Clethodim: Final Report

Total Page:16

File Type:pdf, Size:1020Kb

Clethodim: Final Report SERA TR 056-08-02b Scoping/Screening Level Risk Assessment on Clethodim: Final Report Submitted to: Dr. Harold Thistle USDA Forest Service Forest Health Technology Enterprise Team 180 Canfield St. Morgantown, WV 26505 Email: [email protected] USDA Forest Service Contract: AG-3187-C-12-0009 USDA Forest Service Order Number: AG-3187-D-14-0107 SERA Internal Task No. 56-08 Submitted by: Patrick R. Durkin Syracuse Environmental Research Associates, Inc. 8125 Solomon Seal Manlius, New York 13104 E-Mail: [email protected] Home Page: www.sera-inc.com October 30, 2014 Preface This report is based on a revision to SERA TR-056-05-01-02a, Scoping/Screening Level Risk Assessment on Clethodim, dated March 28, 2014. This document is updated to reflect the recent documents released by the U.S. EPA’s Office of Pesticide Programs’ registration review of clethodim (U.S. EPA/OPP/EFED 2013a, 2014a; U.S. EPA/OPP/HED 2013a,b, 2014a) as well as peer review comments. This document is compliant with Section 508 of the Rehabilitation Act of 1973 as amended by the Workforce Investment Act of 1998. The compliance report is attached to the PDF version of this risk assessment. Table of Contents LIST OF TABLES ........................................................................................................................ vii LIST OF FIGURES ...................................................................................................................... vii LIST OF APPENDICES .............................................................................................................. viii LIST OF ATTACHMENTS ........................................................................................................ viii ACRONYMS, ABBREVIATIONS, AND SYMBOLS ................................................................ ix CONVERSION OF SCIENTIFIC NOTATION ......................................................................... xiii EXECUTIVE SUMMARY ......................................................................................................... xiv 1. INTRODUCTION ...................................................................................................................... 1 1.1. Chemical Specific Information ............................................................................................ 1 1.2. General Information ............................................................................................................. 3 2. PROGRAMS DESCRIPTION ................................................................................................... 6 2.1. Overview .............................................................................................................................. 6 2.2. Chemical Description and Commercial Formulations ......................................................... 7 2.3. Application Methods .......................................................................................................... 10 2.4. Mixing and Application Rates ........................................................................................... 11 2.5. Use Statistics ...................................................................................................................... 12 3. HUMAN HEALTH .................................................................................................................. 14 3.1. HAZARD IDENTIFICATION ........................................................................................ 14 3.1.1. Overview ..................................................................................................................... 14 3.1.2. Mechanism of Action .................................................................................................. 14 3.1.3. Pharmacokinetics and Metabolism ............................................................................. 15 3.1.3.1. General Considerations ........................................................................................ 15 3.1.3.2. Absorption............................................................................................................ 17 3.1.3.2.1. First-Order Dermal Absorption..................................................................... 17 3.1.3.2.2. Zero-Order Dermal Absorption .................................................................... 19 3.1.3.3. Excretion .............................................................................................................. 19 3.1.4. Acute Oral Toxicity .................................................................................................... 20 3.1.5. Subchronic or Chronic Systemic Toxic Effects .......................................................... 22 ii 3.1.6. Effects on Nervous System ......................................................................................... 23 3.1.7. Effects on Immune System ......................................................................................... 24 3.1.8. Effects on Endocrine System ...................................................................................... 25 3.1.9. Reproductive and Developmental Effects .................................................................. 25 3.1.9.1. Developmental Studies ........................................................................................ 25 3.1.9.2. Reproduction Studies ........................................................................................... 26 3.1.10. Carcinogenicity and Mutagenicity ............................................................................ 27 3.1.11. Irritation and Sensitization (Effects on the Skin and Eyes) ...................................... 27 3.1.11.1. Skin Irritation ..................................................................................................... 28 3.1.11.2. Skin Sensitization............................................................................................... 28 3.1.11.3. Ocular Effects .................................................................................................... 29 3.1.12. Systemic Toxic Effects from Dermal Exposure ....................................................... 29 3.1.12.1. Acute Studies ..................................................................................................... 29 3.1.12.2. Repeated Dose Studies ....................................................................................... 30 3.1.13. Inhalation Exposure .................................................................................................. 30 3.1.14. Adjuvants and Other Ingredients .............................................................................. 31 3.1.14.2. Other Ingredients ............................................................................................... 31 3.1.14.2. Adjuvants ........................................................................................................... 33 3.1.15. Impurities and Metabolites ....................................................................................... 34 3.1.15.1. Metabolites ......................................................................................................... 34 3.1.15.2. Impurities ........................................................................................................... 34 3.1.16. Toxicological Interactions ........................................................................................ 35 3.2. EXPOSURE ASSESSMENT .......................................................................................... 36 3.2.1. Overview ..................................................................................................................... 36 3.2.2. Workers ....................................................................................................................... 36 3.2.2.1. General Exposures ............................................................................................... 37 3.2.2.2. Accidental Exposures........................................................................................... 39 3.2.3. General Public ........................................................................................................... 40 3.2.3.1. General Considerations ........................................................................................ 40 3.2.3.1.1. Likelihood and Magnitude of Exposure ....................................................... 40 3.2.3.1.2. Summary of Assessments ............................................................................. 41 3.2.3.2. Direct Spray ......................................................................................................... 42 3.2.3.3. Dermal Exposure from Contaminated Vegetation ............................................... 43 3.2.3.4. Contaminated Water ............................................................................................ 43 3.2.3.4.1. Accidental Spill ............................................................................................. 43 3.2.3.4.2. Accidental Direct Spray/Drift to a Pond or Stream ...................................... 44 3.2.3.4.3. GLEAMS-Driver Modeling .......................................................................... 44 iii 3.2.3.4.4. Other Modeling Efforts ................................................................................. 45 3.2.3.4.5. Monitoring Data ............................................................................................ 46 3.2.3.4.6. Concentrations
Recommended publications
  • Seed Ecology Iii
    SEED ECOLOGY III The Third International Society for Seed Science Meeting on Seeds and the Environment “Seeds and Change” Conference Proceedings June 20 to June 24, 2010 Salt Lake City, Utah, USA Editors: R. Pendleton, S. Meyer, B. Schultz Proceedings of the Seed Ecology III Conference Preface Extended abstracts included in this proceedings will be made available online. Enquiries and requests for hardcopies of this volume should be sent to: Dr. Rosemary Pendleton USFS Rocky Mountain Research Station Albuquerque Forestry Sciences Laboratory 333 Broadway SE Suite 115 Albuquerque, New Mexico, USA 87102-3497 The extended abstracts in this proceedings were edited for clarity. Seed Ecology III logo designed by Bitsy Schultz. i June 2010, Salt Lake City, Utah Proceedings of the Seed Ecology III Conference Table of Contents Germination Ecology of Dry Sandy Grassland Species along a pH-Gradient Simulated by Different Aluminium Concentrations.....................................................................................................................1 M Abedi, M Bartelheimer, Ralph Krall and Peter Poschlod Induction and Release of Secondary Dormancy under Field Conditions in Bromus tectorum.......................2 PS Allen, SE Meyer, and K Foote Seedling Production for Purposes of Biodiversity Restoration in the Brazilian Cerrado Region Can Be Greatly Enhanced by Seed Pretreatments Derived from Seed Technology......................................................4 S Anese, GCM Soares, ACB Matos, DAB Pinto, EAA da Silva, and HWM Hilhorst
    [Show full text]
  • ACT, Australian Capital Territory
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Exotic Plants in the Australian Alps Including a Case Study of the Ecology of Achillea Millefolium, in Kosciuszko National Park
    Exotic Plants in the Australian Alps Including a Case Study of the Ecology of Achillea Millefolium, in Kosciuszko National Park Author Johnston, Frances Mary Published 2006 Thesis Type Thesis (PhD Doctorate) School School of Environmental and Applied Science DOI https://doi.org/10.25904/1912/3730 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/365860 Griffith Research Online https://research-repository.griffith.edu.au EXOTIC PLANTS IN THE AUSTRALIAN ALPS INCLUDING A CASE STUDY OF THE ECOLOGY OF ACHILLEA MILLEFOLIUM, IN KOSCIUSZKO NATIONAL PARK Frances Mary Johnston B.Sc. (Hons) A thesis submitted in fulfilment of the requirements of the Degree of Doctor of Philosophy School of Environmental and Applied Sciences Faculty of Environmental Sciences Griffith University Gold Coast August 2005 DECLARATION OF ORIGINALITY This work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, this thesis represents my original research except where otherwise acknowledged in the text. Frances Johnston August 2005 FORWARD “In a small section of the garden a tiny weed spoke to the blooms that grew there. ‘Why,’ he asked, ‘does the gardener seek to kill me? Do I not have a right to life? Are my leaves not green, as yours are? Is it too much to ask that I be allowed to grow and see the sun?’ The blooms pondered on this, and decided to ask the gardener to spare the weed. He did so. Day by day the weed grew, stronger and stronger, taller and taller, its leaves covering the other plants, its roots spreading.
    [Show full text]
  • Indigenous Plant Guide
    Local Indigenous Nurseries city of casey cardinia shire council city of casey cardinia shire council Bushwalk Native Nursery, Cranbourne South 9782 2986 Cardinia Environment Coalition Community Indigenous Nursery 5941 8446 Please contact Cardinia Shire Council on 1300 787 624 or the Chatfield and Curley, Narre Warren City of Casey on 9705 5200 for further information about indigenous (Appointment only) 0414 412 334 vegetation in these areas, or visit their websites at: Friends of Cranbourne Botanic Gardens www.cardinia.vic.gov.au (Grow to order) 9736 2309 Indigenous www.casey.vic.gov.au Kareelah Bush Nursery, Bittern 5983 0240 Kooweerup Trees and Shrubs 5997 1839 This publication is printed on Monza Recycled paper 115gsm with soy based inks. Maryknoll Indigenous Plant Nursery 5942 8427 Monza has a high 55% recycled fibre content, including 30% pre-consumer and Plant 25% post-consumer waste, 45% (fsc) certified pulp. Monza Recycled is sourced Southern Dandenongs Community Nursery, Belgrave 9754 6962 from sustainable plantation wood and is Elemental Chlorine Free (ecf). Upper Beaconsfield Indigenous Nursery 9707 2415 Guide Zoned Vegetation Maps City of Casey Cardinia Shire Council acknowledgements disclaimer Cardinia Shire Council and the City Although precautions have been of Casey acknowledge the invaluable taken to ensure the accuracy of the contributions of Warren Worboys, the information the publishers, authors Cardinia Environment Coalition, all and printers cannot accept responsi- of the community group members bility for any claim, loss, damage or from both councils, and Council liability arising out of the use of the staff from the City of Casey for their information published. technical knowledge and assistance in producing this guide.
    [Show full text]
  • Onobrychis Viciifolia)
    Research Collection Doctoral Thesis Self-fertilization and marker-trait associations in sainfoin (Onobrychis viciifolia) Author(s): Kempf, Katharina Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010852406 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 23568 SELF-FERTILIZATION AND MARKER-TRAIT ASSOCIATIONS IN SAINFOIN (ONOBRYCHIS VICIIFOLIA) A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by KATHARINA KEMPF Dipl.-Agr.Biol., University of Hohenheim born on 17.04.1985 citizen of Germany accepted on the recommendation of Prof. Dr. Achim Walter, examiner Prof. Dr. Michael Kreuzer, co-examiner Prof. Dr. Bruno Studer, co-examiner Dr. Roland Kölliker, co-examiner 2016 Content List of Tables .............................................................................................................. v List of Figures ...................................................................................................... vii List of Abbreviations ................................................................................................. ix Summary .................................................................................................................... 1 Zusammenfassung ....................................................................................................
    [Show full text]
  • 3.5 Asmaa Kh. Aminet Al., 2017 1333 Volume
    IP Indexing - Impact factor – 3.5 Volume: 3; Issue: 9; September-2017; pp 1333-1363. ISSN: 2454-5422 Relationships among some regional species of the genus Lolium L. based on morphological and molecular markers Asmaa Kh. Amin1*, Hesham H. El-Fayoumi1, Nahed H. Mohamed2, Rasha S. Tawfik3, Mai Allam3and Mohamed A. Karam1 1Department of Botany, Faculty of Science, Fayoum University, Fayoum, Egypt. 2Department of Botany, Faculty of Science, Cairo University, Giza, Egypt. 3Department of Plant Biotechnology, National Research Center, Giza, Egypt. *Corresponding Author E-mail: [email protected] Abstract This study dealt with 89 accessions representing 40 populations of five species (Lolium perenne, Lolium multiflorum, Lolium rigidum, Lolium temulentum and Lolium persicum) distributed over 14 Mediterranean and Middle Eastern countries (Morocco, Algeria, Tunisia, Libya, Egypt, Palestine, Jordan, Iraq, Iran, Turkey, Cyprus, Romania, Greece and Albania) distributed over three continents (Africa, Asia and Europe). We depended on 80 qualitative and quantitative morphological characters with 172 character states. The genetic polymorphism and gene diversity was assessed using five polymorphic inter simple sequence repeat primers. Based on Morphological observations, the studied species were separated into two groups, the first combines L. perenne, L. multiflorum and L. rigidum, where, L. perenne is more associated to L. multiflorum than to L. rigidum; the second combines L. temulentum and L. persicum; to some extent geographical distribution influenced the relationships among the populations. High degree of gene diversity with polymorphism percentage of 95.62% was detected among the studied species. Genetically, high degrees of genetic distance are observed among the studied populations; the geographical distribution has a great influence on the population’s relationships.
    [Show full text]
  • Plants of the Great South West Planting Guide
    LARGE SHRUBS/SMALL TREES: ‘Plants of the Great South West’ Acacia myrtifolia Myrtle Wattle Wind,Dry,Shade Acacia stricta Hop Wattle Wind,Dry,Shade Indigenous Planting Guide for Acacia verticillata subsp. verticillata Prickly Moses Wind,Dry,Shade Warrnambool Adriana quadripartita (v) Coast Bitter-bush Coast Allocasuarina paludosa Swamp She-oak Wind,Wet,Dry,Shade The following is a list of suitable species for planting in Warrnambool, included as a Allocasuarina verticillata Drooping She-oak Coast,wind,Dry,Lime guide, are conditions that these plants are particularly suited to or tolerant of. Atriplex cinerea Coast Saltbush Coast,Wind,Dry,Lime, SMALL SHRUBS: Banksia marginata Silver Banksia Coast,wind,Dry,Lime,Shade Acrotriche serrulata Honey-pots Coast,Dry,Shade Beyeria leschenaultii Pale Turpentine Bush Coast,Wind,Dry,Lime Astroloma humifusum Cranberry Heath Dry Bursaria spinosa subsp. spinosa Sweet Bursaria Wind,Dry,Lime,Shade Correa alba var. pannosa White Correa Coast,Wind,Dry,Lime,Shade Cassinia aculeata Common Dogwood Moist Correa reflexa var. reflexa Common Correa Coast,Dry,Shade Coprosma quadrifida Prickly Current Bush Shade Hibbertia aspera subsp. aspera Rough Guinea-flower Dry,Shade Indigofera australis Austral indigo Dry,Shade Leucophyta brownii Cushion Bush Coast,Dry,Lime Leptospermum continentale Prickly Teatree Wind,Wet,Dry,Shade Pimelea glauca Smooth Rice-flower Dry,Shade Leptospermum lanigerum Woolly Teatree Wind,Wet,Water,Shade Pimelea humilis Common Rice-flower Dry,Shade Leucopogon parviflorus Coast Beard-heath Coast,Wind
    [Show full text]
  • Casuarina Forests and Woodlands
    NVIS Fact sheet MVG 8 – Casuarina forests and woodlands Australia’s native vegetation is a rich and fundamental Overview element of our natural heritage. It binds and nourishes our ancient soils; shelters and sustains wildlife, protects Typically, vegetation areas classified under MVG 8 – streams, wetlands, estuaries, and coastlines; and absorbs Casuarina forests and woodlands: carbon dioxide while emitting oxygen. The National • feature Casuarinas (she-oaks) that are a distinctive Vegetation Information System (NVIS) has been developed part of the Australian landscape. The name Casuarina and maintained by all Australian governments to provide is derived from the Malay Kasuari and alludes to the a national picture that captures and explains the broad similarity between the drooping foliage of some species diversity of our native vegetation. in the genus and that of the feathers of the cassowary This is part of a series of fact sheets which the Australian • feature casuarinas that have a unique leaf structure, Government developed based on NVIS Version 4.2 data to in which individual leaves are reduced to small teeth, provide detailed descriptions of the major vegetation groups the bases of which are fused and surround the stem. (MVGs) and other MVG types. The series is comprised of This gives the leaf-bearing branchlets the appearance of a fact sheet for each of the 25 MVGs to inform their use by needles and the plant canopies a fine structure allowing planners and policy makers. An additional eight MVGs are permeability of more light than broad-leaf tree canopies available outlining other MVG types. • while several contrasting vegetation types are dominated by Casuarinas, most species of Allocasuarina are For more information on these fact sheets, including subordinate or subdominant members of mixed its limitations and caveats related to its use, please see: plant communities ‘Introduction to the Major Vegetation Group • include vegetation dominated by Casuarina or (MVG) fact sheets’.
    [Show full text]
  • THE VEGETATION of SUBANTARCTIC CAMPBELL ISLAND ______Summary: the Vegetation of Campbell Island and Its Offshore Islets Was Sampled Quantitatively at 140 Sites
    COLIN D. MEURK, M.N. FOGGO1 and J. BASTOW WILSON2 123 Landcare Research - Manaaki Whenua, PO Box 69, Lincoln, New Zealand. 1. Department of Science, Central Institute of Technology, Private Bag 39807, Wellington, New Zealand. 2. Botany Department, University of Otago, PO Box 56, Dunedin, New Zealand. THE VEGETATION OF SUBANTARCTIC CAMPBELL ISLAND __________________________________________________________________________________________________________________________________ Summary: The vegetation of Campbell Island and its offshore islets was sampled quantitatively at 140 sites. Data from the 134 sites with more than one vascular plant species were subjected to multivariate analysis. Out of a total of 140 indigenous and widespread adventive species known from the island group, 124 vascular species were recorded; 85 non-vascular cryptogams or species aggregates play a major role in the vegetation. Up to 19 factors of the physical environment were recorded or derived for each site. Agglomerative cluster analysis of the vegetation data was used to identify 21 plant communities. These (together with cryptogam associations) include: maritime crusts, turfs, megaherbfields, tussock grasslands, and shrublands; mid-elevation swamps, flushes, bogs, tussock grasslands, shrublands, dwarf forests, and induced meadows; and upland tundra-like tussock grasslands, tall and short turf-herbfields, bogs, flushes, rock-ledge herbfields, and fellfields. Axis 1 of the DCA ordination is largely a soil gradient related to the eutrophying impact of marine spray, sea mammals and birds, and nutrient flushing. Axis 2 is an altitudinal (or thermal) gradient. Axis 3 is related to soil reaction and to different kinds of animal influence on vegetation stature and species richness, and Axis 4 also appears to have fertility and animal associations.
    [Show full text]
  • Co-Extinction of Mutualistic Species – an Analysis of Ornithophilous Angiosperms in New Zealand
    DEPARTMENT OF BIOLOGICAL AND ENVIRONMENTAL SCIENCES CO-EXTINCTION OF MUTUALISTIC SPECIES An analysis of ornithophilous angiosperms in New Zealand Sandra Palmqvist Degree project for Master of Science (120 hec) with a major in Environmental Science ES2500 Examination Course in Environmental Science, 30 hec Second cycle Semester/year: Spring 2021 Supervisor: Søren Faurby - Department of Biological & Environmental Sciences Examiner: Johan Uddling - Department of Biological & Environmental Sciences “Tui. Adult feeding on flax nectar, showing pollen rubbing onto forehead. Dunedin, December 2008. Image © Craig McKenzie by Craig McKenzie.” http://nzbirdsonline.org.nz/sites/all/files/1200543Tui2.jpg Table of Contents Abstract: Co-extinction of mutualistic species – An analysis of ornithophilous angiosperms in New Zealand ..................................................................................................... 1 Populärvetenskaplig sammanfattning: Samutrotning av mutualistiska arter – En analys av fågelpollinerade angiospermer i New Zealand ................................................................... 3 1. Introduction ............................................................................................................................... 5 2. Material and methods ............................................................................................................... 7 2.1 List of plant species, flower colours and conservation status ....................................... 7 2.1.1 Flower Colours .............................................................................................................
    [Show full text]
  • Environmental Overview
    Vantage Pipeline Project Environmental and Socio-Economic Assessment Appendix I: Vegetation Baseline Information and Field Results DENSITY INFESTATION DISTRIBUTION LOCATION WEED SPECIES SCORE NW 6-4-19 W2M yellow sweet clover 10 Canada thistle 10 yellow sweet clover*, alfalfa, crested wheatgrass 10 NW 9-2-18 W2M Canada thistle 10 NE 9-2-18 W2M Canada thistle 12 SE 4-1-16 W2M kochia*, foxtail barley 11 Note: * indicates dominant species, for which density distribution score is reported 4 CONCLUSIONS The proposed Project is known to traverse roughly 74.5 km of native prairie. An additional 17 km of native prairie is noted on the Vantage Pipeline Project (Jacques Whitford – Axys 2009) in contiguous portions of pipeline that could not be assessed in 2010. This area will be assessed in 2011. The construction and operation of the Project may contribute to the direct and indirect losses or alteration of plant species and their associated vegetation, the further fragmentation of native prairie, and the introduction of noxious and invasive non-native species. The field work in 2010 was limited by difficulities in obtaining land access, and the timing of the field surveys. Additionally, pipeline route revisions have been made after field work was completed. Consequently, not all quarter sections traversed by the Project were ground-truthed or surveyed. Due to the senescence of vegetation, some tracts of native prairie to which access was granted, were also not surveyed in 2010. Approximately 75 % of the vegetation and rare plant surveys for the identified areas of native prairie were completed in 2010. An additional 10.9 % of the entire pipeline, which may also contain areas of native prairie remains to be assessed or surveyed in 2011.
    [Show full text]
  • Species List
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]