Molecular Motors − a Paradigm for Mutant Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Motors − a Paradigm for Mutant Analysis Journal of Cell Science 113, 1311-1318 (2000) 1311 Printed in Great Britain © The Company of Biologists Limited 2000 JCS0832 COMMENTARY Molecular motors − a paradigm for mutant analysis Sharyn A. Endow Department of Microbiology, Duke University Medical Center, Durham, NC 27710 USA (e-mail: [email protected]) Published on WWW 21 March 2000 SUMMARY Molecular motors perform essential functions in the cell or by rational design. Mutants that are expected to and have the potential to provide insights into the basis provide important information about the motor of many important processes. A unique property of mechanism include ATPase mutants, which interfere with molecular motors is their ability to convert energy from the nucleotide hydrolysis cycle, and uncoupling mutants, ATP hydrolysis into work, enabling the motors to bind to which unlink basic motor activities and reveal their and move along cytoskeletal filaments. The mechanism interdependence. Natural variants can also be exploited of energy conversion by molecular motors is not yet to provide unexpected information about motor function. understood and may lead to the discovery of new This general approach to uncovering protein function by biophysical principles. Mutant analysis could provide analysis of informative mutants is applicable not only to valuable information, but it is not obvious how to obtain molecular motors, but to other proteins of interest. mutants that are informative for study. The analysis presented here points out several strategies for obtaining mutants by selection from molecular or genetic screens, Key words: Molecular motor, Mutant, Structure/function INTRODUCTION The cellular roles of the motors and interactions between the motors are only beginning to be understood. The fact that Molecular motors carry out a myriad of functions in the cell, the cellular functions of many of the motors are as yet ranging from vesicle (Hirokawa, 1998) and RNA transport unknown means that the effects of mutants that cause loss of (Nasmyth and Jansen, 1997) to spindle assembly and function have not always been straightforward to predict, and chromosome motility in dividing cells (Endow, 1999c). The some of these effects have been unexpected. For example, finding of a large number of motors that fall into one of the mutants of the unconventional myosins, myosin VI and VII, three families of motors known to exist in eukaryotes, the actin- cause deafness in mice and humans, and are the basis of based myosins (Sellers and Goodson, 1995) or microtubule- previously described syndromes, Snell’s Walzer and shaker, based kinesins (Bloom and Endow, 1995) and dyneins that are associated with behavioral abnormalities in mice (Hirokawa, 1998), has been revolutionary in permitting (Avraham et al., 1995; Gibson et al., 1995; Weil et al., 1995). analysis of diverse biological processes as the roles of the These myosins are present in hair cells of the inner ear, where proteins in the cell are discovered. The importance of their roles in hearing are currently being investigated. molecular motors in the cell is exemplified by the process of Another example of an unexpected effect of a mutant comes cell division, in which many of the kinesin microtubule motors, from work on the kinesin-related KIF3B microtubule motor. together with cytoplasmic dynein, produce force for spindle In the KIF3B-knockout mouse, loss of KIF3B is associated assembly and chromosome attachment to the spindle (Endow, with loss of bilateral asymmetry (Nonaka et al., 1998), which 1999c). Cytoplasmic myosin then functions during cytokinesis is needed to form organs such as the heart in mammals. to complete the process of cell division by accumulating in the Hirokawa and co-workers propose that the basis of the loss cleavage furrow and providing motile force for the contractile of asymmetry is defective transport of substances required for ring (Goldberg et al., 1998). Vesicle trafficking similarly formation of cilia in the early embryo (Nonaka et al., 1998). involves motors from all three families (Hirokawa, 1998; They hypothesize that the cilia cause a leftward flow of Brown, 1999), while specific cellular roles are played by extraembryonic fluid in the area of the node, which is a myosin in muscle contraction (Cooke, 1986), dyneins in transient structure present during gastrulation, and therefore flagellar motility (Gibbons, 1996) and kinesins in regulation of play a key role in the formation of left-right morphogen microtubule dynamics (Inoué and Salmon, 1995; Waters and gradients. These unforeseen mutant effects reflect the Salmon, 1996). inability to predict the cellular roles of the newly discovered 1312 S. A. Endow myosin, kinesin and dynein motors, and underscore the different from other nucleotide-hydrolyzing proteins in necessity for cellular studies. But to fully understand the roles possessing the ability to convert chemical energy into work has of molecular motors in cells, it is necessary to determine how led to the question of how to obtain information about the motor the motors work. mechanism. Strategies that have been used successfully for other proteins, such as the G proteins, are to characterize the proteins functionally and structurally using available biochemical and THE MOTOR MECHANISM structural methods (Bourne et al., 1991), and then to mutate specific residues of the proteins and determine the effects of the Molecular motors are unique in their ability to convert the mutations on protein structure and function (Raw et al., 1997). chemical energy from ATP hydrolysis into work, which permits Findings from such structure/function studies have resulted in them to bind to and move along actin filaments or microtubules. working models of G protein function (Sprang, 1997). Further The process of energy conversion by motor proteins is not tests by state-of-the-art methods, such as time-resolved or understood, and considerable effort is now being devoted to millisecond-resolution X-ray crystallography (Scott et al., 1996; unraveling the possible mechanisms. The discovery of large Stoddard et al., 1998), could confirm the conformational changes families of related motors whose members differ from one in protein structure proposed to occur during the hydrolysis cycle, another in directionality of movement on their filament, ATPase which are based on the ‘still’ images from static crystal structures. activity and motor velocity offers an unprecedented opportunity This general approach is one that is being used to study the to perform studies to uncover the mechanism by which these mechanism of myosin function and has led to several proteins function. This information will be valuable, first, noteworthy achievements in recent years. The solution of the because it represents basic information about energy conversion first myosin motor domain structure was a breakthrough in living organisms and may lead to the discovery of new (Rayment et al., 1993) that has been rapidly followed by new principles and, second, because it will help us to understand myosin structures (Fisher et al., 1995; Dominguez et al., 1998; how the motors work in the cell. Practical uses of the anticipated Houdusse et al., 1999), as noted above. Mutant analysis coupled information will be to design mutants that disrupt specific with expression of functional myosin proteins in baculovirus is cellular functions, or to create motors for transport of drugs or underway (Ruppel and Spudich, 1995) and should provide other substances to specific cells or regions of cells. information about the myosin mechanism of function. But A milestone towards the goal of understanding the changes despite the recent surge in progress on myosin, the kinesins that take place in the motors during the conversion of chemical have continued to attract attention. The kinesins offer several to mechanical energy has been the solution of crystal structures advantages over myosin, including the smaller size of the of myosin in three different nucleotide states: a ‘rigor’ state motors compared with myosin, which is a distinct advantage for without nucleotide (Rayment et al., 1993), a putative transition structural analysis, and the ease of expressing the kinesin − state with bound ADP⋅AlF4 (Fisher et al., 1995; Dominguez et proteins in bacteria compared with the technicalities of al., 1998), and a third distinct conformational state that may baculovirus expression. On the other hand, a major barrier to correspond to a prehydrolysis state (Houdusse et al., 1999). A rapid progress on the kinesins has been the inability to comparable advance for the kinesins has been the solution of crystallize the motors in different conformations that crystal structures of monomeric and dimeric forms of the motors correspond to different nucleotide states of the motor. Although in the Mg⋅ADP state (Sack et al., 1999). The crystal structures seven crystal structures of kinesin proteins have been reported of the kinesins provide information about the dimeric forms of to date (Sack et al., 1999; Kozielski et al., 1999), all of the the motors, currently unavailable for the myosins, but are structures are in the same nucleotide state, with bound Mg⋅ADP. uninformative about the changes that take place in the motors Efforts to identify different structures of the kinesins bound to during nucleotide hydrolysis because they all correspond to the other nucleotides, including attempts to use nucleotide same state, presumably a post-hydrolysis state. Nonetheless, the analogues to grow crystals of motors in
Recommended publications
  • Chloroplast Transit Peptides: Structure, Function and Evolution
    reviews Chloroplast transit Although the first demonstration of precursor trans- port into chloroplasts was shown over two decades peptides: structure, ago3,4, only now is this area of cell biology becom- ing well understood. Many excellent reviews have been published recently on the evolution of plas- function and tids5, the evolution of organelle genomes6, the mechanism of gene transfer from organelles to the nucleus7 and the mechanism of protein import into evolution chloroplasts8,9. Proteins destined to plastids and other organ- elles share in common the requirement for ‘new’ Barry D. Bruce sequence information to facilitate their correct trafficking within the cell. Although in most cases this information resides in a cleavable, N-terminal sequence often collectively referred to as signal It is thought that two to three thousand different proteins are sequence, the different organelle-targeting se- targeted to the chloroplast, and the ‘transit peptides’ that act as quences have distinct properties and names: ‘signal peptides’ for the endoplasmic reticulum, chloroplast targeting sequences are probably the largest class of ‘presequences’ for the mitochondria and ‘transit peptides’ for chloroplasts and other plastids. This targeting sequences in plants. At a primary structural level, transit review focuses on recent progress in dissecting peptide sequences are highly divergent in length, composition and the role of the stromal-targeting domain of chloro- plast transit peptides. I will consider briefly the organization. An emerging concept suggests that transit peptides multitude of distinct functions that transit peptides contain multiple domains that provide either distinct or overlapping perform, provide an update on the limited struc- tural information of a number of transit peptides functions.
    [Show full text]
  • Construction and Loss of Bacterial Flagellar Filaments
    biomolecules Review Construction and Loss of Bacterial Flagellar Filaments Xiang-Yu Zhuang and Chien-Jung Lo * Department of Physics and Graduate Institute of Biophysics, National Central University, Taoyuan City 32001, Taiwan; [email protected] * Correspondence: [email protected] Received: 31 July 2020; Accepted: 4 November 2020; Published: 9 November 2020 Abstract: The bacterial flagellar filament is an extracellular tubular protein structure that acts as a propeller for bacterial swimming motility. It is connected to the membrane-anchored rotary bacterial flagellar motor through a short hook. The bacterial flagellar filament consists of approximately 20,000 flagellins and can be several micrometers long. In this article, we reviewed the experimental works and models of flagellar filament construction and the recent findings of flagellar filament ejection during the cell cycle. The length-dependent decay of flagellar filament growth data supports the injection-diffusion model. The decay of flagellar growth rate is due to reduced transportation of long-distance diffusion and jamming. However, the filament is not a permeant structure. Several bacterial species actively abandon their flagella under starvation. Flagellum is disassembled when the rod is broken, resulting in an ejection of the filament with a partial rod and hook. The inner membrane component is then diffused on the membrane before further breakdown. These new findings open a new field of bacterial macro-molecule assembly, disassembly, and signal transduction. Keywords: self-assembly; injection-diffusion model; flagellar ejection 1. Introduction Since Antonie van Leeuwenhoek observed animalcules by using his single-lens microscope in the 18th century, we have entered a new era of microbiology.
    [Show full text]
  • Review of Molecular Motors
    REVIEWS CYTOSKELETAL MOTORS Moving into the cell: single-molecule studies of molecular motors in complex environments Claudia Veigel*‡ and Christoph F. Schmidt§ Abstract | Much has been learned in the past decades about molecular force generation. Single-molecule techniques, such as atomic force microscopy, single-molecule fluorescence microscopy and optical tweezers, have been key in resolving the mechanisms behind the power strokes, ‘processive’ steps and forces of cytoskeletal motors. However, it remains unclear how single force generators are integrated into composite mechanical machines in cells to generate complex functions such as mitosis, locomotion, intracellular transport or mechanical sensory transduction. Using dynamic single-molecule techniques to track, manipulate and probe cytoskeletal motor proteins will be crucial in providing new insights. Molecular motors are machines that convert free energy, data suggest that during the force-generating confor- mostly obtained from ATP hydrolysis, into mechanical mational change, known as the power stroke, the lever work. The cytoskeletal motor proteins of the myosin and arm of myosins8,11 rotates around its base at the catalytic kinesin families, which interact with actin filaments and domain11–17, which can cause the displacement of bound microtubules, respectively, are the best understood. Less cargo by several nanometres18 (FIG. 1B). In kinesins, the is known about the dynein family of cytoskeletal motors, switching of the neck linker (~13 amino acids connecting which interact with microtubules. Cytoskeletal motors the catalytic core to the cargo-binding stalk domain) from power diverse forms of motility, ranging from the move- an ‘undocked’ state to a state in which it is ‘docked’ to the ment of entire cells (as occurs in muscular contraction catalytic domain, is the equivalent of the myosin power or cell locomotion) to intracellular structural dynamics stroke10.
    [Show full text]
  • Control of Molecular Motor Motility in Electrical Devices
    Control of Molecular Motor Motility in Electrical Devices Thesis submitted in accordance with the requirements of The University of Liverpool for the degree of Doctor in Philosophy By Laurence Charles Ramsey Department of Electrical Engineering & Electronics April 2014 i Abstract In the last decade there has been increased interest in the study of molecular motors. Motor proteins in particular have gained a large following due to their high efficiency of force generation and the ability to incorporate the motors into linear device designs. Much of the recent research centres on using these protein systems to transport cargo around the surface of a device. The studies carried out in this thesis aim to investigate the use of molecular motors in lab- on-a-chip devices. Two distinct motor protein systems are used to show the viability of utilising these nanoscale machines as a highly specific and controllable method of transporting molecules around the surface of a lab-on-a-chip device. Improved reaction kinetics and increased detection sensitivity are just two advantages that could be achieved if a motor protein system could be incorporated and appropriately controlled within a device such as an immunoassay or microarray technologies. The first study focuses on the motor protein system Kinesin. This highly processive motor is able to propel microtubules across a surface and has shown promise as an in vitro nanoscale transport system. A novel device design is presented where the motility of microtubules is controlled using the combination of a structured surface and a thermoresponsive polymer. Both topographic confinement of the motility and the creation of localised ‘gates’ are used to show a method for the control and guidance of microtubules.
    [Show full text]
  • On Helicases and Other Motor Proteins Eric J Enemark and Leemor Joshua-Tor
    Available online at www.sciencedirect.com On helicases and other motor proteins Eric J Enemark and Leemor Joshua-Tor Helicases are molecular machines that utilize energy derived to carry out the repetitive mechanical operation of prying from ATP hydrolysis to move along nucleic acids and to open base pairs and/or actively translocating with respect separate base-paired nucleotides. The movement of the to the nucleic acid substrate. Many other molecular helicase can also be described as a stationary helicase that motors utilize similar engines to carry out multiple pumps nucleic acid. Recent structural data for the hexameric diverse functions such as translocation of peptides E1 helicase of papillomavirus in complex with single-stranded in the case of ClpX, movement along cellular structures DNA and MgADP has provided a detailed atomic and in the case of dyenin, and rotation about an axle as in mechanistic picture of its ATP-driven DNA translocation. The F1-ATPase. structural and mechanistic features of this helicase are compared with the hexameric helicase prototypes T7gp4 and Based upon conserved sequence motifs, helicases have SV40 T-antigen. The ATP-binding site architectures of these been classified into six superfamilies [1,2]. An extensive proteins are structurally similar to the sites of other prototypical review of these superfamilies has been provided recently ATP-driven motors such as F1-ATPase, suggesting related [3]. Superfamily 1 (SF1) and superfamily 2 (SF2) heli- roles for the individual site residues in the ATPase activity. cases are very prevalent, generally monomeric, and participate in several diverse DNA and RNA manipula- Address tions.
    [Show full text]
  • Cytoskeleton and Cell Motility
    Cytoskeleton and Cell Motility Thomas Risler1 1Laboratoire Physicochimie Curie (CNRS-UMR 168), Institut Curie, Section de Recherche, 26 rue d’Ulm, 75248 Paris Cedex 05, France (Dated: January 23, 2008) PACS numbers: 1 Article Outline Glossary I. Definition of the Subject and Its Importance II. Introduction III. The Diversity of Cell Motility A. Swimming B. Crawling C. Extensions of cell motility IV. The Cell Cytoskeleton A. Biopolymers B. Molecular motors C. Motor families D. Other cytoskeleton-associated proteins E. Cell anchoring and regulatory pathways F. The prokaryotic cytoskeleton V. Filament-Driven Motility A. Microtubule growth and catastrophes B. Actin gels C. Modeling polymerization forces D. A model system for studying actin-based motility: The bacterium Listeria mono- cytogenes E. Another example of filament-driven amoeboid motility: The nematode sperm cell VI. Motor-Driven Motility A. Generic considerations 2 B. Phenomenological description close to thermodynamic equilibrium C. Hopping and transport models D. The two-state model E. Coupled motors and spontaneous oscillations F. Axonemal beating VII. Putting It Together: Active Polymer Solutions A. Mesoscopic approaches B. Microscopic approaches C. Macroscopic phenomenological approaches: The active gels D. Comparisons of the different approaches to describing active polymer solutions VIII. Extensions and Future Directions Acknowledgments Bibliography Glossary Cell Structural and functional elementary unit of all life forms. The cell is the smallest unit that can be characterized as living. Eukaryotic cell Cell that possesses a nucleus, a small membrane-bounded compartment that contains the genetic material of the cell. Cells that lack a nucleus are called prokaryotic cells or prokaryotes. Domains of life archaea, bacteria and eukarya - or in English eukaryotes, and made of eukaryotic cells - which constitute the three fundamental branches in which all life forms are classified.
    [Show full text]
  • Arxiv:1105.2423V1 [Physics.Bio-Ph] 12 May 2011 C
    Cytoskeleton and Cell Motility Thomas Risler Institut Curie, Centre de Recherche, UMR 168 (UPMC Univ Paris 06, CNRS), 26 rue d'Ulm, F-75005 Paris, France Article Outline C. Macroscopic phenomenological approaches: The active gels Glossary D. Comparisons of the different approaches to de- scribing active polymer solutions I. Definition of the Subject and Its Importance VIII. Extensions and Future Directions II. Introduction Acknowledgments III. The Diversity of Cell Motility Bibliography A. Swimming B. Crawling C. Extensions of cell motility IV. The Cell Cytoskeleton A. Biopolymers B. Molecular motors C. Motor families D. Other cytoskeleton-associated proteins E. Cell anchoring and regulatory pathways F. The prokaryotic cytoskeleton V. Filament-Driven Motility A. Microtubule growth and catastrophes B. Actin gels C. Modeling polymerization forces D. A model system for studying actin-based motil- ity: The bacterium Listeria monocytogenes E. Another example of filament-driven amoeboid motility: The nematode sperm cell VI. Motor-Driven Motility A. Generic considerations B. Phenomenological description close to thermo- dynamic equilibrium arXiv:1105.2423v1 [physics.bio-ph] 12 May 2011 C. Hopping and transport models D. The two-state model E. Coupled motors and spontaneous oscillations F. Axonemal beating VII. Putting It Together: Active Polymer Solu- tions A. Mesoscopic approaches B. Microscopic approaches 2 Glossary I. DEFINITION OF THE SUBJECT AND ITS IMPORTANCE Cell Structural and functional elementary unit of all life forms. The cell is the smallest unit that can be We, as human beings, are made of a collection of cells, characterized as living. which are most commonly considered as the elementary building blocks of all living forms on earth [1].
    [Show full text]
  • Bacterial Flagellar Motor Is a Reversible Rotary Nano-Machine, About 45 Nm in Diameter, Embedded in the Bacterial Cell Envelope
    Quarterly Reviews of Biophysics 41, 2 (2008), pp. 103–132. f 2008 Cambridge University Press 103 doi:10.1017/S0033583508004691 Printed in the United Kingdom Bacterialflagellar motor Yoshiyuki Sowa and Richard M. Berry* Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK Abstract. The bacterial flagellar motor is a reversible rotary nano-machine, about 45 nm in diameter, embedded in the bacterial cell envelope. It is powered by the flux of H+ or Na+ ions across the cytoplasmic membrane driven by an electrochemical gradient, the proton- motive force or the sodium-motive force. Each motor rotates a helical filament at several hundreds of revolutions per second (hertz). In many species, the motor switches direction stochastically, with the switching rates controlled by a network of sensory and signalling proteins. The bacterial flagellar motor was confirmed as a rotary motor in the early 1970s, the first direct observation of the function of a single molecular motor. However, because of the large size and complexity of the motor, much remains to be discovered, in particular, the structural details of the torque-generating mechanism. This review outlines what has been learned about the structure and function of the motor using a combination of genetics, single-molecule and biophysical techniques, with a focus on recent results and single-molecule techniques. 1. Introduction 104 2. Propeller and universal joint 106 3. Energy transduction 108 3.1 Ion selectivity 108 3.2 Motor dependence upon ion-motive force 111 3.3 Torque versus speed 112 4. Mechanism of torque generation 115 4.1 Interactions between rotor and stator 115 4.2 Independent torque generating units 117 4.3 New motor structures 119 4.4 Stepping rotation 120 4.5 Models of the mechanism 123 5.
    [Show full text]
  • Tuning Molecular Motor Transport Through Cytoskeletal Filament
    bioRxiv preprint doi: https://doi.org/10.1101/277947; this version posted March 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Tuning molecular motor transport through cytoskeletal filament network organization Monika Scholz,1, 2 Kimberly L. Weirich,1, 2 Margaret L. Gardel,1, 2, 3 and Aaron R. Dinner1, 2, 4, ∗ 1James Franck Institute, the University of Chicago, Chicago, IL 60637 2Institute for Biophysical Dynamics, the University of Chicago, Chicago, IL 60637 3Department of Physics, the University of Chicago, Chicago, IL 60637 4Department of Chemistry, the University of Chicago, Chicago, IL 60637∗ The interaction of motor proteins with intracellular filaments is required for transport processes and force generation in cells. Within a cell, crosslinking proteins organize cytoskeletal filaments both temporally and spatially to create dynamic, and structurally diverse networks. The architecture of these networks changes both the mechanics as well as the transport dynamics; however, the effects on transport are less well understood. Here, we compare the transport dynamics of myosin II motor proteins moving on model cytoskeletal networks created by common crosslinking proteins. We observe that motor dynamics change predictably based on the microstructure of the underlying networks and discuss how this can be utilized by cells to achieve specific transport goals. I. INTRODUCTION tures spatially and temporally to control the motor dy- namics. The interior of cells is organized by cytoskeletal struc- Here, we demonstrate experimentally that actin fila- tures.
    [Show full text]
  • Cytoskeletal Cross-Linking and Bundling in Motor-Independent
    Current Biology 20, R649–R654, August 10, 2010 ª2010 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2010.07.004 Cytoskeletal Cross-linking and Bundling Minireview in Motor-Independent Contraction Sean X. Sun1, Sam Walcott1, and Charles W. Wolgemuth2,* are needed to pull up the trailing edge during cell movement and to constrict the cell circumference during division. Tradi- tionally, contractile forces are thought to originate from Eukaryotic and prokaryotic cells use cytoskeletal proteins non-muscle myosin-II, an ATP-powered molecular motor to regulate and modify cell shape. During cytokinesis or that slides actin filaments relative to each other. However, eukaryotic cell crawling, contractile forces are generated emerging evidence suggests that bundling and cross-linking inside the cell to constrict the division site or to haul the of cytoskeletal filaments may also be a general mechanism rear of the cell forward, respectively. In many cases, these for generating these forces. In this review, we summarize forces have been attributed to the activity of molecular a physical mechanism that may allow cells to produce motors, such as myosin II, which, by pulling on actin fila- contractile forces without molecular motors and discuss ments, can produce contraction of the actin cytoskeleton. evidence that this mechanism plays a role in cell motility However, prokaryotic division is driven by the tubulin-like and cell division. protein FtsZ and does not seem to require additional molecular motors to constrict the division site. Likewise, Using Cross-linking, Bundling, and Depolymerization Dictyostelium discoideum Saccharomyces cerevisiae and to Contract can perform cytokinesis under motor-free conditions.
    [Show full text]
  • An Introduction to Molecular Motors
    An Introduction to Molecular Motors Barry Grant http://mccammon.ucsd.edu/~bgrant/ Cellular Motility is Essential for Life Fertilization Axonal Transport Muscle Contraction Just three families of motor proteins power eukaryotic cellular movement myosin kinesin dynein Cytoskeletal Transport Systems At the molecular level cytoskeletal transport systems consist of four basic components. Motor Track myosin, kinesin microfilaments and dynein and microtubules Cargo Fuel organelles, vesicles, ATP and chromosomes, etc. GTP Microtubules and microfilaments are highly organized within cells and together with motor proteins provide a framework for the redistribution and organization of cellular components. Cargo Track Motor Why Study Cytoskeletal Motor Proteins? Relevance to biology: •Motor systems intersect with almost every facet of cell biology. Relevance to medicine: •Transport defects can cause disease. • Inhibition or enhancement of motor protein activity has therapeutic benefits. Relevance to engineering: •Understanding the design principles of molecular motors will inform efforts to construct efficient nanoscale machines. Motors Are Efficient Nanoscale Machines Kinesin Automobile Size 10-8 m 1m 4 x 10-3 m/hr 105 m/hr Speed 4 x 105 lengths/hr 105 lengths/hr Efficiency ~70% ~10% Non-cytoskeletal motors DNA motors: Helicases, Polymerases Rotary motors: Bacterial Flagellum, F1-F0-ATPase Getting in Scale This Fibroblast is about 100 μM in diameter. A single microtubule is 25nm in diameter. You can also see microfilaments and intermediate filaments. Cytoskeleton Microtubules Protofilament Tubulin Heterodimer α β Key Concept: Directionality Microtubule Microfilament Tubulin Actin Track Polarity •Due to ordered arrangement of asymmetric constituent proteins that polymerize in a head-to-tail manner. •Polymerization occurs preferentially at the + end.
    [Show full text]
  • Molecular Machines Operated by Light
    Cent. Eur. J. Chem. • 6(3) • 2008 • 325–339 DOI: 10.2478/s11532-008-0033-4 Central European Journal of Chemistry Molecular machines operated by light Invited Review Alberto Credi*, Margherita Venturi Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2 – 40126 Bologna, Italy Received 11 February 2008; Accepted 22 Arpil 2008 Abstract: The bottom-up construction and operation of machines and motors of molecular size is a topic of great interest in nanoscience, and a fascinating challenge of nanotechnology. Researchers in this field are stimulated and inspired by the outstanding progress of mo- lecular biology that has begun to reveal the secrets of the natural nanomachines which constitute the material base of life. Like their macroscopic counterparts, nanoscale machines need energy to operate. Most molecular motors of the biological world are fueled by chemical reactions, but research in the last fifteen years has demonstrated that light energy can be used to power nanomachines by exploiting photochemical processes in appropriately designed artificial systems. As a matter of fact, light excitation exhibits several advantages with regard to the operation of the machine, and can also be used to monitor its state through spectroscopic methods. In this review we will illustrate the design principles at the basis of photochemically driven molecular machines, and we will describe a few examples based on rotaxane-type structures investigated in our laboratories. Keywords: Molecular device • Nanoscience • Photochemistry • Rotaxane • Supramolecular Chemistry © Versita Warsaw and Springer-Verlag Berlin Heidelberg. 1. Introduction Richard Feynman stated in his famous talk in 1959 [4]. Research on supramolecular chemistry has shown that molecules are convenient nanometer-scale building The development of civilization has always been strictly blocks that can be used, in a bottom-up approach, related to the design and construction of devices – to construct ultraminiaturized devices and machines from wheel to jet engine – capable of facilitating man [5].
    [Show full text]