Wideband Reconfigurable Vector Antenna for 3-D Direction Finding Application Johan Duplouy

Total Page:16

File Type:pdf, Size:1020Kb

Wideband Reconfigurable Vector Antenna for 3-D Direction Finding Application Johan Duplouy Wideband Reconfigurable Vector Antenna for 3-D Direction Finding Application Johan Duplouy To cite this version: Johan Duplouy. Wideband Reconfigurable Vector Antenna for 3-D Direction Finding Application. Electromagnetism. Institut National Polytechnique de Toulouse - INPT, 2019. English. NNT : 2019INPT0002. tel-02064303 HAL Id: tel-02064303 https://tel.archives-ouvertes.fr/tel-02064303 Submitted on 11 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSETHÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : l’Institut National Polytechnique de Toulouse (INP Toulouse) Présentée et soutenue le 14 janvier 2019 par : ÂÓhaÒ DÙÔÐÓÙÝ Wideband Reconfigurable Vector Antenna for 3-D Direction Finding Application JURY Jean-Yves Dauvignac Professeur Rapporteur Raphaël Gillard Professeur Rapporteur Hervé Aubert Professeur Directeur Laure Huitema Maître de conférences Examinatrice Thierry Monedière Professeur Examinateur Christophe Morlaas Enseignant-chercheur Co-directeur Patrick Potier Ingénieur Examinateur Anthony Bellion Ingénieur Invité Philippe Pouliguen Ingénieur HDR Invité École doctorale et spécialité : GEET : Électromagnétisme et Systèmes Haute Fréquence Unité de Recherche : ENAC Lab (TELECOM) et LAAS-CNRS (MINC) Directeur(s) de Thèse : Hervé Aubert et Christophe Morlaas Rapporteurs : Jean-Yves Dauvignac et Raphaël Gillard “Je crois qu’après avoir vu ça, on peut mourir tranquille. Enfin, le plus tard possible, mais on peut. Ah c’est super. Quel pied, ah quel pied ! Oh putain ! Olalala !” – Thierry Roland, Finale de la coupe du monde 1998 Remerciements “Ramenez la [thèse] à la maison...Allez [Johan], allez” – Vegedream Enfin, nous y voici ! Quelle aventure ... Une thèse est bien entendu un travail de longue haleine (oui, oui, on y croît), mais ce n’est pas une fin en soi, c’est un moment particulier dans la vie : un défi que l’on se donne à soi-même, il y aura eu un avant qui ne sera plus, et il y aura un après à construire. Au moment de franchir ce cap, je me rends compte que la thèse est loin d’être un travail solitaire et je ne peux pas ne pas penser à tous ceux qui, de près ou de loin, auront contribué à celle-ci grâce à leur bonne humeur, générosité, savoir et soutien. Allez, on dit merci qui ? Je tiens tout d’abord à remercier la Direction Générale de l’Armement ainsi que la région Occitanie pour le financement de ces travaux de thèse. Ils ont été effectués au sein du laboratoire TELECOM de l’ENAC, dans l’équipe EMA. Je remercie donc chaleureusement MM. Christophe Macabiau et Alexandre Chabory (respectivement responsables de TELECOM et de EMA) pour m’avoir fait confiance et permis de réaliser ces trois années de doctorat au sein d’une équipe enthousiaste et passionnée ! Une thèse est un document jugé par des pairs. Toute ma reconnaissance va vers celle et ceux qui ont accepté d’évaluer ce travail, et notamment à MM. Jean-Yves Dauvignac (professeur à l’université de Nice Sophia Antipolis) et Raphaël Gillard (professeur à l’INSA de Rennes) qui ont accepté de rapporter ce manuscrit. Mes remerciements les plus chaleureux vont à mes directeurs de thèse. Tout d’abord, M. Hervé Aubert (professeur à l’INP de Toulouse), pour la confiance et l’autonomie qu’il m’a accordées, pour ses précieux conseils lors de la réalisation de ces travaux de doctorat ainsi que pour les nombreuses heures qu’il a consacrées à la relecture de mes papiers. J’aimerais également lui dire à quel point j’ai apprécié nos discussions, et notamment celles sur la langue de Molière et sur l’art de l’écriture scientifique. Ensuite, s’il y a bien quelqu’un que je dois remercier, c’est M. Christophe Morlaas (enseignant-chercheur à l’ENAC), qui a eu la patience de me supporter et de m’épauler au quotidien. Il a eu la gentillesse de répondre de manière toujours claire et précise à mes nombreuses sollicitations durant ces trois années. Ses conseils et sa rigueur m’ont permis de mener à bien cette thèse dans un contexte agréable. C’est pour moi un grand honneur que d’avoir pu travailler avec eux. Je tiens aussi à remercier M. Michel Paonessa (ingénieur au sein de l’ENAC) pour l’aide qu’il m’a apportée lors de la réalisation des antennes. Pendant ces trois années de thèse a régné dans les couloirs et locaux du bâtiment F une ambiance chaleureuse, où il était agréable de travailler aux côtés des équipes EMA et SIGNAV. i ii Remerciements Merci notamment aux permanents : la fashion victim Rémi D. (désolé mais les pantacourts et les chemisettes font partie du top Topito des vêtements à brûler d’urgence), la féministe Hélène (mais bon, on verra bien quand il faudra porter quelque chose de lourd), la supportrice marseillaise Anaïs (vous savez pourquoi la pelouse du stade Vélodrome est aussi verte et aussi belle ? car il y a 11 chèvres dessus), le gaffeur et blagueur Antoine (qui n’a pas peur de faire du politiquement incorrect, enfin quelqu’un de sensé !), le papa poule Paul (qui pourra revivre d’ici dix huit ans), la jeune Anne-Christine et ses bons plans (si jamais vous avez besoin d’un conseil pour acheter une poussette ou si vous avez envie de manger chinois, n’hésitez pas à la contacter), sans oublier le barcelonais Axel (à qui je ne parle plus depuis la remontada, la plus grosse escroquerie de l’histoire du football). Je salue également les nombreux post-doctorants/doctorants et compagnons de route : le jusqu’au-boutiste enacien Jérémy (j’espère sincèrement que tu obtiendras un post de perma- nent, celui-ci est tant mérité), le détendu Quentin (qui va terminer sa thèse grâce à la volonté du “D”), la végan Capucine (qui veut bien éplucher le lapin, mais pas les carottes !), l’apprenti peintre et mystérieux Rémi C. (mais que fait-il de ses soirées pour arriver si tard l’après-midi ?), Anne-Marie dite Mercotte (qui nous empêche de poser notre lundi grâce à ses succulents gâteaux), sans oublier les expertes pâtisseries orientales Ikhlas et Sarah (cependant, j’attends toujours vos crêpes). Un merci particulier au parieur fou et homme d’honneur Seif qui a su prendre le temps de célébrer la victoire des Bleus à la coupe du monde malgré une charge de travail dantesque ! Par ailleurs, j’espère que tu auras de nouveau l’occasion de nous faire part de ton expertise en matière de sécurité sociale et d’impôt. Je tiens en outre à féliciter (mal- gré son amour pour le football business) Florian dit Ridaube, pour son expertise des normes OACI. L’harmonisation internationale sur la réglementation des drones repose sur ton travail exemplaire. J’espère qu’avec les années, il sortira de son bureau pour profiter de la vie car celle-ci ne se résume pas au travail. Il pourra alors assouvir son autre passion pour la météo avec Didier Labyt. Je tiens ensuite à remercier les fruits du laboratoire TELECOM: Thomas B. et Maxandre qui feraient mieux de sortir au lieu de jouer à Pokemon. La vie ne se résume pas à un monde virtuel. De plus, j’espère que les 10 commandements du thésard stakhanov que j’ai enseigné à Thomas V. aboutiront aux résultats escomptés. À dans cinq ans pour ta soutenance ! Enfin, je souhaite bon courage aux petits nouveaux: David et Uygar. Il y aurait aussi des crasses à dire sur eux mais je laisse ça aux suivants. Je souhaite également une bonne continuation aux autres membres du laboratoire TELECOM : Carl, Enzo, Jade, Eugène, Heekwoon, Paul Verlaine, Junesol, Roberto, Auryn et Xiao. J’espère qu’on aura l’occasion de continuer nos longues discussions. Je n’oublie pas non plus mes augustes prédécesseurs : miss Alizé et ses bons plans afterwork ainsi que le Zinédine de l’équipe TELECOM, JB. Je souhaite en outre adresser mes sincères remerciements à mon professeur d’italien Guiseppe, qui m’a permis de découvrir l’Italie dans toute sa splendeur (Da Michele, il ragù di sua madre, les négronis, sans oublier la chanson “oh le le, oh la la...”). Ce fut un réel plaisir de regarder avec toi les matchs de l’Italie lors de la coupe du monde de football 2018. J’ajouterai donc que cela a été un honneur pour moi de rencontrer Enik Shytermeja, ponte du GNSS, qui a décidé de continuer ses études malgré une carrière prometteuse en NBA. La communauté scientifique le remercie mais le monde du basket est en deuil. Officieusement, d’après les dernières révélations de Basket Leaks, il a été obligé d’arrêter sa carrière de basketteur suite à contrôle positif antidopage lors de la première phase du championnat d’Albanie. L’occasion m’est donnée de faire part de toute ma gratitude à tous mes amis sur qui j’ai toujours Remerciements iii pu compter, qu’ils soient de Toulouse, de Paris, de Lille ou de Saint-O, sans oublier ceux du classement ATP. Un merci particulier à Phi-Nhan dite Hulk de l’apéro pour la relecture de ce manuscrit. Après, n’ayant pas envie d’en oublier, je préfère ne pas me lancer dans un listage car je sais qu’ils se reconnaîtront.
Recommended publications
  • Array Designs for Long-Distance Wireless Power Transmission: State
    INVITED PAPER Array Designs for Long-Distance Wireless Power Transmission: State-of-the-Art and Innovative Solutions A review of long-range WPT array techniques is provided with recent advances and future trends. Design techniques for transmitting antennas are developed for optimized array architectures, and synthesis issues of rectenna arrays are detailed with examples and discussions. By Andrea Massa, Member IEEE, Giacomo Oliveri, Member IEEE, Federico Viani, Member IEEE,andPaoloRocca,Member IEEE ABSTRACT | The concept of long-range wireless power trans- the state of the art for long-range wireless power transmis- mission (WPT) has been formulated shortly after the invention sion, highlighting the latest advances and innovative solutions of high power microwave amplifiers. The promise of WPT, as well as envisaging possible future trends of the research in energy transfer over large distances without the need to deploy this area. a wired electrical network, led to the development of landmark successful experiments, and provided the incentive for further KEYWORDS | Array antennas; solar power satellites; wireless research to increase the performances, efficiency, and robust- power transmission (WPT) ness of these technological solutions. In this framework, the key-role and challenges in designing transmitting and receiving antenna arrays able to guarantee high-efficiency power trans- I. INTRODUCTION fer and cost-effective deployment for the WPT system has been Long-range wireless power transmission (WPT) systems soon acknowledged. Nevertheless, owing to its intrinsic com- working in the radio-frequency (RF) range [1]–[5] are plexity, the design of WPT arrays is still an open research field currently gathering a considerable interest (Fig.
    [Show full text]
  • Antenna Theory and Design SECOND EDITION
    Antenna Theory and Design SECOND EDITION Warren L. Stutzman Gary A. Thiele WILEY Contents Chapter 1 • Antenna Fundamentals and Definitions 1 1.1 Introduction 1 1.2 How Antennas Radiate 4 1.3 Overview of Antennas 8 1.4 Electromagnetic Fundamentals 12 1.5 Solution of Maxwell's Equations for Radiation Problems 16 1.6 The Ideal Dipole 20 1.7 Radiation Patterns 24 1.7.1 Radiation Pattern Basics 24 1.7.2 Radiation from Line Currents 25 1.7.3 Far-Field Conditions and Field Regions 28 1.7.4 Steps in the Evaluation of Radiation Fields 31 1.7.5 Radiation Pattern Definitions 33 1.7.6 Radiation Pattern Parameters 35 1.8 Directivity and Gain 37 1.9 Antenna Impedance, Radiation Efficiency, and the Short Dipole 43 1.10 Antenna Polarization 48 References 52 Problems 52 Chapter 2 • Some Simple Radiating Systems and Antenna Practice 56 2.1 Electrically Small Dipoles 56 2.2 Dipoles 59 2.3 Antennas Above a Perfect Ground Plane 63 2.3.1 Image Theory 63 2.3.2 Monopoles 66 2.4 Small Loop Antennas 68 2.4.1 Duality 68 2.4.2 The Small Loop Antenna 71 2.5 Antennas in Communication Systems 76 2.6 Practical Considerations for Electrically Small Antennas 82 References 83 Problems 84 Chapter 3 • Arrays 87 3.1 The Array Factor for Linear Arrays 88 3.2 Uniformly Excited, Equally Spaced Linear Arrays 99 3.2.1 The Array Factor Expression 99 3.2.2 Main Beam Scanning and Beamwidth 102 3.2.3 The Ordinary Endfire Array 103 3.2.4 The Hansen-Woodyard Endfire Array 105 3.3 Pattern Multiplication 107 3.4 Directivity of Uniformly Excited, Equally Spaced Linear Arrays 112 3.5 Nonuniformly
    [Show full text]
  • High Gain Isotropic Rectenna Erika Vandelle, Phi Long Doan, Do Hanh Ngan Bui, T.-P
    High gain isotropic rectenna Erika Vandelle, Phi Long Doan, Do Hanh Ngan Bui, T.-P. Vuong, Gustavo Ardila, Ke Wu, Simon Hemour To cite this version: Erika Vandelle, Phi Long Doan, Do Hanh Ngan Bui, T.-P. Vuong, Gustavo Ardila, et al.. High gain isotropic rectenna. 2017 IEEE Wireless Power Transfer Conference (WPTC), May 2017, Taipei, Taiwan. pp.54-57, 10.1109/WPT.2017.7953880. hal-01722690 HAL Id: hal-01722690 https://hal.archives-ouvertes.fr/hal-01722690 Submitted on 29 Aug 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. High Gain Isotropic Rectenna E. Vandelle1, P. L. Doan1, D.H.N. Bui1, T.P. Vuong1, G. Ardila1, K. Wu2, S. Hemour3 1 Université Grenoble Alpes, CNRS, Grenoble INP*, IMEP–LAHC, Grenoble, France 2 Polytechnique Montréal, Poly-Grames, Montreal, Quebec, Canada 3 Université de Bordeaux, IMS Bordeaux, Bordeaux Aquitaine INP, Bordeaux, France *Institute of Engineering University of Grenoble Alpes {vandeler, buido, vuongt, ardilarg}@minatec.inpg.fr [email protected] [email protected] [email protected] Abstract— This paper introduces an original strategy to step up the capacity of ambient RF energy harvesters.
    [Show full text]
  • High Frequency Communications – an Introductory Overview
    High Frequency Communications – An Introductory Overview - Who, What, and Why? 13 August, 2012 Abstract: Over the past 60+ years the use and interest in the High Frequency (HF -> covers 1.8 – 30 MHz) band as a means to provide reliable global communications has come and gone based on the wide availability of the Internet, SATCOM communications, as well as various physical factors that impact HF propagation. As such, many people have forgotten that the HF band can be used to support point to point or even networked connectivity over 10’s to 1000’s of miles using a minimal set of infrastructure. This presentation provides a brief overview of HF, HF Communications, introduces its primary capabilities and potential applications, discusses tools which can be used to predict HF system performance, discusses key challenges when implementing HF systems, introduces Automatic Link Establishment (ALE) as a means of automating many HF systems, and lastly, where HF standards and capabilities are headed. Course Level: Entry Level with some medium complexity topics Agenda • HF Communications – Quick Summary • How does HF Propagation work? • HF - Who uses it? • HF Comms Standards – ALE and Others • HF Equipment - Who Makes it? • HF Comms System Design Considerations – General HF Radio System Block Diagram – HF Noise and Link Budgets – HF Propagation Prediction Tools – HF Antennas • Communications and Other Problems with HF Solutions • Summary and Conclusion • I‟d like to learn more = “Critical Point” 15-Aug-12 I Love HF, just about On the other hand… anybody can operate it! ? ? ? ? 15-Aug-12 HF Communications – Quick pretest • How does HF Communications work? a.
    [Show full text]
  • Arrays: the Two-Element Array
    LECTURE 13: LINEAR ARRAY THEORY - PART I (Linear arrays: the two-element array. N-element array with uniform amplitude and spacing. Broad-side array. End-fire array. Phased array.) 1. Introduction Usually the radiation patterns of single-element antennas are relatively wide, i.e., they have relatively low directivity. In long distance communications, antennas with high directivity are often required. Such antennas are possible to construct by enlarging the dimensions of the radiating aperture (size much larger than ). This approach, however, may lead to the appearance of multiple side lobes. Besides, the antenna is usually large and difficult to fabricate. Another way to increase the electrical size of an antenna is to construct it as an assembly of radiating elements in a proper electrical and geometrical configuration – antenna array. Usually, the array elements are identical. This is not necessary but it is practical and simpler for design and fabrication. The individual elements may be of any type (wire dipoles, loops, apertures, etc.) The total field of an array is a vector superposition of the fields radiated by the individual elements. To provide very directive pattern, it is necessary that the partial fields (generated by the individual elements) interfere constructively in the desired direction and interfere destructively in the remaining space. There are six factors that impact the overall antenna pattern: a) the shape of the array (linear, circular, spherical, rectangular, etc.), b) the size of the array, c) the relative placement of the elements, d) the excitation amplitude of the individual elements, e) the excitation phase of each element, f) the individual pattern of each element.
    [Show full text]
  • Directional Or Omnidirectional Antenna?
    TECHNOTE No. 1 Joe Carr's Radio Tech-Notes Directional or Omnidirectional Antenna? Joseph J. Carr Universal Radio Research 6830 Americana Parkway Reynoldsburg, Ohio 43068 1 Directional or Omnidirectional Antenna? Joseph J. Carr Do you need a directional antenna or an omnidirectional antenna? That question is basic for amateur radio operators, shortwave listeners and scanner operators. The answer is simple: It depends. I would like to give you a simple rule for all situations, but that is not possible. With radio antennas, the "global solution" is rarely the correct solution for all users. In this paper you will find a discussion of the issues involved so that you can make an informed decision on the antenna type that meets most of your needs. But first, let's take a look at what we mean by "directional" and "omnidirectional." Antenna Patterns Radio antennas produce a three dimensional radiation pattern, but for purposes of this discussion we will consider only the azimuthal pattern. This pattern is as seen from a "bird's eye" view above the antenna. In the discussions below we will assume four different signals (A, B, C, D) arriving from different directions. In actual situations, of course, the signals will arrive from any direction, but we need to keep our discussion simplified. Omnidirectional Antennas. The omnidirectional antenna radiates or receives equally well in all directions. It is also called the "non-directional" antenna because it does not favor any particular direction. Figure 1 shows the pattern for an omnidirectional antenna, with the four cardinal signals. This type of pattern is commonly associated with verticals, ground planes and other antenna types in which the radiator element is vertical with respect to the Earth's surface.
    [Show full text]
  • Antenna Characteristics
    Antenna Characteristics Team Cygnus Shivam Garg Sheena Agarwal Prince Tiwari Gunjan Bansal Adikeshav C. Outline • Introduction • Characteristics • Methodology • Observations • Inferences Antenna • An antenna is a device designed to radiate and/or receive electromagnetic waves in a prescribed manner. A Yagi Uda antenna meant for home use Schematic diagram of a antenna The current distributions on the antennas produce the radiation. Usually, these current distributions are excited by transmission lines or waveguides. Types Of Antennas Wire Antennas Aperture antennas Micro strip Antennas Reflector antennas Antenna Basics Radiation Pattern • The distribution of radiated energy from an antenna over a surface of constant radius centered upon the antenna as a function of directional angles from antenna . Reciprocity Theorem • The reception pattern of an antenna is identical to its radiation (transmission) pattern. This is a general rule, known as the reciprocity theorem. • A complete radiation pattern is three dimensional function. • a pair of two-dimensional patterns are usually sufficient to characterize the directional properties of an antenna. • In most cases, the two radiation patterns are measured in planes which are perpendicular to each other. • A plane parallel to the electric field is chosen as one plane and the plane parallel to the magnetic field as the other. The two planes are called the E-plane and the H-plane, respectively. 15 E-plane (y-z or θ) and H-plane (x-y or φ) of a Dipole Antenna Gain • Some antennas are highly directional • Directional antenna is an antenna, which radiates (or receives) much more power in (or from) some directions than in (or from) others.
    [Show full text]
  • Reconfigurable Antenna Based System for Spectrum Monitoring
    Reconfigurable Antenna based System for Spectrum Monitoring and Radio Direction Finding Hassan El-Sallabi, Abdulaziz Aldosari, and Saad Alkaabi Emri Signal and Information Technology Corps Qatar Armed Forces Doha, Qatar Abstract A reconfigurable antenna based system for spectrum monitoring and radio direction finding is proposed. The proposed system provides lower complexity and smaller physical size compared to existing direction finding systems based on phase difference of multiple antenna elements or systems based on mechanically rotating antenna. Instead of using multi-element antenna arrays or rotatable directional antenna, we use reconfigurable antenna that has the capability to reconfigure its characteristics to match frequency and minimize polarization loss of incoming signals. The other main feature of the reconfigurable radio direction finder is the use of multiple directional antenna pattern states with multiple pointing directions that cover the azimuthal 360 degrees. I. Introduction Spectrum range dedicated for radio communications is scarce. Communications industry worldwide and new wireless services offered in market increased the demand for the RF spectrum. These demands have a major consequences on frequency allocations to meet no electromagnetic interference requirements. Spectrum management is helps to maintain interference free environment. Part of spectrum management process is spectrum monitoring to ensure proper operation of radio communication systems without harmful interference as required by spectrum management activities. Spectrum monitoring has the following the goals: 1) find out any interference on local, regional and global scale; 2) ensuring acceptable quality in operating systems; 3) provides information on actual use of spectrum bands; 4) provide measurement based inputs to programs organized by ITU to eliminate harmful interference.
    [Show full text]
  • A Dual-Port, Dual-Polarized and Wideband Slot Rectenna for Ambient RF Energy Harvesting
    A Dual-Port, Dual-Polarized and Wideband Slot Rectenna For Ambient RF Energy Harvesting Saqer S. Alja’afreh1, C. Song2, Y. Huang2, Lei Xing3, Qian Xu3. 1 Electrical Engineering Department, Mutah University, ALkarak, Jordan, [email protected] 2 Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom. 3 Department of Electronic Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing, China. Abstract—A dual-polarized rectangular slot rectenna is they are able to receive RF signals from multiple frequency proposed for ambient RF energy harvesting. It is designed in a bands like designs in [4-7]. In [4], a novel Hexa-band rectenna compact size of 55 × 55 ×1.0 mm3 and operates in a wideband that covers a part of the digital TV, most cellular mobile bands operation between 1.7 to 2.7 GHz. The antenna has a two-port and WLAN bands. Broadband antennas. In [7], a broadband structure, which is fed using perpendicular CPW and microstrip line, respectively. To maintain both the adaptive dual-polarization cross dipole rectenna has been designed for impedance tuning and the adaptive power flow capability, the RF energy harvesting over frequency range on 1.8-2.5 GHz. rectenna utilizes a novel rectifier topology in which two shunt (2) antennas for wireless energy harvesting (WEH) should diodes are used between the DC block capacitor and the series have the ability of receiving wireless signals from different diode. The simulation results show that RF-DC conversion polarization. Therefore, rectennas have polarization diversity efficiency is greater 40% within the frequency band of like circular polarization [7]; dual polarization [8] and all interested at -3.0 dBm received power.
    [Show full text]
  • An Electrically Small Multi-Port Loop Antenna for Direction of Arrival Estimation
    c 2014 Robert A. Scott AN ELECTRICALLY SMALL MULTI-PORT LOOP ANTENNA FOR DIRECTION OF ARRIVAL ESTIMATION BY ROBERT A. SCOTT THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical and Computer Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2014 Urbana, Illinois Adviser: Professor Jennifer T. Bernhard ABSTRACT Direction of arrival (DoA) estimation or direction finding (DF) requires mul- tiple sensors to determine the direction from which an incoming signal orig- inates. These antennas are often loops or dipoles oriented in a manner such as to obtain as much information about the incoming signal as possible. For direction finding at frequencies with larger wavelengths, the size of the array can become quite large. In order to reduce the size of the array, electri- cally small elements may be used. Furthermore, a reduction in the number of necessary elements can help to accomplish the goal of miniaturization. The proposed antenna uses both of these methods, a reduction in size and a reduction in the necessary number of elements. A multi-port loop antenna is capable of operating in two distinct, orthogo- nal modes { a loop mode and a dipole mode. The mode in which the antenna operates depends on the phase of the signal at each port. Because each el- ement effectively serves as two distinct sensors, the number of elements in an DoA array is reduced by a factor of two. This thesis demonstrates that an array of these antennas accomplishes azimuthal DoA estimation with 18 degree maximum error and an average error of 4.3 degrees.
    [Show full text]
  • Notes on HF Discone Antennas
    Notes on HF Discone Antennas L. B. Cebik, W4RNL The discone antenna is a broadband basic antenna originally designed for VHF-UHF service. Indeed, it is a staple for upper-range scanning receivers. Developed during WWII by A. G. Kandoian, and brought to the attention of radio amateurs in the later 1940s, the following years saw conversions of the design to HF use. Amateurs have used it from 160 meters up through 10 meters, although the operating passband for any single implementation is limited to about a 2.5:1 frequency range. Even though the antenna is quite basic in concept, its shape seems to elicit strange reactions from newer amateurs. The reactions run from simple quizzical looks to occasional bizarre explanations of its operation. In these notes we shall look at the antenna with a series of inquiries. We shall start by putting the antenna into its proper class. Then we shall turn to questions of modeling the antenna, sorting out what we can glean from models and what we cannot. Since operating bandwidth is the most pressing question in many minds, we shall next look at that matter, followed by questions of performance. The performance facets of HF versions of the antenna over ground are perhaps the most important, since that is the environment in which we must use the antenna, if we choose to build one. To set a proper framework for judgment by the prospective builder, we shall look at a few other antenna designs that may be relevant. In order to focus our attention on the properties of the HF discone, we shall confine our attention to creating one to cover the upper HF set of amateur allocations from 14 to 30 MHz.
    [Show full text]
  • Design of Narrow-Wall Slotted Waveguide Antenna with V-Shaped Metal Reflector for X
    2018 International Symposium on Antennas and Propagation (ISAP 2018) [ThE2-5] October 23~26, 2018 / Paradise Hotel Busan, Busan, Korea Design of Narrow-wall Slotted Waveguide Antenna with V-shaped Metal Reflector for X- Band Radar Application Derry Permana Yusuf, Fitri Yuli Zulkifli, and Eko Tjipto Rahardjo Antenna Propagation and Microwave Research Group, Electrical Engineering Department, Universitas Indonesia Depok, Indonesia Abstract - Slotted waveguide antenna with wide bandwidth match to side lobe level requirement. Later, two metal sheets characteristics is designed at the 9.4-GHz frequency (X-band) as metal reflector are attached to the SWA edges to focus its for radar application. The antenna design consists of 200 narrow-wall slots with novel design of V-shaped metal reflector azimuth plane beam. The reflection coefficient, radiation to enhance side lobe level (SLL) and gain. New optimized slot pattern plots, and gain results of the antenna are reported. design results in SLL of -31.9 dB. The simulation results show 36.7 dBi antenna gain and 780 MHz bandwidth (8.67-9.45 GHz) for VSWR of 1.5. 2. Antenna Configuration Index Terms — slotted waveguide antenna, X-band, narrow- The 3-D view of the proposed antenna configuration is wall slots, high gain, metal reflector, radar shown in Fig 1. The antenna configuration consists of narrow wall slot waveguide with V-shaped metal reflector. The target frequency is 9.4 GHz. The slot antenna dimension 1. Introduction with its parameters is shown in Fig. 2. The antenna radiates Radar is essential component used for detecting hazards horizontal polarization and determines the parameters w = (such as coastlines, islands, icebergs, other objects or ships), 1.58 mm and t = 1.25 mm.
    [Show full text]