The ANU Wifes Supernova Programme (AWSNAP)

Total Page:16

File Type:pdf, Size:1020Kb

The ANU Wifes Supernova Programme (AWSNAP) Publications of the Astronomical Society of Australia (PASA), Vol. 33, e055, 29 pages (2016). © Astronomical Society of Australia 2016; published by Cambridge University Press. doi:10.1017/pasa.2016.47 The ANU WiFeS SuperNovA Programme (AWSNAP) Michael J. Childress1,2,3,12, Brad E. Tucker1,2, Fang Yuan1,2, Richard Scalzo1, Ashley Ruiter1,2, Ivo Seitenzahl1,2, Bonnie Zhang1, Brian Schmidt1, Borja Anguiano4, Suryashree Aniyan1, Daniel D. R. Bayliss1,5, Joao Bento1, Michael Bessell1, Fuyan Bian1, Rebecca Davies1, Michael Dopita1, Lisa Fogarty6, Amelia Fraser-McKelvie7,8, Ken Freeman1, Rajika Kuruwita1, Anne M. Medling1, Simon J. Murphy1,SimonJ.Murphy6,9, Matthew Owers4,10, Fiona Panther1,2, Sarah M. Sweet1, Adam D. Thomas1 and George Zhou11,1 1Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia 2ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Canberra, ACT, Australia 3School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK 4Department of Physics and Astronomy, Macquarie University, NSW 2109, Australia 5Observatoire Astronomique de l’Université de Genève, 51 ch. des Maillettes, 1290 Versoix, Switzerland 6Sydney Institute for Astronomy (SIfA), School of Physics, The University of Sydney, NSW 2006, Australia 7School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia 8Monash Centre for Astrophysics (MoCA), Monash University, Clayton, Victoria 3800, Australia 9Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark 10Australian Astronomical Observatory, PO Box 915, North Ryde, NSW 1670, Australia 11Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138, USA 12Email: [email protected] (RECEIVED July 11, 2016; ACCEPTED October 5, 2016) Abstract This paper presents the first major data release and survey description for the ANU WiFeS SuperNovA Programme. ANU WiFeS SuperNovA Programme is an ongoing supernova spectroscopy campaign utilising the Wide Field Spectrograph on the Australian National University 2.3-m telescope. The first and primary data release of this programme (AWSNAP-DR1) releases 357 spectra of 175 unique objects collected over 82 equivalent full nights of observing from 2012 July to 2015 August. These spectra have been made publicly available via the WISEREP supernova spectroscopy repository. We analyse the ANU WiFeS SuperNovA Programme sample of Type Ia supernova spectra, including measurements of narrow sodium absorption features afforded by the high spectral resolution of the Wide Field Spectrograph instrument. In some cases, we were able to use the integral-field nature of the Wide Field Spectrograph instrument to measure the rotation velocity of the SN host galaxy near the SN location in order to obtain precision sodium absorption velocities. We also present an extensive time series of SN 2012dn, including a near-nebular spectrum which both confirms its ‘super-Chandrasekhar’ status and enables measurement of the sub-solar host metallicity at the SN site. Keywords: supernovae: general – supernovae: individual: (SN 2012dn) 1 INTRODUCTION ously, these surveys have discovered hundreds of supernovae (SNe) of ‘traditional’ types (see Filippenko 1997, for a re- In the last decade, wide-field extragalactic transient view), enabling statistical analyses of the properties of these surveys—such as the Palomar Transient Factory (PTF; SNe. Rau et al. 2009; Law et al. 2009), the Panoramic Sur- Whilst imaging surveys have provided discovery and light vey Telescope and Rapid Response System (PanSTARRS; curves for this wealth of new transients, complementary spec- Kaiser et al. 2010), the Catalina Real-time Transient Sur- troscopy surveys have provided the critical insight into the vey (CRTS; Drake et al. 2009), the Texas Supernova Search physical origins of these events. Numerous supernova spec- (Quimby 2006; Yuan 2010), and the All-Sky Automated troscopy surveys have released thousands of high-quality Survey for Supernovae (ASAS-SN; Shappee et al. 2014; spectra of nearby SNe into the public domain (Matheson Holoien et al. 2016)—have revolutionised our understand- et al. 2008; Blondin et al. 2012; Silverman et al. 2012c;Fo- ing of the myriad ways in which stars explode through the latelli et al. 2013; Modjaz et al. 2014). These surveys have discovery of new classes of exotic transients. Simultane- frequently been dedicated to the spectroscopic follow-up of 1 Downloaded from https://www.cambridge.org/core. University of Sydney Library, on 09 Oct 2017 at 03:35:34, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/pasa.2016.47 2 Childress et al. Type Ia supernovae (SNe Ia) which, due to their rates and lu- Table 1. Details of WiFeS gratings. minosities, dominate any magnitude-limited imaging survey. λ λ Such surveys have revealed that photometrically similar SNe Grating min max Pixel size Resolution can still exhibit diversity of spectroscopic behaviour, indicat- B3000 3 500 A˚ 5 700 A0.77˚ A1.5˚ A˚ ing spectra remain a critical tool for revealing the full nature R3000 5 400 A˚ 9 570 A1.25˚ A2.5˚ A˚ of the supernova progenitors (particularly for SNe Ia). Addi- R7000 5 400 A˚ 7 020 A0.44˚ A0.9˚ A˚ tionally, spectra remain critical for supernova classification— particularly at early phases when the full photometric evolu- tion has yet to be revealed. Such early classifications then inform the use of additional SN follow-up facilities, includ- 2 OBSERVATIONS AND DATA DESCRIPTION ing those operating outside the optical window. Recently, the Public ESO Spectroscopic Survey for Tran- Observations for AWSNAP were conducted with the sient Objects (PESSTO; Smartt et al. 2015) began a multi- WiFeS—(Dopita et al. 2007, 2010) on the ANU 2.3-m tele- year programme on the NTT 3.6-m telescope in Chile, with scope at Siding Spring Observatory in northern New South the goal of obtaining high-quality spectral time series for Wales, Australia. Observing nights were classically sched- roughly 100 transients (of all kinds) to be released to the uled with a single night of observing every 8–15 d. On some public. This survey has already released hundreds of spectra occasions, special objects of interest were observed during in its first two annual data releases, and continues to release all non-AWSNAP nights. A full list of the AWSNAP transient SN classification spectra within typically1dfromobserva- spectra is presented in Table A3 in Appendix A. In the sec- tion. Other ongoing SN spectroscopy programmes, such as tions that follow, we describe the processing of the WiFeS the Asiago Supernova Programme (Tomasella et al. 2014), data, then characterise both the long-term performance of the also make important contributions to the transient com- WiFeS instrument and observing conditions at Siding Spring. munity through timely SN classification and spectroscopy releases. 2.1. Data reduction and supernova spectrum Here, we describe our ongoing spectroscopy programme extraction AWSNAP—the ANU WiFeS SuperNovAProgramme— which uses the Wide Field Spectrograph (WiFeS; Dopita et al. The WiFeS instrument is an image-slicing integral field spec- 2007, 2010) on the Australian National University (ANU) trograph with a wide 25 arcsec × 38 arcsec field of view. 2.3-m telescope at Siding Spring Observatory in Australia. For AWSNAP, this frequently provided simultaneous inte- In this paper, we describe the data processing procedures for gral field observations of SNe and their host galaxies. The this ongoing programme, and describe the first AWSNAP WiFeS image slicer breaks the field of view into 25 ‘slitlets’ data release (AWSNAP DR1) comprising 357 spectra of 175 of width 1 arcsec, which then pass through a dichroic beam- supernova of various types obtained during 82 classically splitter and volume phase holographic (VPH) gratings before scheduled observing nights over a 3-yr period from 2012 arriving at 4k × 4k CCD detectors. AWSNAP observations July to 2015 August. Most of these spectra have been re- were always conducted with a CCD binning of 2 in the ver- leased publicly via the Weizmann Interactive Supernova data tical direction—this sets the vertical spatial scale of the de- REPository (WISeREP1— Yaron & Gal-Yam 2012), with the tector to be 1 arcsec, yielding final integral field elements (or remainder set to be released within the next year as part of ‘spaxels’) of size 1 arcsec × 1 arcsec. Typically seeing at forthcoming PESSTO papers. This programme will continue Siding Spring is roughly 2 arcsec (see Section 2.3). to observe SNe of interest and classify SN discoveries from The VPH gratings utilised by WiFeS provide a higher transient searches such as the new SkyMapper Transients wavelength resolution than traditional glass gratings. The Survey (Keller et al. 2007). We aim to release future SN clas- low- and high-resolution gratings provide resolutions of R = sification spectra from AWSNAP publicly via WISeREP in 3 000 and R = 7 000, respectively, yielding velocity resolu- −1 parallel with any classification announcements. tions of up to σv ∼ 45 km s which is ideal for observ- This paper is organised as follows. Section 2 describes the ing nebular emission lines from ionised regions in galax- WiFeS data processing and SN spectrum extraction proce- ies. For SNe, this can reveal narrow absorption features (see dures. Section 3 presents general properties of our SN sam- Section 4.2) from circumstellar material (CSM) which are ple and compares AWSNAP DR1 to other public SN spectra typically smeared out by lower resolution spectrographs. releases. In Section 4, we present some analysis of the prop- AWSNAP observations were generally conducted with the erties of the SNe Ia in our sample, including measurement of lower resolution B3000 and R3000 gratings for the blue and narrow sodium absorption features afforded by the interme- red arms of the spectrograph, respectively, with the RT560 diate resolution of the WiFeS spectrograph. Some concluding dichroic beamsplitter. Occasionally, the R7000 grating was remarks follow in Section 5.
Recommended publications
  • Investigating the Unusual Spectroscopic Time-Evolution in SN 2012Fr∗
    Draft version October 4, 2018 Typeset using LATEX default style in AASTeX62 Investigating the Unusual Spectroscopic Time-Evolution in SN 2012fr∗ Christopher Cain,1, 2, 3 E. Baron,2, 4, 5 M. M. Phillips,6 Carlos Contreras,7, 8 Chris Ashall,9 Maximilian D. Stritzinger,8 Christopher R. Burns,10 Anthony L. Piro,10 Eric Y. Hsiao,9, 7, 8 P. Hoeflich,9 Kevin Krisciunas,11 and Nicholas B. Suntzeff11 1Azusa Pacific University 901 E Alosta Ave, Azusa, California, 91702, USA 2University of Oklahoma 440 W. Brooks, Rm 100, Norman, Oklahoma, 73019, USA 3Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA 4Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany 5Visiting Astronomer, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark. 6Las Campanas Observatory, Carnegie Observatories Casilla 601, La Serena, Chile 7Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena, Chile 8Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark. 9Department of Physics, Florida State University, Tallahassee, FL 32306, USA 10Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101, USA 11George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA (Received ; Revised ; Accepted ) Submitted to ApJ ABSTRACT The type Ia supernova (SN) 2012fr displayed an unusual combination of its Si II λλ5972, 6355 fea- tures. This includes the ratio of their pseudo equivalent widths, placing it at the border of the Shallow Silicon (SS) and Core Normal (CN) spectral subtype in the Branch diagram, while the Si IIλ6355 expansion velocities places it as a High-Velocity (HV) object in the Wang et al.
    [Show full text]
  • Pos(BASH 2013)009 † ∗ [email protected] Speaker
    The Progenitor Systems and Explosion Mechanisms of Supernovae PoS(BASH 2013)009 Dan Milisavljevic∗ † Harvard University E-mail: [email protected] Supernovae are among the most powerful explosions in the universe. They affect the energy balance, global structure, and chemical make-up of galaxies, they produce neutron stars, black holes, and some gamma-ray bursts, and they have been used as cosmological yardsticks to detect the accelerating expansion of the universe. Fundamental properties of these cosmic engines, however, remain uncertain. In this review we discuss the progress made over the last two decades in understanding supernova progenitor systems and explosion mechanisms. We also comment on anticipated future directions of research and highlight alternative methods of investigation using young supernova remnants. Frank N. Bash Symposium 2013: New Horizons in Astronomy October 6-8, 2013 Austin, Texas ∗Speaker. †Many thanks to R. Fesen, A. Soderberg, R. Margutti, J. Parrent, and L. Mason for helpful discussions and support during the preparation of this manuscript. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Supernova Progenitor Systems and Explosion Mechanisms Dan Milisavljevic PoS(BASH 2013)009 Figure 1: Left: Hubble Space Telescope image of the Crab Nebula as observed in the optical. This is the remnant of the original explosion of SN 1054. Credit: NASA/ESA/J.Hester/A.Loll. Right: Multi- wavelength composite image of Tycho’s supernova remnant. This is associated with the explosion of SN 1572. Credit NASA/CXC/SAO (X-ray); NASA/JPL-Caltech (Infrared); MPIA/Calar Alto/Krause et al.
    [Show full text]
  • Curriculum Vitae Avishay Gal-Yam
    January 27, 2017 Curriculum Vitae Avishay Gal-Yam Personal Name: Avishay Gal-Yam Current address: Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot, Israel. Telephones: home: 972-8-9464749, work: 972-8-9342063, Fax: 972-8-9344477 e-mail: [email protected] Born: March 15, 1970, Israel Family status: Married + 3 Citizenship: Israeli Education 1997-2003: Ph.D., School of Physics and Astronomy, Tel-Aviv University, Israel. Advisor: Prof. Dan Maoz 1994-1996: B.Sc., Magna Cum Laude, in Physics and Mathematics, Tel-Aviv University, Israel. (1989-1993: Military service.) Positions 2013- : Head, Physics Core Facilities Unit, Weizmann Institute of Science, Israel. 2012- : Associate Professor, Weizmann Institute of Science, Israel. 2008- : Head, Kraar Observatory Program, Weizmann Institute of Science, Israel. 2007- : Visiting Associate, California Institute of Technology. 2007-2012: Senior Scientist, Weizmann Institute of Science, Israel. 2006-2007: Postdoctoral Scholar, California Institute of Technology. 2003-2006: Hubble Postdoctoral Fellow, California Institute of Technology. 1996-2003: Physics and Mathematics Research and Teaching Assistant, Tel Aviv University. Honors and Awards 2012: Kimmel Award for Innovative Investigation. 2010: Krill Prize for Excellence in Scientific Research. 2010: Isreali Physical Society (IPS) Prize for a Young Physicist (shared with E. Nakar). 2010: German Federal Ministry of Education and Research (BMBF) ARCHES Prize. 2010: Levinson Physics Prize. 2008: The Peter and Patricia Gruber Award. 2007: European Union IRG Fellow. 2006: “Citt`adi Cefal`u"Prize. 2003: Hubble Fellow. 2002: Tel Aviv U. School of Physics and Astronomy award for outstanding achievements. 2000: Colton Fellow. 2000: Tel Aviv U. School of Physics and Astronomy research and teaching excellence award.
    [Show full text]
  • Iptf14hls: a Unique Long-Lived Supernova from a Rare Ex- Plosion Channel
    iPTF14hls: A unique long-lived supernova from a rare ex- plosion channel I. Arcavi1;2, et al. 1Las Cumbres Observatory Global Telescope Network, Santa Barbara, CA 93117, USA. 2Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA. 1 Most hydrogen-rich massive stars end their lives in catastrophic explosions known as Type 2 IIP supernovae, which maintain a roughly constant luminosity for ≈100 days and then de- 3 cline. This behavior is well explained as emission from a shocked and expanding hydrogen- 56 4 rich red supergiant envelope, powered at late times by the decay of radioactive Ni produced 1, 2, 3 5 in the explosion . As the ejected mass expands and cools it becomes transparent from the 6 outside inwards, and decreasing expansion velocities are observed as the inner slower-moving 7 material is revealed. Here we present iPTF14hls, a nearby supernova with spectral features 8 identical to those of Type IIP events, but remaining luminous for over 600 days with at least 9 five distinct peaks in its light curve and expansion velocities that remain nearly constant in 10 time. Unlike other long-lived supernovae, iPTF14hls shows no signs of interaction with cir- 11 cumstellar material. Such behavior has never been seen before for any type of supernova 12 and it challenges all existing explosion models. Some of the properties of iPTF14hls can be 13 explained by the formation of a long-lived central power source such as the spindown of a 4, 5, 6 7, 8 14 highly magentized neutron star or fallback accretion onto a black hole .
    [Show full text]
  • Deaths of Stars
    Deaths of stars • Evolution of high mass stars • Where were the elements in your body made? • Stellar remnants • Degenerate gases • White dwarfs • Neutron stars In high mass stars, nuclear burning continues past Helium 1. Hydrogen burning: 10 Myr 2. Helium burning: 1 Myr 3. Carbon burning: 1000 years 4. Neon burning: ~10 years 5. Oxygen burning: ~1 year 6. Silicon burning: ~1 day Finally builds up an inert Iron core Structure of an Old High-Mass Star Why does nuclear fusion stop at Iron? Fusion versus Fission Fusion in massive stars makes elements like Ne, Si, S, Ca, Fe Core collapse • Iron core is degenerate • Core grows until it is too heavy to support itself • Core collapses, density increases, normal iron nuclei are converted into neutrons with the emission of neutrinos • Core collapse stops, neutron star is formed • Rest of the star collapses in on the core, but bounces off the new neutron star If I drop a ball, will it bounce higher than it began? Supernova explosion Core-Collapse Supernova SN 2011fe in M101 (Pinwheel) In 1987 a nearby supernova gave us a close-up look at the death of a massive star An Unusual Supernova • SN 1987A appears to have a set of three glowing rings • Relics of a hydrogen-rich outer atmosphere, ejected by gentle stellar winds from the star when it was a red supergiant. • The gas expanded in a hourglass shape because it was blocked from expanding around the star’s equator either by a preexisting ring of gas or by the orbit of an as-yet- unseen companion star.
    [Show full text]
  • Ucalgary 2017 Welbankscamar
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2017 Photometric and Spectroscopic Signatures of Superluminous Supernova Events The puzzling case of ASASSN-15lh Welbanks Camarena, Luis Carlos Welbanks Camarena, L. C. (2017). Photometric and Spectroscopic Signatures of Superluminous Supernova Events The puzzling case of ASASSN-15lh (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/27339 http://hdl.handle.net/11023/3972 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Photometric and Spectroscopic Signatures of Superluminous Supernova Events The puzzling case of ASASSN-15lh by Luis Carlos Welbanks Camarena A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN PHYSICS AND ASTRONOMY CALGARY, ALBERTA JULY, 2017 c Luis Carlos Welbanks Camarena 2017 Abstract Superluminous supernovae are explosions in the sky that far exceed the luminosity of standard supernova events. Their discovery shattered our understanding of stellar evolution and death. Par- ticularly, the discovery of ASASSN-15lh a monstrous event that pushed some of the astrophysical models to the limit and discarded others. In this thesis, I recount the photometric and spectroscopic signatures of superluminous super- novae, while discussing the limitations and advantages of the models brought forward to explain them.
    [Show full text]
  • The Korean 1592--1593 Record of a Guest Star: Animpostor'of The
    Journal of the Korean Astronomical Society 49: 00 ∼ 00, 2016 December c 2016. The Korean Astronomical Society. All rights reserved. http://jkas.kas.org THE KOREAN 1592–1593 RECORD OF A GUEST STAR: AN ‘IMPOSTOR’ OF THE CASSIOPEIA ASUPERNOVA? Changbom Park1, Sung-Chul Yoon2, and Bon-Chul Koo2,3 1Korea Institute for Advanced Study, 85 Hoegi-ro, Dongdaemun-gu, Seoul 02455, Korea; [email protected] 2Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul 08826, Korea [email protected], [email protected] 3Visiting Professor, Korea Institute for Advanced Study, Dongdaemun-gu, Seoul 02455, Korea Received |; accepted | Abstract: The missing historical record of the Cassiopeia A (Cas A) supernova (SN) event implies a large extinction to the SN, possibly greater than the interstellar extinction to the current SN remnant. Here we investigate the possibility that the guest star that appeared near Cas A in 1592{1593 in Korean history books could have been an `impostor' of the Cas A SN, i.e., a luminous transient that appeared to be a SN but did not destroy the progenitor star, with strong mass loss to have provided extra circumstellar extinction. We first review the Korean records and show that a spatial coincidence between the guest star and Cas A cannot be ruled out, as opposed to previous studies. Based on modern astrophysical findings on core-collapse SN, we argue that Cas A could have had an impostor and derive its anticipated properties. It turned out that the Cas A SN impostor must have been bright (MV = −14:7 ± 2:2 mag) and an amount of dust with visual extinction of ≥ 2:8 ± 2:2 mag should have formed in the ejected envelope and/or in a strong wind afterwards.
    [Show full text]
  • Central Engines and Environment of Superluminous Supernovae
    Central Engines and Environment of Superluminous Supernovae Blinnikov S.I.1;2;3 1 NIC Kurchatov Inst. ITEP, Moscow 2 SAI, MSU, Moscow 3 Kavli IPMU, Kashiwa with E.Sorokina, K.Nomoto, P. Baklanov, A.Tolstov, E.Kozyreva, M.Potashov, et al. Schloss Ringberg, 26 July 2017 First Superluminous Supernova (SLSN) is discovered in 2006 -21 1994I 1997ef 1998bw -21 -20 56 2002ap Co to 2003jd 56 2007bg -19 Fe 2007bi -20 -18 -19 -17 -16 -18 Absolute magnitude -15 -17 -14 -13 -16 0 50 100 150 200 250 300 350 -20 0 20 40 60 Epoch (days) Superluminous SN of type II Superluminous SN of type I SN2006gy used to be the most luminous SN in 2006, but not now. Now many SNe are discovered even more luminous. The number of Superluminous Supernovae (SLSNe) discovered is growing. The models explaining those events with the minimum energy budget involve multiple ejections of mass in presupernova stars. Mass loss and build-up of envelopes around massive stars are generic features of stellar evolution. Normally, those envelopes are rather diluted, and they do not change significantly the light produced in the majority of supernovae. 2 SLSNe are not equal to Hypernovae Hypernovae are not extremely luminous, but they have high kinetic energy of explosion. Afterglow of GRB130702A with bumps interpreted as a hypernova. Alina Volnova, et al. 2017. Multicolour modelling of SN 2013dx associated with GRB130702A. MNRAS 467, 3500. 3 Our models of LC with STELLA E ≈ 35 foe. First year light ∼ 0:03 foe while for SLSNe it is an order of magnitude larger.
    [Show full text]
  • A PANCHROMATIC VIEW of the RESTLESS SN 2009Ip REVEALS the EXPLOSIVE EJECTION of a MASSIVE STAR ENVELOPE
    DRAFT VERSION SEPTEMBER 26, 2013 Preprint typeset using LATEX style emulateapj v. 11/10/09 A PANCHROMATIC VIEW OF THE RESTLESS SN 2009ip REVEALS THE EXPLOSIVE EJECTION OF A MASSIVE STAR ENVELOPE R. MARGUTTI1 , D. MILISAVLJEVIC1 , A. M. SODERBERG1 , R. CHORNOCK1 , B. A. ZAUDERER1 , K. MURASE2 , C. GUIDORZI3 , N. E. SANDERS1 , P. KUIN4 , C. FRANSSON5 , E. M. LEVESQUE6 , P. CHANDRA7 , E. BERGER1 , F. B. BIANCO8 , P. J. BROWN9 , P. CHALLIS7 , E. CHATZOPOULOS10 , C. C. CHEUNG11 , C. CHOI12 , L. CHOMIUK13,14 , N. CHUGAI15 , C. CONTRERAS16 , M. R. DROUT1 , R. FESEN17 , R. J. FOLEY1 , W. FONG1 , A. S. FRIEDMAN1,18 , C. GALL19,20 , N. GEHRELS20 , J. HJORTH19 , E. HSIAO21 , R. KIRSHNER1 , M. IM12 , G. LELOUDAS22,19 , R. LUNNAN1 , G. H. MARION1 , J. MARTIN23 , N. MORRELL24 , K. F. NEUGENT25 , N. OMODEI26 , M. M. PHILLIPS24 , A. REST27 , J. M. SILVERMAN10 , J. STRADER13 , M. D. STRITZINGER28 , T. SZALAI29 , N. B. UTTERBACK17 , J. VINKO29,10 , J. C. WHEELER10 , D. ARNETT30 , S. CAMPANA31 , R. CHEVALIER32 , A. GINSBURG6 , A. KAMBLE1 , P. W. A. ROMING33,34 , T. PRITCHARD34 , G. STRINGFELLOW6 Draft version September 26, 2013 ABSTRACT The double explosion of SN 2009ip in 2012 raises questions about our understanding of the late stages of massive star evolution. Here we present a comprehensive study of SN 2009ip during its remarkable re- brightenings. High-cadence photometric and spectroscopic observations from the GeV to the radio band ob- tained from a variety of ground-based and space facilities (including the VLA, Swift, Fermi, HST and XMM) 50 constrain SN 2009ip to be a low energy (E ∼ 10 erg for an ejecta mass ∼ 0:5M ) and asymmetric explo- sion in a complex medium shaped by multiple eruptions of the restless progenitor star.
    [Show full text]
  • Asymmetries in Sn 2014J Near Maximum Light Revealed Through Spectropolarimetry
    ASYMMETRIES IN SN 2014J NEAR MAXIMUM LIGHT REVEALED THROUGH SPECTROPOLARIMETRY Item Type Article Authors Porter, Amber; Leising, Mark D.; Williams, G. Grant; Milne, P. A.; Smith, Paul; Smith, Nathan; Bilinski, Christopher; Hoffman, Jennifer L.; Huk, Leah; Leonard, Douglas C. Citation ASYMMETRIES IN SN 2014J NEAR MAXIMUM LIGHT REVEALED THROUGH SPECTROPOLARIMETRY 2016, 828 (1):24 The Astrophysical Journal DOI 10.3847/0004-637X/828/1/24 Publisher IOP PUBLISHING LTD Journal The Astrophysical Journal Rights © 2016. The American Astronomical Society. All rights reserved. Download date 27/09/2021 22:28:24 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/622057 The Astrophysical Journal, 828:24 (12pp), 2016 September 1 doi:10.3847/0004-637X/828/1/24 © 2016. The American Astronomical Society. All rights reserved. ASYMMETRIES IN SN 2014J NEAR MAXIMUM LIGHT REVEALED THROUGH SPECTROPOLARIMETRY Amber L. Porter1, Mark D. Leising1, G. Grant Williams2,3, Peter Milne2, Paul Smith2, Nathan Smith2, Christopher Bilinski2, Jennifer L. Hoffman4, Leah Huk4, and Douglas C. Leonard5 1 Department of Physics and Astronomy, Clemson University, 118 Kinard Laboratory, Clemson, SC 29634, USA; [email protected] 2 Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721, USA 3 MMT Observatory, P.O. Box 210065, University of Arizona, Tucson, AZ 85721-0065, USA 4 Department of Physics and Astronomy, University of Denver, 2112 East Wesley Avenue, Denver, CO 80208, USA 5 Department of Astronomy, San Diego State University, PA-210, 5500 Campanile Drive, San Diego, CA 92182-1221, USA Received 2016 February 14; revised 2016 May 11; accepted 2016 May 12; published 2016 August 24 ABSTRACT We present spectropolarimetric observations of the nearby Type Ia supernova SN 2014J in M82 over six epochs: +0, +7, +23, +51, +77, +109, and +111 days with respect to B-band maximum.
    [Show full text]
  • A SWIFT LOOK at SN 2011Fe: the EARLIEST ULTRAVIOLET OBSERVATIONS of a TYPE Ia SUPERNOVA
    The Astrophysical Journal, 753:22 (9pp), 2012 July 1 doi:10.1088/0004-637X/753/1/22 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A SWIFT LOOK AT SN 2011fe: THE EARLIEST ULTRAVIOLET OBSERVATIONS OF A TYPE Ia SUPERNOVA Peter J. Brown1,2, Kyle S. Dawson1, Massimiliano de Pasquale3, Caryl Gronwall4,5, Stephen Holland6, Stefan Immler7,8,9, Paul Kuin10, Paolo Mazzali11,12, Peter Milne13, Samantha Oates10, and Michael Siegel4 1 Department of Physics & Astronomy, University of Utah, 115 South 1400 East 201, Salt Lake City, UT 84112, USA; [email protected] 2 Department of Physics and Astronomy, George P. and Cynthia Woods Mitchell Institute for Fundamental Physics & Astronomy, Texas A. & M. University, 4242 TAMU, College Station, TX 77843, USA 3 Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA 4 Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802, USA 5 Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, USA 6 Space Telescope Science Center, 3700 San Martin Dr., Baltimore, MD 21218, USA 7 Astrophysics Science Division, Code 660.1, 8800 Greenbelt Road, Goddard Space Flight Centre, Greenbelt, MD 20771, USA 8 Department of Astronomy, University of Maryland, College Park, MD 20742, USA 9 Center for Research and Exploration in Space Science and Technology, NASA Goddard Space Flight Center, Greenbelt, MD 20771,
    [Show full text]
  • Qt7gs801md.Pdf
    Lawrence Berkeley National Laboratory Recent Work Title Constraining the progenitor companion of the nearby Type Ia SN 2011fe with a nebular spectrum at +981 d Permalink https://escholarship.org/uc/item/7gs801md Journal Monthly Notices of the Royal Astronomical Society, 454(2) ISSN 0035-8711 Authors Graham, ML Nugent, PE Sullivan, M et al. Publication Date 2015-12-01 DOI 10.1093/mnras/stv1888 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Mon. Not. R. Astron. Soc. 000, 1{11 (2014) Printed 13 November 2015 (MN LATEX style file v2.2) Constraining the Progenitor Companion of the Nearby Type Ia SN 2011fe with a Nebular Spectrum at +981 Days M. L. Graham1?, P. E. Nugent1;2, M. Sullivan3, A. V. Filippenko1, S. B. Cenko4;5, J. M. Silverman6, K. I. Clubb1, W. Zheng1 1 Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA 2 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 90R4000, Berkeley, CA 94720, USA 3 Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom 4 Astrophysics Science Division, NASA Goddard Space Flight Center, MC 661, Greenbelt, MD 20771, USA 5 Joint Space-Science Institute, University of Maryland, College Park, MD 20742, USA 6 Department of Astronomy, University of Texas, Austin, TX 78712, USA 13 November 2015 ABSTRACT We present an optical nebular spectrum of the nearby Type Ia supernova 2011fe, obtained 981 days after explosion. SN 2011fe exhibits little evolution since the +593 day optical spectrum, but there are several curious aspects in this new extremely late-time regime.
    [Show full text]