Module 4: Access Control
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Software Distributor Administration Guide for HP-UX 11I
Software Distributor Administration Guide for HP-UX 11i HP Computers Manufacturing Part Number: B2355-90754 June 2002, Edition 3 © Copyright 2002 Hewlett-Packard Company. Legal Notices The information in this document is subject to change without notice. Hewlett-Packard makes no warranty of any kind with regard to this manual, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be held liable for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance, or use of this material. Warranty A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local Sales and Service Office. Restricted Rights Legend Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 for DOD agencies, and subparagraphs (c) (1) and (c) (2) of the Commercial Computer Software Restricted Rights clause at FAR 52.227-19 for other agencies. HEWLETT-PACKARD COMPANY 3000 Hanover Street Palo Alto, California 94304 U.S.A. Use of this document and any supporting software media supplied for this pack is restricted to this product only. Additional copies of the programs may be made for security and back-up purposes only. Resale of the programs, in their present form or with alterations, is expressly prohibited. Copyright Notice Copyright 1997-2002 Hewlett-Packard Company. All rights reserved. -
Ext4 File System and Crash Consistency
1 Ext4 file system and crash consistency Changwoo Min 2 Summary of last lectures • Tools: building, exploring, and debugging Linux kernel • Core kernel infrastructure • Process management & scheduling • Interrupt & interrupt handler • Kernel synchronization • Memory management • Virtual file system • Page cache and page fault 3 Today: ext4 file system and crash consistency • File system in Linux kernel • Design considerations of a file system • History of file system • On-disk structure of Ext4 • File operations • Crash consistency 4 File system in Linux kernel User space application (ex: cp) User-space Syscalls: open, read, write, etc. Kernel-space VFS: Virtual File System Filesystems ext4 FAT32 JFFS2 Block layer Hardware Embedded Hard disk USB drive flash 5 What is a file system fundamentally? int main(int argc, char *argv[]) { int fd; char buffer[4096]; struct stat_buf; DIR *dir; struct dirent *entry; /* 1. Path name -> inode mapping */ fd = open("/home/lkp/hello.c" , O_RDONLY); /* 2. File offset -> disk block address mapping */ pread(fd, buffer, sizeof(buffer), 0); /* 3. File meta data operation */ fstat(fd, &stat_buf); printf("file size = %d\n", stat_buf.st_size); /* 4. Directory operation */ dir = opendir("/home"); entry = readdir(dir); printf("dir = %s\n", entry->d_name); return 0; } 6 Why do we care EXT4 file system? • Most widely-deployed file system • Default file system of major Linux distributions • File system used in Google data center • Default file system of Android kernel • Follows the traditional file system design 7 History of file system design 8 UFS (Unix File System) • The original UNIX file system • Design by Dennis Ritche and Ken Thompson (1974) • The first Linux file system (ext) and Minix FS has a similar layout 9 UFS (Unix File System) • Performance problem of UFS (and the first Linux file system) • Especially, long seek time between an inode and data block 10 FFS (Fast File System) • The file system of BSD UNIX • Designed by Marshall Kirk McKusick, et al. -
File Permissions Do Not Restrict Root
Filesystem Security 1 General Principles • Files and folders are managed • A file handle provides an by the operating system opaque identifier for a • Applications, including shells, file/folder access files through an API • File operations • Access control entry (ACE) – Open file: returns file handle – Allow/deny a certain type of – Read/write/execute file access to a file/folder by – Close file: invalidates file user/group handle • Access control list (ACL) • Hierarchical file organization – Collection of ACEs for a – Tree (Windows) file/folder – DAG (Linux) 2 Discretionary Access Control (DAC) • Users can protect what they own – The owner may grant access to others – The owner may define the type of access (read/write/execute) given to others • DAC is the standard model used in operating systems • Mandatory Access Control (MAC) – Alternative model not covered in this lecture – Multiple levels of security for users and documents – Read down and write up principles 3 Closed vs. Open Policy Closed policy Open Policy – Also called “default secure” • Deny Tom read access to “foo” • Give Tom read access to “foo” • Deny Bob r/w access to “bar” • Give Bob r/w access to “bar • Tom: I would like to read “foo” • Tom: I would like to read “foo” – Access denied – Access allowed • Tom: I would like to read “bar” • Tom: I would like to read “bar” – Access allowed – Access denied 4 Closed Policy with Negative Authorizations and Deny Priority • Give Tom r/w access to “bar” • Deny Tom write access to “bar” • Tom: I would like to read “bar” – Access -
How UNIX Organizes and Accesses Files on Disk Why File Systems
UNIX File Systems How UNIX Organizes and Accesses Files on Disk Why File Systems • File system is a service which supports an abstract representation of the secondary storage to the OS • A file system organizes data logically for random access by the OS. • A virtual file system provides the interface between the data representation by the kernel to the user process and the data presentation to the kernel in memory. The file and directory system cache. • Because of the performance disparity between disk and CPU/memory, file system performance is the paramount issue for any OS Main memory vs. Secondary storage • Small (MB/GB) Large (GB/TB) • Expensive Cheap -2 -3 • Fast (10-6/10-7 sec) Slow (10 /10 sec) • Volatile Persistent Cannot be directly accessed • Directly accessible by CPU by CPU – Interface: (virtual) memory – Data should be first address brought into the main memory Secondary storage (disk) • A number of disks directly attached to the computer • Network attached disks accessible through a fast network - Storage Area Network (SAN) • Simple disks (IDE, SATA) have a described disk geometry. Sector size is the minimum read/write unit of data (usually 512Bytes) – Access: (#surface, #track, #sector) • Smart disks (SCSI, SAN, NAS) hide the internal disk layout using a controller type function – Access: (#sector) • Moving arm assembly (Seek) is expensive – Sequential access is x100 times faster than the random access Internal disk structure • Disk structure User Process Accessing Data • Given the file name. Get to the file’s FCB using the file system catalog (Open, Close, Set_Attribute) • The catalog maps a file name to the FCB – Checks permissions • file_handle=open(file_name): – search the catalog and bring FCB into the memory – UNIX: in-memory FCB: in-core i-node • Use the FCB to get to the desired offset within the file data: (CREATE, DELETE, SEEK, TRUNCATE) • close(file_handle): release FCB from memory Catalog Organization (Directories) • In UNIX, special files (not special device files) called directories contain information about other files. -
File Systems
File Systems Profs. Bracy and Van Renesse based on slides by Prof. Sirer Storing Information • Applications could store information in the process address space • Why is this a bad idea? – Size is limited to size of virtual address space – The data is lost when the application terminates • Even when computer doesn’t crash! – Multiple process might want to access the same data File Systems • 3 criteria for long-term information storage: 1. Able to store very large amount of information 2. Information must survive the processes using it 3. Provide concurrent access to multiple processes • Solution: – Store information on disks in units called files – Files are persistent, only owner can delete it – Files are managed by the OS File Systems: How the OS manages files! File Naming • Motivation: Files abstract information stored on disk – You do not need to remember block, sector, … – We have human readable names • How does it work? – Process creates a file, and gives it a name • Other processes can access the file by that name – Naming conventions are OS dependent • Usually names as long as 255 characters is allowed • Windows names not case sensitive, UNIX family is File Extensions • Name divided into 2 parts: Name+Extension • On UNIX, extensions are not enforced by OS – Some applications might insist upon them • Think: .c, .h, .o, .s, etc. for C compiler • Windows attaches meaning to extensions – Tries to associate applications to file extensions File Access • Sequential access – read all bytes/records from the beginning – particularly convenient for magnetic tape • Random access – bytes/records read in any order – essential for database systems File Attributes • File-specific info maintained by the OS – File size, modification date, creation time, etc. -
Interesting Things You Didn't Know You Could Do With
Interesting Things You Didn’t Know You Could Do With ZFS Allan Jude -- ScaleEngine Inc. [email protected] twitter: @allanjude Introduction Allan Jude ● 13 Years as FreeBSD Server Admin ● FreeBSD src/doc committer (focus: ZFS, bhyve, ucl, xo) ● Co-Author of “FreeBSD Mastery: ZFS” and upcoming “FreeBSD Mastery: Advanced ZFS” with M. W. Lucas ● Architect of the ScaleEngine CDN (HTTP and Video) ● Host of BSDNow.tv & TechSNAP.tv Podcasts ● Use ZFS for large collections of videos, extremely large website caches, mirrors of PC-BSD pkgs and RaspBSD ● Single Handedly Manage Over 1000TB of ZFS Storage The Power of ZFS ● Integrated Redundancy (Mirroring, RAID-Z) ● Data Integrity Checking (Checksums, Scrub) ● Pooled Storage (Hot Add Disks) ● Multi-Level Cache (ARC, L2ARC, SLOG) ● Copy-on-Write (no fsck) ● Snapshots and Clones ● Quotas and Reservations ● Transparent Compression (LZ4, GZIP1-9) ● Incremental Replication (zfs send/recv) ● Datasets with Individual Inherited Properties ● Custom Properties ● Fine Grained Delegation Applying That Power ZFS has many features, but how can I use them to solve my problems? ZFS has a very well designed command line user interface, making it very easy for a sysadmin to perform common tasks (add more storage, create new datasets, change settings and properties), accomplish things that were not possible before, as well as extract a great deal more information from the storage system. ZFS Was Meant To Be Scripted # zfs list -Hp -r -o name,refer,logicalreferenced sestore5/mysql02 22001288628 24331078144 sestore5/omicron -
File System Layout
File Systems Main Points • File layout • Directory layout • Reliability/durability Named Data in a File System index !le name directory !le number structure storage o"set o"set block Last Time: File System Design Constraints • For small files: – Small blocks for storage efficiency – Files used together should be stored together • For large files: – ConCguous allocaon for sequenCal access – Efficient lookup for random access • May not know at file creaon – Whether file will become small or large File System Design Opons FAT FFS NTFS Index Linked list Tree Tree structure (fixed, asym) (dynamic) granularity block block extent free space FAT array Bitmap Bitmap allocaon (fixed (file) locaon) Locality defragmentaon Block groups Extents + reserve Best fit space defrag MicrosoS File Allocaon Table (FAT) • Linked list index structure – Simple, easy to implement – SCll widely used (e.g., thumb drives) • File table: – Linear map of all blocks on disk – Each file a linked list of blocks FAT MFT Data Blocks 0 1 2 3 !le 9 block 3 4 5 6 7 8 9 !le 9 block 0 10 !le 9 block 1 11 !le 9 block 2 12 !le 12 block 0 13 14 15 16 !le 12 block 1 17 18 !le 9 block 4 19 20 FAT • Pros: – Easy to find free block – Easy to append to a file – Easy to delete a file • Cons: – Small file access is slow – Random access is very slow – Fragmentaon • File blocks for a given file may be scaered • Files in the same directory may be scaered • Problem becomes worse as disk fills Berkeley UNIX FFS (Fast File System) • inode table – Analogous to FAT table • inode – Metadata • File owner, access permissions, -
Lecture 03: Layering, Naming, and Filesystem Design
Lecture 03: Layering, Naming, and Filesystem Design Principles of Computer Systems Spring 2019 Stanford University Computer Science Department Lecturer: Chris Gregg PDF of this presentation 1 Lecture 03: Layering, Naming, and Filesystem Design Just like RAM, hard drives provide us with a contiguous stretch of memory where we can store information. Information in RAM is byte-addressable: even if you’re only trying to store a boolean (1 bit), you need to read an entire byte (8 bits) to retrieve that boolean from memory, and if you want to flip the boolean, you need to write the entire byte back to memory. A similar concept exists in the world of hard drives. Hard drives are divided into sectors (we'll assume 512 bytes), and are sector-addressable: you must read or write entire sectors, even if you’re only interested in a portion of each. Sectors are often 512 bytes in size, but not always. The size is determined by the physical drive and might be 1024 or 2048 bytes, or even some larger power of two if the drive is optimized to store a small number of large files (e.g. high definition videos for youtube.com) Conceptually, a hard drive might be viewed like this: Thanks to Ryan Eberhardt for the illustrations and the text used in these slides, and to Ryan and Jerry Cain for the content. 2 Lecture 03: Layering, Naming, and Filesystem Design The drive itself exports an API—a hardware API—that allows us to read a sector into main memory, or update an entire sector with a new payload. -
Operating Systems – Assignment 4 File Systems
OPERATING SYSTEMS – ASSIGNMENT 4 FILE SYSTEMS The xv6 file system provides Unix-like files, directories, and pathnames, and stores its data on an IDE disk for persistence. The file-system addresses several challenges: • The file system needs on-disk data structures to represent the tree of named directories and files, to record the identities of the blocks that hold each file’s content, and to record which areas of the disk are free. • Accessing a disk is orders of magnitude slower than accessing memory, so the file system must maintain an in-memory cache of popular blocks. • Different processes may operate on the file system at the same time, and must coordinate to maintain invariants. • The file system must support crash recovery. That is, if a crash (e.g., power failure) occurs, the file system must still work correctly after a restart. The risk is that a crash might interrupt a sequence of updates and leave inconsistent on-disk data structures (e.g., a block that is both used in a file and marked free). To do so, xv6 divides the disk into several sections, as shown in the Figure below. The file system does not use block 0 (it holds the boot sector). Block 1 is called the superblock, it contains metadata about the file system (the file system size in blocks, the number of data blocks, the number of inodes, and the number of blocks in the log). Blocks starting at 2 hold inodes. After those come bitmap blocks tracking which data blocks are in use. Most of the remaining blocks are data blocks. -
Application-Defined Decentralized Access Control
Application-Defined Decentralized Access Control Yuanzhong Xu, Alan Dunn, Owen Hofmann*, Michael Lee, Syed Akbar Mehdi, Emmett Witchel ! UT-Austin, Google* Access control mechanism • Simplicity • Flexibility • Easy to understand • Expressive • Less prone to bugs • Support many use cases 2 UNIX/Linux - simplicity • Linux/UNIX • User: UID • Group: GID • Admin: root user • Simplicity • Easy to understand • Less prone to bugs 3 UNIX/Linux - more flexibility • Linux/UNIX • User: UID • Need more flexibility • • Group: GID setuid binary • effective UID • Admin: root user • FS UID • Simplicity • sticky bit • Easy to understand • … • Less prone to bugs 4 setuid binaries make things tricky suEXEC of Apache server: using setuid binaries to run • Need more flexibility CGI/SSI with different UIDs • setuid binary “If you aren't familiar with • effective UID managing setuid root programs and the security • FS UID issues they present, we highly recommend that you • sticky bit not consider using • … suEXEC.” — http://httpd.apache.org/docs/2.2/suexec.html 5 Access control in server applications • A server application typically uses its own, hand- crafted program logic to enforce access control Access control is hard to get right… ! !Source of bugs: among OWASP top 10 application security risks https://www.owasp.org/index.php/Top_10_2010-Main Server application Access control Why OS access control OS CANNOT help? Inflexible OS-level access control • Numerical identifiers for Consequences principals in a flat namespace • different servers/apps CANNOT • 32-bit integer -
Intro to Unix 2018
Introduction to *nix Bill Renaud, OLCF ORNL is managed by UT-Battelle for the US Department of Energy Background • UNIX operating system was developed in 1969 by Ken Thompson and Dennis Ritchie • Many “UNIX-like” OSes developed over the years • UNIX® is now a trademark of The Open Group, which maintains the Single UNIX Specification • Linux developed by Linus Torvalds in 1991 • GNU Project started by Richard Stallman in 1983 w/aim to provide free, UNIX-compatible OS • Many of the world’s most powerful computers use Linux kernel + software from the GNU Project References: 1www.opengroup.org/unix 2https://en.wikipedia.org/wiki/Linux 2 3https://www.gnu.org/gnu/about-gnu.html This Presentation • This presentation will focus on using *nix operating systems as a non-privileged user in an HPC environment – Assumes you’re using a ‘remote’ system – No info on printing, mounting disks, etc. • We’ll focus on systems using the Linux kernel + system software from the GNU project since that’s so prevalent • Two-Part – Basics: general information, commands – Advanced: advanced commands, putting it all together, scripts, etc. 3 This Presentation • May seem a bit disjoint at first – Several basic concepts that don’t flow naturally but later topics build upon – Hopefully everything will come together, but if not… • I’ll cover (what I hope is) some useful info but can’t cover it all – People write thousand-page books on this, after all • Please ask questions! 4 Basics Terminology • User – An entity that interacts with the computer. Typically a person but could also be for an automated task. -
Linux Authentication and Access Control 4-2
Linux IDs and /etc/passwd Linux Authentication and Each user has a user id (uid) and belongs to (possibly several) groups Access Control each of which has a gid. uid and default gid are stored in /etc/passwd. E.g, in my Fedora VM: root:x:0:0:root:/root:/bin/bash bin:x:1:1:bin:/bin:/sbin/nologin daemon:x:2:2:daemon:/sbin:/sbin/nologin adm:x:3:4:adm:/var/adm:/sbin/nologin Tue/Wed/Thu, September 16/17/18, 2014 lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin Reading: Pollock Article; Hacking Linux Exposed sync:x:5:0:sync:/sbin:/bin/sync shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown halt:x:7:0:halt:/sbin:/sbin/halt CS342 Computer Security mail:x:8:12:mail:/var/spool/mail:/sbin/nologin news:x:9:13:news:/etc/news: uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin Department of Computer Science ... Wellesley College lynux:x:500:500:Franklyn Turbak:/home/lynux:/bin/bash gdome:x:501:501:Georgia Dome:/home/gdome:/bin/bash cs342:x:502:502:CS342 Account:/home/cs342:/bin/bash Linux Authentication and Access Control 4-2 /etc/group /etc/shadow /etc/group defines groups and Sysadmins can define new groups, lists which users belong to them. /etc/shadow contains hashed passwords: e.g. on puma root:$1$SdMYD5fz$cr120C7tA0wDhXPrQHc3H1:15583:0:99999:7::: root:x:0:root bin:*:13665:0:99999:7::: bin:x:1:root,bin,daemon • faculty (all cs faculty) daemon:*:13665:0:99999:7::: daemon:x:2:root,bin,daemon • adm:*:13665:0:99999:7::: sys:x:3:root,bin,adm cs111sta (members of the … adm:x:4:root,adm,daemon CS111 teaching staff) lynux:$1$mUwRqvWp$2yfe5MJV0HbtdcDad8E7i/:15583:0:99999:7::: tty:x:5: • cs251stu (cs251 students) gdome:$1$d6tpFiwO$rBD5jd1ASAYatV2UuAlXW.:14274:0:99999:7::: disk:x:6:root cs342:$1$kmTSYJoG$0AnYYfykI2e/nWPRXdjwO.:14194:0:99999:7::: lp:x:7:daemon,lp mem:x:8: kmem:x:9: wheel:x:10:root Your Ubuntu VM uses longer salts and hashes: ..