(Soricidae: Mammalia) from the Gray Fossil Site (Hemphillian), Tennessee Joshua Doby East Tennessee State University

Total Page:16

File Type:pdf, Size:1020Kb

(Soricidae: Mammalia) from the Gray Fossil Site (Hemphillian), Tennessee Joshua Doby East Tennessee State University East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 5-2015 A Systematic Review of the Soricimorph Eulipotyphla (Soricidae: Mammalia) from the Gray Fossil Site (Hemphillian), Tennessee Joshua Doby East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Biodiversity Commons, Evolution Commons, and the Zoology Commons Recommended Citation Doby, Joshua, "A Systematic Review of the Soricimorph Eulipotyphla (Soricidae: Mammalia) from the Gray Fossil Site (Hemphillian), Tennessee" (2015). Electronic Theses and Dissertations. Paper 2526. https://dc.etsu.edu/etd/2526 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. A Systematic Review of the Soricimorph Eulipotyphla (Soricidae: Mammalia) from the Gray Fossil Site (Hemphillian), Tennessee _______________________________________ A thesis presented to the faculty of the Department of Geosciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Geosciences _______________________________________ by Joshua R. Doby May 2015 _______________________________________ Dr. Steven C. Wallace, Chair Dr. Jim I. Mead Dr. Blaine W. Schubert Keywords: Soricidae, Gray Fossil Site, Miocene, Paenelimnoecus , Phylogenetics, Venom ABSTRACT A Systematic Review of the Soricimorph Eulipotyphla (Soricidae: Mammalia) from the Gray Fossil Site (Hemphillian), Tennessee by Joshua R. Doby Due in part to the incompleteness of the Cenozoic fossil record in the eastern U.S., the evolution and immigration of shrews (Soricidae) is not well understood. A rich soricid fauna from the Gray Fossil Site (GFS), Washington County, TN, has enabled many new inferences to be made. There are 7 new species in 6 genera: Paenelimnoecus , “Blarinella”, Petenyia, Tregosorex, Crusafontina, and Gen et sp. nov. GFS species of the genera Paenelimnoecus , “Blarinella”, and Petenyia are the first occurrence of each genus in the New World. Tregosorex, Crusafontina, and the N.A. taxon Limnoecus all have their latest documented occurrence at the GFS, extending their temporal range by at least 1 million years. “Blarinella ” sp. nov. has a complete lateral groove in the inferior incisor, providing the earliest evidence for venom in soricids by at least 4 million years. GFS taxa also provide insight into the evolution of both Soricini and Blarinini. 2 ACKNOWLEDGEMENTS I would like to think the chair of my committee Dr. Steven (Wally) Wallace and my other committee members Dr. James Mead and Dr. Blaine Schubert for their support and guidance throughout this project. I would also like to thank: Shawn Haugrud for his work preparing the specimens used in this thesis and for discussions about the specimens, Sandy Swift for her work picking through the sediment and her initial identifications of the specimens as shrews, Brett Woodward for allowing me access to the specimens and providing them with new numbers when necessary, Dr. Joyner for his help with making a map, Dr. Rountre for access to specimens at the University of Michigan, and Dr. Reumer for his helpful comments about the systematics within the thesis. I would like to thank my fellow graduate students and Gray fossil Museum staff for all of their support during my time at ETSU. Finally, I would like to thank Connor Behrmann for his limitless patience and support over the last year of this project. 3 TABLE OF CONTENTS Page ABSTRACT ..................................................................................................................... 2 ACKNOWLEDGEMENTS ............................................................................................... 3 LIST OF FIGURES ......................................................................................................... 7 LIST OF ABBREVIATIONS .......................................................................................... 10 Chapter 1. INTRODUCTION .......................................................................................... 11 Background ............................................................................................. 11 Soricid Fossil Record .............................................................................. 12 European ...................................................................................... 12 Asian ............................................................................................ 12 North American ........................................................................... 13 2. MATERIAL AND METHODS ..................................................................... 15 Methods of Differential Diagnosis ......................................................... 15 Morphology ............................................................................................. 17 Locality (Gray Fossil Site) ....................................................................... 19 3. SYSTEMATIC PALEONTOLOGY ............................................................... 22 Soricidae .................................................................................................. 22 Allosoricinae ................................................................................ 22 Paenelimnoecus ............................................................... 23 Limnoecinae ................................................................................ 25 Limnoecus ........................................................................ 26 4 Soricinae .................................................................................................. 28 Blarinellini ................................................................................... 28 Tregosorex ....................................................................... 28 Petenyia ........................................................................... 32 “Blarinella ” ..................................................................... 36 Gen. et sp. nov. ............................................................... 39 Anourosoricini ......................................................................................... 46 Crusafontina .................................................................... 46 4. PHYLOGENETICS ......................................................................................... 50 Past Attempts .............................................................................. 50 Evolutionary Implications ....................................................................... 53 Relationship Between Blarinellini and Blarinini ........................ 53 Paenelimnoecus ........................................................................... 54 Relationship of “Blarinella” to Anchiblarinella wakeeneyensis ................................................... 55 Upper Antemolars as an Evolutionary Marker ........................... 56 Soricini ......................................................................................... 57 Discussions of Problems with Sorex ............................................ 58 Circular Reasoning in Phylogenies ........................................................ 61 5. DISCUSSION .................................................................................................. 63 Paleobiology ............................................................................................ 63 Venom ......................................................................................... 63 Paleoecology ............................................................................................ 65 5 Interpretations of GFS Soricid Associations .............................. 67 Arguments for Multiple Similar Species at Single Site .............. 67 Niche Partitioning ...................................................................... 67 Preservation Bias ........................................................................ 69 6. CONCLUSIONS ............................................................................................. 71 REFERENCES .................................................................................................................. 73 APPENDICES .................................................................................................................. 81 Appendix A: List of 40 Soricid Taxa Used in the Data Matrix of the Phylogenetic Analysis Including 45 Character States. ..................................................... 81 Appendix B: Issues with Particular Characters ................................................... 84 Appendix C: 17 Character states with Primitive State Based on Comparisons with Genus Domnina ............................................ 92 Appendix D: Translation of Ziegler’s Description of Antesorex ........................ 94 VITA .............................................................................................................................. 95 6 LIST OF FIGURES Figure Page 1. United States with location of the Gray Fossil Site, TN ............................................... 14 2. Sorex mandible with functionally integrated regions shaded Modified from Badyaev
Recommended publications
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • Interglacial Refugia Preserved High Genetic Diversity of the Chinese Mole Shrew in the Mountains of Southwest China
    Heredity (2016) 116, 23–32 & 2016 Macmillan Publishers Limited All rights reserved 0018-067X/16 www.nature.com/hdy ORIGINAL ARTICLE Interglacial refugia preserved high genetic diversity of the Chinese mole shrew in the mountains of southwest China KHe1,2, N-Q Hu1,3, X Chen4,5, J-T Li6 and X-L Jiang1 The mountains of southwest China (MSC) harbor extremely high species diversity; however, the mechanism behind this diversity is unknown. We investigated to what degree the topography and climate change shaped the genetic diversity and diversification in these mountains, and we also sought to identify the locations of microrefugia areas in these mountains. For these purposes, we sampled extensively to estimate the intraspecific phylogenetic pattern of the Chinese mole shrew (Anourosorex squamipes)in southwest China throughout its range of distribution. Two mitochondrial genes, namely, cytochrome b (CYT B) and NADH dehydrogenase subunit 2 (ND2), from 383 archived specimens from 43 localities were determined for phylogeographic and demographic analyses. We used the continuous-diffusion phylogeographic model, extensive Bayesian skyline plot species distribution modeling (SDM) and approximate Bayesian computation (ABC) to explore the changes in population size and distribution through time of the species. Two phylogenetic clades were identified, and significantly higher genetic diversity was preserved in the southern subregion of the mountains. The results of the SDM, continuous-diffusion phylogeographic model, extensive Bayesian skyline plot and ABC analyses were congruent and supported that the Last Interglacial Maximum (LIG) was an unfavorable period for the mole shrews because of a high degree of seasonality; A. squamipes survived in isolated interglacial refugia mainly located in the southern subregion during the LIG and rapidly expanded during the last glacial period.
    [Show full text]
  • Revision of the Mole Genus Mogera (Mammalia: Lipotyphla: Talpidae)
    Systematics and Biodiversity 5 (2): 223–240 Issued 25 May 2007 doi:10.1017/S1477200006002271 Printed in the United Kingdom C The Natural History Museum Shin-ichiro Kawada1, 6 , Akio Shinohara2 , Shuji Revision of the mole genus Mogera Kobayashi3 , Masashi Harada4 ,Sen-ichiOda1 & (Mammalia: Lipotyphla: Talpidae) Liang-Kong Lin5 ∗ 1Laboratory of Animal from Taiwan Management and Resources, Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan Abstract We surveyed the central mountains and southeastern region of Taiwan 2Department of Bio-resources, and collected 11 specimens of a new species of mole, genus Mogera. The specimens Division of Biotechnology, were characterized by a small body size, dark fur, a protruding snout, and a long Frontier Science Research Center, University of Miyazaki tail; these characteristics are distinct from those of the Taiwanese lowland mole, 5200, Kihara, Kiyotake, M. insularis (Swinhoe, 1862). A phylogenetic study of morphological, karyological Miyazaki 889-1692, Japan 3Department of Asian Studies, and molecular characters revealed that Taiwanese moles should be classified as two Chukyo Woman’s University, distinctive species: M. insularis from the northern and western lowlands and the new Yokone-cho, Aichi 474-0011, species from the central mountains and the east and south of Taiwan. The skull of Japan 4Laboratory Animal Center, the new species was slender and delicate compared to that of M. insularis. Although Osaka City University Graduate the karyotypes of two species were identical, the genetic distance between them School of Medical School, Osaka, Osaka 545-8585, Japan was sufficient to justify considering each as a separate species. Here, we present a 5Laboratory of Wildlife Ecology, detailed specific description of the new species and discuss the relationship between Department of Life Science, this species and M.
    [Show full text]
  • 2018-2004 Accomplishments
    Kansas Geological Survey Publications, Accomplishments, and Service 2018 Refereed Publications Core, E. E., and Franseen, E. K., 2018, Depositional and reservoir character of mixed heterozoan-large benthic foraminifera-siliciclastic sequences, Middle Miocene, Dominican Republic: American Association of Petroleum Geologists Search and Discovery Article #51506, 10 p. Flotron, A., Franseen, E. K., and Goldstein, R. H., 2018, Sedimentologic and stratigraphic controls on reservoir sweet spots in Wolfcamp ‘A,’ Howard County, Midland Basin: American Association of Petroleum Geologists Search and Discovery Article #11142, 6 p. Franseen, E. K., Sawin, R. S., Watney, W. L., West, R. L., Layzell, A. L., and Ludvigson, G. A., 2018, Mississippian stratigraphic nomenclature revisions in Kansas: Current Research in Earth Sciences, Kansas Geological Survey Bulletin 264, http://www.kgs.ku.edu/Current/2018/Franseen/index.html. Golab, J. A., Smith, J. J., and Hasiotis, S. T., 2018, Paleoenvironmental and paleogeographic implications of paleosols and ichnofossils in the Upper Pennsylvanian-Permian Halgaito Formation, Southeastern Utah: PALAIOS, v. 33, p. 296–311, doi: http:// dx.doi.org/10.2110/palo.2017.074. Peterie, S. L., Miller, R. D., Buchanan, R., and DeArmond, B., 2018, Fluid injection wells can have a wide seismic reach: EOS, v. 98, n. 7, p. 25–30, https://doi.org/10.1029/2018EO096199. Peterie, S. L., Miller, R. D., Intfen, J. W., and Gonzales, J. B., 2018, Earthquakes in Kansas induced by extremely far-field pressure diffusion: Geophysical Research Letters, v. 45, p. 1,395–1,401, https://doi.org/10.1002/2017GL076334. Richey, J. D., Upchurch, G. R., Montañez, I. P., Lomax, B. H., Suarez, M.
    [Show full text]
  • Mammals of the California Desert
    MAMMALS OF THE CALIFORNIA DESERT William F. Laudenslayer, Jr. Karen Boyer Buckingham Theodore A. Rado INTRODUCTION I ,+! The desert lands of southern California (Figure 1) support a rich variety of wildlife, of which mammals comprise an important element. Of the 19 living orders of mammals known in the world i- *- loday, nine are represented in the California desert15. Ninety-seven mammal species are known to t ':i he in this area. The southwestern United States has a larger number of mammal subspecies than my other continental area of comparable size (Hall 1981). This high degree of subspeciation, which f I;, ; leads to the development of new species, seems to be due to the great variation in topography, , , elevation, temperature, soils, and isolation caused by natural barriers. The order Rodentia may be k., 2:' , considered the most successful of the mammalian taxa in the desert; it is represented by 48 species Lc - occupying a wide variety of habitats. Bats comprise the second largest contingent of species. Of the 97 mammal species, 48 are found throughout the desert; the remaining 49 occur peripherally, with many restricted to the bordering mountain ranges or the Colorado River Valley. Four of the 97 I ?$ are non-native, having been introduced into the California desert. These are the Virginia opossum, ' >% Rocky Mountain mule deer, horse, and burro. Table 1 lists the desert mammals and their range 1 ;>?-axurrence as well as their current status of endangerment as determined by the U.S. fish and $' Wildlife Service (USWS 1989, 1990) and the California Department of Fish and Game (Calif.
    [Show full text]
  • Conservation of Endangered Buena Vista Lake Shrews
    CONSERVATION OF ENDANGERED BUENA VISTA LAKE SHREWS (SOREX ORNATUS RELICTUS) THROUGH INVESTIGATION OF TAXONOMIC STATUS, DISTRIBUTION, AND USE OF NON-INVASIVE SURVEY METHODS Prepared by: Brian Cypher1, Erin Tennant2, Jesus Maldonado3, Larry Saslaw1, Tory Westall1, Jacklyn Mohay2, Erica Kelly1, and Christine Van Horn Job1 1California State University, Stanislaus Endangered Species Recovery Program 2California Department of Fish and Wildlife Region 4 3Smithsonian Conservation Biology Institute National Zoological Park June 16, 2017 Buena Vista Lake Shrew Conservation CONSERVATION OF ENDANGERED BUENA VISTA LAKE SHREWS (SOREX ORNATUS RELICTUS) THROUGH INVESTIGATION OF TAXONOMIC STATUS, DISTRIBUTION, AND USE OF NON-INVASIVE SURVEY METHODS Prepared by: Brian Cypher, Erin Tennant, Jesus Maldonado, Lawrence Saslaw, Tory Westall, Jacklyn Mohay, Erica Kelly, and Christine Van Horn Job California State University-Stanislaus, Endangered Species Recovery Program California Department of Fish and Wildlife, Region 4 Smithsonian Conservation Biology Institute, National Zoological Park CONTENTS Acknowledgments ......................................................................................................................................... ii Introduction ................................................................................................................................................... 1 Methods .........................................................................................................................................................
    [Show full text]
  • Uropsilus, Talpidae): Implications for Taxonomy and Conservation Tao Wan1,2†, Kai He1,3† and Xue-Long Jiang1*
    Wan et al. BMC Evolutionary Biology 2013, 13:232 http://www.biomedcentral.com/1471-2148/13/232 RESEARCH ARTICLE Open Access Multilocus phylogeny and cryptic diversity in Asian shrew-like moles (Uropsilus, Talpidae): implications for taxonomy and conservation Tao Wan1,2†, Kai He1,3† and Xue-Long Jiang1* Abstract Background: The genus Uropsilus comprises a group of terrestrial, montane mammals endemic to the Hengduan and adjacent mountains. These animals are the most primitive living talpids. The taxonomy has been primarily based on cursory morphological comparisons and the evolutionary affinities are little known. To provide insight into the systematics of this group, we estimated the first multi-locus phylogeny and conducted species delimitation, including taxon sampling throughout their distribution range. Results: We obtained two mitochondrial genes (~1, 985 bp) and eight nuclear genes (~4, 345 bp) from 56 specimens. Ten distinct evolutionary lineages were recovered from the three recognized species, eight of which were recognized as species/putative species. Five of these putative species were found to be masquerading as the gracile shrew mole. The divergence time estimation results indicated that climate change since the last Miocene and the uplift of the Himalayas may have resulted in the diversification and speciation of Uropsilus. Conclusions: The cryptic diversity found in this study indicated that the number of species is strongly underestimated under the current taxonomy. Two synonyms of gracilis (atronates and nivatus) should be given full species status, and the taxonomic status of another three potential species should be evaluated using extensive taxon sampling, comprehensive morphological, and morphometric approaches. Consequently, the conservation status of Uropsilus spp.
    [Show full text]
  • GFS Fungal Remains from Late Neogene Deposits at the Gray
    GFS Mycosphere 9(5): 1014–1024 (2018) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/9/5/5 Fungal remains from late Neogene deposits at the Gray Fossil Site, Tennessee, USA Worobiec G1, Worobiec E1 and Liu YC2 1 W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland 2 Department of Biological Sciences and Office of Research & Sponsored Projects, California State University, Fullerton, CA 92831, U.S.A. Worobiec G, Worobiec E, Liu YC 2018 – Fungal remains from late Neogene deposits at the Gray Fossil Site, Tennessee, USA. Mycosphere 9(5), 1014–1024, Doi 10.5943/mycosphere/9/5/5 Abstract Interesting fungal remains were encountered during palynological investigation of the Neogene deposits at the Gray Fossil Site, Washington County, Tennessee, USA. Both Cephalothecoidomyces neogenicus and Trichothyrites cf. padappakarensis are new for the Neogene of North America, while remains of cephalothecoid fungus Cephalothecoidomyces neogenicus G. Worobiec, Neumann & E. Worobiec, fragments of mantle tissue of mycorrhizal Cenococcum and sporocarp of epiphyllous Trichothyrites cf. padappakarensis (Jain & Gupta) Kalgutkar & Jansonius were reported. Remains of mantle tissue of Cenococcum for the fossil state are reported for the first time. The presence of Cephalothecoidomyces, Trichothyrites, and other fungal remains previously reported from the Gray Fossil Site suggest warm and humid palaeoclimatic conditions in the southeast USA during the late Neogene, which is in accordance with data previously obtained from other palaeontological analyses at the Gray Fossil Site. Key words – Cephalothecoid fungus – Epiphyllous fungus – Miocene/Pliocene – Mycorrhizal fungus – North America – palaeoecology – taxonomy Introduction Fungal organic remains, usually fungal spores and dispersed sporocarps, are frequently found in a routine palynological investigation (Elsik 1996).
    [Show full text]
  • Late Pleistocene and Holocene Small Mammal (Lipotyphla, Rodentia, Lagomorpha) Remains from Medvezhyi Klyk Cave in the Southern Russian Far East
    Proceedings of the Zoological Institute RAS Vol. 324, No. 1, 2020, pp. 124–145 10.31610/trudyzin/2020.324.1.124 УДК 599+569:551.](571.63) Late Pleistocene and Holocene small mammal (Lipotyphla, Rodentia, Lagomorpha) remains from Medvezhyi Klyk Cave in the Southern Russian Far East V.E. Omelko1*, Y.V. Kuzmin2, 3, M.P. Tiunov1, L.L. Voyta4 and G.S. Burr5 1Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 100-Letiya Vladivostoku Ave, 159, Vladivostok 690022, Russia; e-mail: [email protected]; [email protected] 2Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Academika Koptuga Ave., 3, Novosibirsk 630090, Russia; e-mail: [email protected] 3Laboratory of Mesozoic and Cenozoic Continental Ecosystems, Lenina Ave., 36, Tomsk State University, Tomsk 634050, Russia. 4Zoological Institute, Russian Academy of Sciences, Universitetskaya nab., 1, Saint Petersburg 199034, Russia; e-mail: [email protected] 5National Taiwan University, Roosevelt Road, Taipei 10617, Taiwan; e-mail: [email protected] ABSTRACT Late Pleistocene-Holocene faunal complexes of small mammals (Lipotyphla, Rodentia, and Lagomorpha) from the Russian Far East are described for the first time. We used material from the Medvezhyi Klyk Cave, located in Southern Sikhote-Alin. The numerous fossil findings from the cave display a remarkable taxonomic diversity and high degree of preservation. AMS 14C dating used for determination of deposits age. The Holocene sediments were divided into three periods: Early, Middle, and Late. The Pleistocene deposits age was not exactly determined, but under approximately estimation it can reach 50–60 ka.
    [Show full text]
  • Mammals of Jordan
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Mammals of Jordan Z. AMR, M. ABU BAKER & L. RIFAI Abstract: A total of 78 species of mammals belonging to seven orders (Insectivora, Chiroptera, Carni- vora, Hyracoidea, Artiodactyla, Lagomorpha and Rodentia) have been recorded from Jordan. Bats and rodents represent the highest diversity of recorded species. Notes on systematics and ecology for the re- corded species were given. Key words: Mammals, Jordan, ecology, systematics, zoogeography, arid environment. Introduction In this account we list the surviving mammals of Jordan, including some reintro- The mammalian diversity of Jordan is duced species. remarkable considering its location at the meeting point of three different faunal ele- Table 1: Summary to the mammalian taxa occurring ments; the African, Oriental and Palaearc- in Jordan tic. This diversity is a combination of these Order No. of Families No. of Species elements in addition to the occurrence of Insectivora 2 5 few endemic forms. Jordan's location result- Chiroptera 8 24 ed in a huge faunal diversity compared to Carnivora 5 16 the surrounding countries. It shelters a huge Hyracoidea >1 1 assembly of mammals of different zoogeo- Artiodactyla 2 5 graphical affinities. Most remarkably, Jordan Lagomorpha 1 1 represents biogeographic boundaries for the Rodentia 7 26 extreme distribution limit of several African Total 26 78 (e.g. Procavia capensis and Rousettus aegypti- acus) and Palaearctic mammals (e. g. Eri- Order Insectivora naceus concolor, Sciurus anomalus, Apodemus Order Insectivora contains the most mystacinus, Lutra lutra and Meles meles). primitive placental mammals. A pointed snout and a small brain case characterises Our knowledge on the diversity and members of this order.
    [Show full text]
  • Zootaxa, a New Species of Crocidura (Soricomorpha: Soricidae) From
    Zootaxa 2345: 60–68 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) A new species of Crocidura (Soricomorpha: Soricidae) from southern Vietnam and north-eastern Cambodia PAULINA D. JENKINS1, ALEXEI V. ABRAMOV2,4, VIATCHESLAV V. ROZHNOV3,4 & ANNETTE OLSSON5 1The Natural History Museum, Cromwell Road, London SW7 5BD, UK. E-mail: [email protected] 2Zoological Institute, Russian Academy of Sciences, Universitetskaya nab., 1, Saint-Petersburg, 199034, Russia. E-mail: [email protected] 3A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr., 33, Moscow, 119071, Russia. E-mail: [email protected] 4Joint Vietnam-Russian Tropical Research and Technological Centre, Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi, Vietnam. E-mail: [email protected] 5Conservation International – Cambodia Programme, P.O. Box 1356, Phnom Penh, Cambodia. E-mail: [email protected] Abstract Knowledge of the Soricidae occurring in Vietnam has recently expanded with the discovery of several species previously unknown to science. Here we describe a new species of white-toothed shrew belonging to the genus Crocidura from lowland areas in southern Vietnam and from a river valley in north-eastern Cambodia. This small to medium sized species is diagnosed on the basis of external features, cranial proportions and morphology of the last upper and lower molars. Comparisons are made with other species of Crocidura known to occur in Vietnam and the biogeography of the regions where the new species has been found, is briefly discussed. Key words: white-toothed shrew, Vietnam, Cambodia Introduction Knowledge of the soricid fauna of South-East Asia and particularly that of Vietnam is still poorly understood, while that of Cambodia is virtually unknown (Jenkins, 1982; Heaney & Timm, 1983; Jenkins & Smith, 1995; Motokawa et al., 2005; Jenkins et al., 2009).
    [Show full text]
  • When Beremendiin Shrews Disappeared in East Asia, Or How We Can Estimate Fossil Redeposition
    Historical Biology An International Journal of Paleobiology ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ghbi20 When beremendiin shrews disappeared in East Asia, or how we can estimate fossil redeposition Leonid L. Voyta , Valeriya E. Omelko , Mikhail P. Tiunov & Maria A. Vinokurova To cite this article: Leonid L. Voyta , Valeriya E. Omelko , Mikhail P. Tiunov & Maria A. Vinokurova (2020): When beremendiin shrews disappeared in East Asia, or how we can estimate fossil redeposition, Historical Biology, DOI: 10.1080/08912963.2020.1822354 To link to this article: https://doi.org/10.1080/08912963.2020.1822354 Published online: 22 Sep 2020. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ghbi20 HISTORICAL BIOLOGY https://doi.org/10.1080/08912963.2020.1822354 ARTICLE When beremendiin shrews disappeared in East Asia, or how we can estimate fossil redeposition Leonid L. Voyta a, Valeriya E. Omelko b, Mikhail P. Tiunovb and Maria A. Vinokurova b aLaboratory of Theriology, Zoological Institute, Russian Academy of Sciences, Saint Petersburg, Russia; bFederal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia ABSTRACT ARTICLE HISTORY The current paper first time describes a small Beremendia from the late Pleistocene deposits in the Received 24 July 2020 Koridornaya Cave locality (Russian Far East), which associated with the extinct Beremendia minor. The Accepted 8 September 2020 paper is the first attempt to use a comparative analytical method to evaluate a possible case of redeposition KEYWORDS of fossil remains of this shrew.
    [Show full text]