Mars Exploration Rover: Mathematics and People Behind the Mission
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mars, the Nearest Habitable World – a Comprehensive Program for Future Mars Exploration
Mars, the Nearest Habitable World – A Comprehensive Program for Future Mars Exploration Report by the NASA Mars Architecture Strategy Working Group (MASWG) November 2020 Front Cover: Artist Concepts Top (Artist concepts, left to right): Early Mars1; Molecules in Space2; Astronaut and Rover on Mars1; Exo-Planet System1. Bottom: Pillinger Point, Endeavour Crater, as imaged by the Opportunity rover1. Credits: 1NASA; 2Discovery Magazine Citation: Mars Architecture Strategy Working Group (MASWG), Jakosky, B. M., et al. (2020). Mars, the Nearest Habitable World—A Comprehensive Program for Future Mars Exploration. MASWG Members • Bruce Jakosky, University of Colorado (chair) • Richard Zurek, Mars Program Office, JPL (co-chair) • Shane Byrne, University of Arizona • Wendy Calvin, University of Nevada, Reno • Shannon Curry, University of California, Berkeley • Bethany Ehlmann, California Institute of Technology • Jennifer Eigenbrode, NASA/Goddard Space Flight Center • Tori Hoehler, NASA/Ames Research Center • Briony Horgan, Purdue University • Scott Hubbard, Stanford University • Tom McCollom, University of Colorado • John Mustard, Brown University • Nathaniel Putzig, Planetary Science Institute • Michelle Rucker, NASA/JSC • Michael Wolff, Space Science Institute • Robin Wordsworth, Harvard University Ex Officio • Michael Meyer, NASA Headquarters ii Mars, the Nearest Habitable World October 2020 MASWG Table of Contents Mars, the Nearest Habitable World – A Comprehensive Program for Future Mars Exploration Table of Contents EXECUTIVE SUMMARY .......................................................................................................................... -
Long-Range Rovers for Mars Exploration and Sample Return
2001-01-2138 Long-Range Rovers for Mars Exploration and Sample Return Joe C. Parrish NASA Headquarters ABSTRACT This paper discusses long-range rovers to be flown as part of NASA’s newly reformulated Mars Exploration Program (MEP). These rovers are currently scheduled for launch first in 2007 as part of a joint science and technology mission, and then again in 2011 as part of a planned Mars Sample Return (MSR) mission. These rovers are characterized by substantially longer range capability than their predecessors in the 1997 Mars Pathfinder and 2003 Mars Exploration Rover (MER) missions. Topics addressed in this paper include the rover mission objectives, key design features, and Figure 1: Rover Size Comparison (Mars Pathfinder, Mars Exploration technologies. Rover, ’07 Smart Lander/Mobile Laboratory) INTRODUCTION NASA is leading a multinational program to explore above, below, and on the surface of Mars. A new The first of these rovers, the Smart Lander/Mobile architecture for the Mars Exploration Program has Laboratory (SLML) is scheduled for launch in 2007. The recently been announced [1], and it incorporates a current program baseline is to use this mission as a joint number of missions through the rest of this decade and science and technology mission that will contribute into the next. Among those missions are ambitious plans directly toward sample return missions planned for the to land rovers on the surface of Mars, with several turn of the decade. These sample return missions may purposes: (1) perform scientific explorations of the involve a rover of almost identical architecture to the surface; (2) demonstrate critical technologies for 2007 rover, except for the need to cache samples and collection, caching, and return of samples to Earth; (3) support their delivery into orbit for subsequent return to evaluate the suitability of the planet for potential manned Earth. -
GRAIL Twins Toast New Year from Lunar Orbit
Jet JANUARY Propulsion 2012 Laboratory VOLUME 42 NUMBER 1 GRAIL twins toast new year from Three-month ‘formation flying’ mission will By Mark Whalen lunar orbit study the moon from crust to core Above: The GRAIL team celebrates with cake and apple cider. Right: Celebrating said. “So it does take a lot of planning, a lot of test- the other spacecraft will accelerate towards that moun- GRAIL-A’s Jan. 1 lunar orbit insertion are, from left, Maria Zuber, GRAIL principal ing and then a lot of small maneuvers in order to get tain to measure it. The change in the distance between investigator, Massachusetts Institute of Technology; Charles Elachi, JPL director; ready to set up to get into this big maneuver when we the two is noted, from which gravity can be inferred. Jim Green, NASA director of planetary science. go into orbit around the moon.” One of the things that make GRAIL unique, Hoffman JPL’s Gravity Recovery and Interior Laboratory (GRAIL) A series of engine burns is planned to circularize said, is that it’s the first formation flying of two spacecraft mission celebrated the new year with successful main the twins’ orbit, reducing their orbital period to a little around any body other than Earth. “That’s one of the engine burns to place its twin spacecraft in a perfectly more than two hours before beginning the mission’s biggest challenges we have, and it’s what makes this an synchronized orbit around the moon. 82-day science phase. “If these all go as planned, we exciting mission,” he said. -
Mars Exploration Office Jet Propulsion Laboratory California Institute of Technology Pasadena, California
TECHNOLOGIES FOR MARSEXPLORATION AND SAMPLE RETURN Carl F. Ruoff, Technology Manager Mars Exploration Office Jet Propulsion Laboratory California Institute of Technology Pasadena, California ABSTRACT history, to understand how the planet evolved physically, and to locate potentially useful resources. A comprehensive program of robotic Mars exploration is The common thread among these is water: How much being undertaken inorder to address important scientific existed, when, where, and in what form? In addition to questions, to investigate whether or not life exists or ever remote sensing, answering these questions will require existed on Mars, and to pave the way for eventual human surface and subsurface sampling, in-situ analysis, and presence. The program, which is likely to include returning samples to Earth for analysis in terrestrial establishing robotic outposts, will require many technical laboratories. advances. This paper briefly describes key missions in the Mars exploration program, including robotic outposts, and As currently envisioned, the exploration strategy begins discusses near- and far-term technologies needed for theirwith a series of robotic missions which gradually implementation. evolve into the sustained presence of robotic outposts. The early missions will perform science investigations, INTRODUCTION acquire and returnsamples, and will provide engineering The first decades of the new Millennium will see a data on system and technology performance in the vigorous program of robotic Mars exploration, Martian environment. They will also establish undertaken both for compelling scientific reasons as communication and navigation capabilities and will well as to pave the way, over the long term, for human make it possible to select promising sites for additional missions and potential human habitation. -
Educator's Guide
EDUCATOR’S GUIDE ABOUT THE FILM Dear Educator, “ROVING MARS”is an exciting adventure that This movie details the development of Spirit and follows the journey of NASA’s Mars Exploration Opportunity from their assembly through their Rovers through the eyes of scientists and engineers fantastic discoveries, discoveries that have set the at the Jet Propulsion Laboratory and Steve Squyres, pace for a whole new era of Mars exploration: from the lead science investigator from Cornell University. the search for habitats to the search for past or present Their collective dream of Mars exploration came life… and maybe even to human exploration one day. true when two rovers landed on Mars and began Having lasted many times longer than their original their scientific quest to understand whether Mars plan of 90 Martian days (sols), Spirit and Opportunity ever could have been a habitat for life. have confirmed that water persisted on Mars, and Since the 1960s, when humans began sending the that a Martian habitat for life is a possibility. While first tentative interplanetary probes out into the solar they continue their studies, what lies ahead are system, two-thirds of all missions to Mars have NASA missions that not only “follow the water” on failed. The technical challenges are tremendous: Mars, but also “follow the carbon,” a building block building robots that can withstand the tremendous of life. In the next decade, precision landers and shaking of launch; six months in the deep cold of rovers may even search for evidence of life itself, space; a hurtling descent through the atmosphere either signs of past microbial life in the rock record (going from 10,000 miles per hour to 0 in only six or signs of past or present life where reserves of minutes!); bouncing as high as a three-story building water ice lie beneath the Martian surface today. -
NUCLEAR SAFETY LAUNCH APPROVAL: MULTI-MISSION LESSONS LEARNED Yale Chang the Johns Hopkins University Applied Physics Laboratory
ANS NETS 2018 – Nuclear and Emerging Technologies for Space Las Vegas, NV, February 26 – March 1, 2018, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2018) NUCLEAR SAFETY LAUNCH APPROVAL: MULTI-MISSION LESSONS LEARNED Yale Chang The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd, Laurel, MD 20723 240-228-5724; [email protected] Launching a NASA radioisotope power system (RPS) trajectory to Saturn used a Venus-Venus-Earth-Jupiter mission requires compliance with two Federal mandates: Gravity Assist (VVEJGA) maneuver, where the Earth the National Environmental Policy Act of 1969 (NEPA) Gravity Assist (EGA) flyby was the primary nuclear safety and launch approval (LA), as directed by Presidential focus of NASA, the U.S. Department of Energy (DOE), the Directive/National Security Council Memorandum 25. Cassini Interagency Nuclear Safety Review Panel Nuclear safety launch approval lessons learned from (INSRP), and the public alike. A solid propellant fire test multiple NASA RPS missions, one Russian RPS mission, campaign addressed the MPF finding and led in part to two non-RPS launch accidents, and several solid the retrofit solid propellant breakup systems (BUSs) propellant fire test campaigns since 1996 are shown to designed and carried by MER-A and MER-B spacecraft have contributed to an ever-growing body of knowledge. and the deployment of plutonium detectors in the launch The launch accidents can be viewed as “unplanned area for PNH. The PNH mission decreased the calendar experiments” that provided real-world data. Lessons length of the NEPA/LA processes to less than 4 years by learned from the nuclear safety launch approval effort of incorporating lessons learned from previous missions and each mission or launch accident, and how they were tests in its spacecraft and mission designs and their applied to improve the NEPA/LA processes and nuclear NEPA/LA processes. -
Elements of Astronomy and Cosmology Outline 1
ELEMENTS OF ASTRONOMY AND COSMOLOGY OUTLINE 1. The Solar System The Four Inner Planets The Asteroid Belt The Giant Planets The Kuiper Belt 2. The Milky Way Galaxy Neighborhood of the Solar System Exoplanets Star Terminology 3. The Early Universe Twentieth Century Progress Recent Progress 4. Observation Telescopes Ground-Based Telescopes Space-Based Telescopes Exploration of Space 1 – The Solar System The Solar System - 4.6 billion years old - Planet formation lasted 100s millions years - Four rocky planets (Mercury Venus, Earth and Mars) - Four gas giants (Jupiter, Saturn, Uranus and Neptune) Figure 2-2: Schematics of the Solar System The Solar System - Asteroid belt (meteorites) - Kuiper belt (comets) Figure 2-3: Circular orbits of the planets in the solar system The Sun - Contains mostly hydrogen and helium plasma - Sustained nuclear fusion - Temperatures ~ 15 million K - Elements up to Fe form - Is some 5 billion years old - Will last another 5 billion years Figure 2-4: Photo of the sun showing highly textured plasma, dark sunspots, bright active regions, coronal mass ejections at the surface and the sun’s atmosphere. The Sun - Dynamo effect - Magnetic storms - 11-year cycle - Solar wind (energetic protons) Figure 2-5: Close up of dark spots on the sun surface Probe Sent to Observe the Sun - Distance Sun-Earth = 1 AU - 1 AU = 150 million km - Light from the Sun takes 8 minutes to reach Earth - The solar wind takes 4 days to reach Earth Figure 5-11: Space probe used to monitor the sun Venus - Brightest planet at night - 0.7 AU from the -
Space Sector Brochure
SPACE SPACE REVOLUTIONIZING THE WAY TO SPACE SPACECRAFT TECHNOLOGIES PROPULSION Moog provides components and subsystems for cold gas, chemical, and electric Moog is a proven leader in components, subsystems, and systems propulsion and designs, develops, and manufactures complete chemical propulsion for spacecraft of all sizes, from smallsats to GEO spacecraft. systems, including tanks, to accelerate the spacecraft for orbit-insertion, station Moog has been successfully providing spacecraft controls, in- keeping, or attitude control. Moog makes thrusters from <1N to 500N to support the space propulsion, and major subsystems for science, military, propulsion requirements for small to large spacecraft. and commercial operations for more than 60 years. AVIONICS Moog is a proven provider of high performance and reliable space-rated avionics hardware and software for command and data handling, power distribution, payload processing, memory, GPS receivers, motor controllers, and onboard computing. POWER SYSTEMS Moog leverages its proven spacecraft avionics and high-power control systems to supply hardware for telemetry, as well as solar array and battery power management and switching. Applications include bus line power to valves, motors, torque rods, and other end effectors. Moog has developed products for Power Management and Distribution (PMAD) Systems, such as high power DC converters, switching, and power stabilization. MECHANISMS Moog has produced spacecraft motion control products for more than 50 years, dating back to the historic Apollo and Pioneer programs. Today, we offer rotary, linear, and specialized mechanisms for spacecraft motion control needs. Moog is a world-class manufacturer of solar array drives, propulsion positioning gimbals, electric propulsion gimbals, antenna positioner mechanisms, docking and release mechanisms, and specialty payload positioners. -
IMAGING from the INSIGHT LANDER, J. Maki1, A. Trebi-Ollennu1, B
50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 2176.pdf IMAGING FROM THE INSIGHT LANDER, J. Maki1, A. Trebi-Ollennu1, B. Banerdt1, C. Sorice1, P. Bailey1, O. Khan1, W. Kim1, K. Ali1, G. Lim1, R. Deen1, H. Abarca1, N. Ruoff1, G. Hollins1, P. Andres1, J. Hall1, and the InSight Operations Team1, 1Jet Propulsion Laboratory, California Institute of Technology (4800 Oak Grove Drive, Pasadena, CA 91109, [email protected]). Introduction: After landing in Elysium Planitia, Mars Table 1 gives a summary of the key camera characteris- on November 26th, 2018, the InSight mission [1] began tics. For a more detailed description of the InSight cam- returning image data from two color cameras: the In- eras, see [2]. strument Context Camera (ICC), mounted on the lander body underneath the top deck, and the Instrument De- ployment Camera (IDC) mounted on the robotic arm (Figure 1, [2], and [3]). Images from these color cam- eras have helped the mission meet several key objec- tives, including: 1) documentation of the state of the lander, robotic arm, and surrounding terrain, 2) terrain assessment for the selection of the SEIS [4] and HP3 [5] instrument deployment locations, 3) facilitation and documention of deployment activities, 4) monitoring of the state of the instruments post-deployment, and 5) monitoring of atmospheric dust opacity. The cameras are also providing information about the geologic his- tory and physical properties of the terrain around the lander [6,7,8,9]. Figure 2. First image acquired by the ICC. The trans- parent dust cover was in the closed position when this image was acquired. -
A Healthy Outlook NASA’S FY16 Budget Funds JPL’S Ongoing Work, Future Initiatives
FEBRUARY Jet Propulsion 2015 Laboratory VOLUME 45 NUMBER 2 A healthy outlook NASA’s FY16 budget funds JPL’s ongoing work, future initiatives By Mark Whalen The White House’s budget request for fiscal year 2016 includes “Last year was an exciting year and I think this year is going to full funding for all of JPL’s ongoing missions as well as continuing be even more exciting,” JPL Director Charles Elachi told employ- support for development of a mission to Jupiter’s moon Europa ees in an all-hands meeting. next decade. Continued on page 2 BUDGET Continued from page 1 2 The request includes about $5.2 billion Space Research Organization; Orbiting sion,” Elachi said. “In order to deploy as- for science overall, of which $1.95 billion Carbon Observatory 3; the Surface Wa- sets on Mars for humans, you need a lot Universe is requested for Earth science and $1.36 ter Ocean Topography mission; and a of tonnage. Electric propulsion is the most billion for planetary science. NASA’s total Gravity Recovery and Climate Experiment efficient way to transport heavy mass.” FY 2016 budget requests $18.5 billion. follow-on mission. The proposed asteroid mission’s two “NASA did pretty well in this very tight All ongoing Mars activities and op- major objectives, he added, are illustrat- budget environment,” said Elachi, noting erations at JPL are fully funded, as is ing high-power electric propulsion and an increase of $450 million relative to FY the continuing development of the Mars providing a platform to assess astronauts 14. -
In Search of a Cure IIT 2010
Features F ALL 2005 IIT MAGAZINE Associate Vice President of Communications and Marketing Catherine Braendel Director of Marketing Marlis Manley Broadhead Managing Editor Chelsea Kalberloh Jackson Contributing Editors Catherine Bruck Beth Duncan Jon Kavanaugh Anne Johnson Theresa Minarik Melanie Nimrodi Abigail Nall Linda Packer Beth Wittbrodt Art Editor Theresa Minarik Design 18 Panebianco, Inc. IIT Magazine is published three times Cover: The Crowded Sky a year by the Office of Communications Cell phones, laptops, radios, and and Marketing. © 2005 airplanes—even microwaves—are Send Letters To all competing for increasingly con- IIT Magazine gested air space. Researchers at Office of Communications and Marketing IIT’s Wireless Interference Labora- 3300 South Federal Street Main Building, Suite 503 tory are studying how to prevent Chicago, IL 60616-3793 a frequency overload. 22 Or Email [email protected] Big Things in Small Packages Send Alumni News To What could the ultra-small neutrino [email protected]. tell us about the universe? Professor 12 Chris White is shooting them from Founded in 1890, Illinois Institute of Technology is a private Chicago to Minnesota in hopes of In Search of a Cure Ph.D.-granting university that awards finding out. IIT is steadily building its reputation degrees in engineering, the sciences, math- ematics, architecture, law, design, psycholo- in cancer research. Bolstered by sev- gy, and business. IIT takes an interprofes- eral high-profile grants, researchers 24 sional approach to research and teaching. at IITRI and faculty and students in By reaching across geographic boundaries, engineering and the life sciences are A Man for Mars academic disciplines, and the professions, investigating new ways to detect, Now more than ever, the world is IIT prepares students for leadership roles in an increasingly complex global workplace treat, and prevent this disease. -
Spaceport News America's Gateway to the Universe
MissionUpdate Vol. 36, No. 17 August 29, 1997 Shuttle-Mir Spaceport News America's gateway to the universe. Leading the world in preparing and launching missions to Earth and beyond. John F. Kennedy Space Center Internal EVA conducted: Mir 24 cosmonauts Anatoly Solovyev and Pavel Vinogradov and U.S. astronaut Michael Foale continue the process of verifying restoration of electrical power to the Russian Busy week at Space Station Mir after an intravehicular activity Aug. 22. Troubleshooting of the oxygen- generating system also was under America’s way, and an extravehicular activity was tentatively set for the first week of September to conduct an spaceport inspection of leak sites on the damaged Spektr module. STS-86 ONE Shuttle rolled out to the launch pad Aug. 18 and another returned to KSC the following day. The Space Shuttle Atlantis (above) is now at Pad 39A, undergoing final preparations for launch Sept. 25 on the seventh Shuttle-Mir docking mission, STS-86. The Terminal Countdown Demonstration Test is scheduled for Sept. 9- Atlantis (20th flight OV-104) 10. At about 7:08 a.m., Aug. 19, Discovery (right) 87th Shuttle flight touched down on Runway 33 of KSC's Shuttle Landing Pad 39A Facility, bringing Mission STS-85 to a successful 7th Mir Docking conclusion. Researchers were delighted with the Launch: Sept. 25, 10:34 p.m. performance of the primary scientific instruments flown Crew: Wetherbee; Bloomfield; on the 86th Shuttle flight, the Cryogenic Infrared Parazynski; Titov; Chretien Spectrometers and Telescopes for the Atmosphere (France); Lawrence; Wolf. (CRISTA)-SPAS and the Middle Atmosphere High Commander Wetherbee flew on Resolution Spectrograph Investigation (MAHRSI), both of STS-63, the Shuttle flight that which performed flawlessly.