + 24 + ... + 99 c. What is the sum of the finite arithmetic series: 14 + 17 + 20 + 23 + ... + 116? Using the sum of a finite arithmetic series Ex2) A company pays $10,000 bonus to salespeople at the end of their first 50 weeks if they make 10 sales in their first week, and then improve their sales numbers by two each week thereafter.
    [Show full text]
  • Summation and Table of Finite Sums
    SUMMATION A!D TABLE OF FI1ITE SUMS by ROBERT DELMER STALLE! A THESIS subnitted to OREGON STATE COLlEGE in partial fulfillment of the requirementh for the degree of MASTER OF ARTS June l94 APPROVED: Professor of Mathematics In Charge of Major Head of Deparent of Mathematics Chairman of School Graduate Committee Dean of the Graduate School ACKOEDGE!'T The writer dshes to eicpreßs his thanks to Dr. W. E. Mime, Head of the Department of Mathenatics, who has been a constant guide and inspiration in the writing of this thesis. TABLE OF CONTENTS I. i Finite calculus analogous to infinitesimal calculus. .. .. a .. .. e s 2 Suniming as the inverse of perfornungA............ 2 Theconstantofsuirrnation......................... 3 31nite calculus as a brancn of niathematics........ 4 Application of finite 5lflITh1tiOfl................... 5 II. LVELOPMENT OF SULTION FORiRLAS.................... 6 ttethods...........................a..........,.... 6 Three genera]. sum formulas........................ 6 III S1ThATION FORMULAS DERIVED B TIlE INVERSION OF A Z FELkTION....,..................,........... 7 s urnmation by parts..................15...... 7 Ratlona]. functions................................ Gamma and related functions........,........... 9 Ecponential and logarithrnic functions...... ... Thigonoretric arÎ hyperbolic functons..........,. J-3 Combinations of elementary functions......,..... 14 IV. SUMUATION BY IfTHODS OF APPDXIMATION..............,. 15 . a a Tewton s formula a a a S a C . a e a a s e a a a a . a a 15 Extensionofpartialsunmation................a... 15 Formulas relating a sum to an ifltegral..a.aaaaaaa. 16 Sumfromeverym'thterm........aa..a..aaa........ 17 V. TABLE OFST.Thß,..,,..,,...,.,,.....,....,,,........... 18 VI. SLThMTION OF A SPECIAL TYPE OF POER SERIES.......... 26 VI BIBLIOGRAPHY. a a a a a a a a a a . a . a a a I a s .
    [Show full text]
  • Drainage Geocomposite Workshop
    January/February 2000 Volume 18, Number 1 Drainage geocomposite workshop By Gregory N. Richardson, Sam R. Allen, C. Joel Sprague A number of recent designer’s columns have focused on the design of drainage geocomposites (Richard- son and Zhao, 1998), so only areas of concern are discussed here. Two design considerations requiring the most consideration by a designer are: 1) assumed rate of fluid inflow draining into the geocomposite, and 2) long-term reduction and safety factors required to assure adequate performance over the service life of the drainage system. In regions of the United States that are not arid or semi-arid, a reasonable upper limit for inflow into a drainage layer can be estimated by assuming that the soil immediately above the drain layer is saturated. This saturation produces a unit gradient flow in the overlying soil such that the inflow rate, r, is approximately θ equal to the permeability of the soil, ksoil. The required transmissivity, , of the drainage layer is then equal to: θ = r*L/i = ksoil*L/i where L is the effective drainage length of the geocomposite and i is the flow gradient (head change/flow length). This represents an upper limit for flow into the geocomposite. In arid and semi-arid regions of the USA saturation of the soil layers may be an overly conservative assumption, however, no alternative rec- ommendations can currently be given. Regardless of the assumed r value, a geocomposite drainage layer must be designed such that flow is not in- advertently restricted prior to removal from the drain.
    [Show full text]
  • Summary of Tests for Series Convergence
    Calculus Maximus Notes 9: Convergence Summary Summary of Tests for Infinite Series Convergence Given a series an or an n1 n0 The following is a summary of the tests that we have learned to tell if the series converges or diverges. They are listed in the order that you should apply them, unless you spot it immediately, i.e. use the first one in the list that applies to the series you are trying to test, and if that doesn’t work, try again. Off you go, young Jedis. Use the Force. Remember, it is always with you, and it is mass times acceleration! nth-term test: (Test for Divergence only) If liman 0 , then the series is divergent. If liman 0 , then the series may converge or diverge, so n n you need to use a different test. Geometric Series Test: If the series has the form arn1 or arn , then the series converges if r 1 and diverges n1 n0 a otherwise. If the series converges, then it converges to 1 . 1 r Integral Test: In Prison, Dogs Curse: If an f() n is Positive, Decreasing, Continuous function, then an and n1 f() n dn either both converge or both diverge. 1 This test is best used when you can easily integrate an . Careful: If the Integral converges to a number, this is NOT the sum of the series. The series will be smaller than this number. We only know this it also converges, to what is anyone’s guess. The maximum error, Rn , for the sum using Sn will be 0 Rn f x dx n Page 1 of 4 Calculus Maximus Notes 9: Convergence Summary p-series test: 1 If the series has the form , then the series converges if p 1 and diverges otherwise.
    [Show full text]
  • The Direct Comparison Test (Day #1)
    9.4--The Direct Comparison Test (day #1) When applying the Direct Comparison Test, you will usually compare a tricky series against a geometric series or a p-series whose convergence/divergence is already known. Use the Direct Comparison Test to determine the convergence or divergence of the series: ∞ 1) 1 3 n + 7 n=1 9.4--The Direct Comparison Test (day #1) Use the Direct Comparison Test to determine the convergence or divergence of the series: ∞ 2) 1 n - 2 n=3 Use the Direct Comparison Test to determine the convergence or divergence of the series: ∞ 3) 5n n 2 - 1 n=1 9.4--The Direct Comparison Test (day #1) Use the Direct Comparison Test to determine the convergence or divergence of the series: ∞ 4) 1 n 4 + 3 n=1 9.4--The Limit Comparison Test (day #2) The Limit Comparison Test is useful when the Direct Comparison Test fails, or when the series can't be easily compared with a geometric series or a p-series. 9.4--The Limit Comparison Test (day #2) Use the Limit Comparison Test to determine the convergence or divergence of the series: 5) ∞ 3n2 - 2 n3 + 5 n=1 Use the Limit Comparison Test to determine the convergence or divergence of the series: 6) ∞ 4n5 + 9 10n7 n=1 9.4--The Limit Comparison Test (day #2) Use the Limit Comparison Test to determine the convergence or divergence of the series: 7) ∞ 1 n 4 - 1 n=1 Use the Limit Comparison Test to determine the convergence or divergence of the series: 8) ∞ 5 3 2 n - 6 n=1 9.4--Comparisons of Series (day #3) (This is actually a review of 9.1-9.4) page 630--Converging or diverging? Tell which test you used.
    [Show full text]
  • Series Convergence Tests Math 122 Calculus III D Joyce, Fall 2012
    Series Convergence Tests Math 122 Calculus III D Joyce, Fall 2012 Some series converge, some diverge. Geometric series. We've already looked at these. We know when a geometric series 1 X converges and what it converges to. A geometric series arn converges when its ratio r lies n=0 a in the interval (−1; 1), and, when it does, it converges to the sum . 1 − r 1 X 1 The harmonic series. The standard harmonic series diverges to 1. Even though n n=1 1 1 its terms 1, 2 , 3 , . approach 0, the partial sums Sn approach infinity, so the series diverges. The main questions for a series. Question 1: given a series does it converge or diverge? Question 2: if it converges, what does it converge to? There are several tests that help with the first question and we'll look at those now. The term test. The only series that can converge are those whose terms approach 0. That 1 X is, if ak converges, then ak ! 0. k=1 Here's why. If the series converges, then the limit of the sequence of its partial sums n th X approaches the sum S, that is, Sn ! S where Sn is the n partial sum Sn = ak. Then k=1 lim an = lim (Sn − Sn−1) = lim Sn − lim Sn−1 = S − S = 0: n!1 n!1 n!1 n!1 The contrapositive of that statement gives a test which can tell us that some series diverge. Theorem 1 (The term test). If the terms of the series don't converge to 0, then the series diverges.
    [Show full text]
  • List of Mathematical Symbols by Subject from Wikipedia, the Free Encyclopedia
    List of mathematical symbols by subject From Wikipedia, the free encyclopedia This list of mathematical symbols by subject shows a selection of the most common symbols that are used in modern mathematical notation within formulas, grouped by mathematical topic. As it is virtually impossible to list all the symbols ever used in mathematics, only those symbols which occur often in mathematics or mathematics education are included. Many of the characters are standardized, for example in DIN 1302 General mathematical symbols or DIN EN ISO 80000-2 Quantities and units – Part 2: Mathematical signs for science and technology. The following list is largely limited to non-alphanumeric characters. It is divided by areas of mathematics and grouped within sub-regions. Some symbols have a different meaning depending on the context and appear accordingly several times in the list. Further information on the symbols and their meaning can be found in the respective linked articles. Contents 1 Guide 2 Set theory 2.1 Definition symbols 2.2 Set construction 2.3 Set operations 2.4 Set relations 2.5 Number sets 2.6 Cardinality 3 Arithmetic 3.1 Arithmetic operators 3.2 Equality signs 3.3 Comparison 3.4 Divisibility 3.5 Intervals 3.6 Elementary functions 3.7 Complex numbers 3.8 Mathematical constants 4 Calculus 4.1 Sequences and series 4.2 Functions 4.3 Limits 4.4 Asymptotic behaviour 4.5 Differential calculus 4.6 Integral calculus 4.7 Vector calculus 4.8 Topology 4.9 Functional analysis 5 Linear algebra and geometry 5.1 Elementary geometry 5.2 Vectors and matrices 5.3 Vector calculus 5.4 Matrix calculus 5.5 Vector spaces 6 Algebra 6.1 Relations 6.2 Group theory 6.3 Field theory 6.4 Ring theory 7 Combinatorics 8 Stochastics 8.1 Probability theory 8.2 Statistics 9 Logic 9.1 Operators 9.2 Quantifiers 9.3 Deduction symbols 10 See also 11 References 12 External links Guide The following information is provided for each mathematical symbol: Symbol: The symbol as it is represented by LaTeX.
    [Show full text]