Upscaling of Indium Tin Oxide (ITO)-Free Polymer Solar Cells

Total Page:16

File Type:pdf, Size:1020Kb

Upscaling of Indium Tin Oxide (ITO)-Free Polymer Solar Cells Downloaded from orbit.dtu.dk on: Dec 20, 2017 Upscaling of Indium Tin Oxide (ITO)-Free Polymer Solar Cells Performance, Scalability, Stability, and Flexibility Angmo, Dechan; Krebs, Frederik C Publication date: 2014 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Angmo, D., & Krebs, F. C. (2014). Upscaling of Indium Tin Oxide (ITO)-Free Polymer Solar Cells: Performance, Scalability, Stability, and Flexibility. Department of Energy Conversion and Storage, Technical University of Denmark. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Upscaling of Indium Tin Oxide (ITO)- Free Polymer Solar Cells Performance, Scalability, Stability, and Flexibility Ph.D. Dissertation Dechan Angmo September 2013 Upscaling of Indium Tin Oxide (ITO)-Free Polymer Solar Cells Performance, Scalability, Stability, and Flexibility September, 2013 By Dechan Angmo Sponsorship: The project was financed by European Commission as part of Framework 7 ICT 2009 collaborative project HIFLEX (Grant no. 248678) and ROTROT (grant no. 288565) Academic advisor: Professor Frederik C. Krebs Functional Organic Materials, Department of Energy Conversion and Storage Copyright: Reproduction of this publication in whole or in part must include the cus- tomary bibliographic citation, including author attribution, report title, etc. Cover photo: ITO-free highly flexible module, Slot-die coating of photoactive polymer, Roll-to-roll processed modules, Illustration of a typical layer stack , and Current-voltage curves of ITO-free (IOne) modules of different sizes up-to 186 cm2. Published by: Department of Energy Conversion and Storage, Frederiksborgvej 399, Building 775, 4000 Roskilde, Denmark ISBN: 978-87-92986-07-8 Preface Roskilde, September 2013 Sometimes life takes you on a journey only to prepare you for what you wished for. I have always wanted to combine my love and aptitude for science to do something meaningful to the underprivileged part of the world, having grown up in one. Second year in college, I knew I wanted to study renewable energy. Ever since then, I had carved my way to lead me to solar cells. And today, I hand in my thesis with much pride. It would not have been possible without my supervisor, Professor Frederik C. Krebs. I am indebted to him for giving me this opportunity and also for his tireless sup- port throughout the last three years. His commitment and passion to his work is very contagious and has kept me motivated throughout all these years. Dr. Mikkel Jørgen- sen is also specially thanked for always being there when I struggled with scientific problems or with the LBIC instrument. This Ph.D. has been a part of European Commission funded FP7 collaborative project titled HIFLEX. I would like to acknowledge all the people I met under HIFLEX from whom I learnt a lot. Especially, I would like to thank Dr. Yulia Galagan and Dr. Ronn Andreissen for making my research stay at Holst Center in Eindhoven, Nether- lands, a productive and a memorable one. I also extend my gratitude to all my dear colleagues who have never turned a deaf ear to my incessant questions. The camaraderie of this group is unparalleled to any other groups that I have previously worked with. Particularly, I thank Markus Hösel for reading my dissertation and more importantly for catapulting me to my current il- lustrator skills and being my walking-talking Wikipedia on industrial processing. He is always willing to listen to my questions and musings, no matter how trivial. Suren Ge- vorgyan, Henrik Friis Dam, Morten V. Madsen, Thue T. Larsen-Olsen, and Thomas R. i Anderson are especially thanked for listening to my scientific problems and sharing their knowledge without any hesitation. Nieves Espinosa is also thanked for fruitful comments on Chapter 8. I thank Birgitta Andreasen, my only female counterpart in our group for more than 2 years, for being a friend in this far away land. Thanks for lis- tening to me in hard times and sharing laughter in good times. I thank my family for their pride in me and supporting me in whatever I do, wherever I go, and whoever I become. Their love remains unconditional. Finally but most importantly, I thank my late mother. Her 3 o’clock tea in the morning when I used to pull an all-nighter during school was inexpressibly missed this time around. Words have always fallen short when I talk of my mother. Having very lit- tle education herself and coming of very remote region of the world, she has instilled in me the value of education and the need of perseverance and perspiration required to attain it. I am her sacrifices. To her, I dedicate this thesis with a note: my best is yet to come. ii Abstract Polymer solar cells (PSCs) aim to produce clean energy that is cost-competitive to en- ergy produced by fossil fuel-based conventional energy sources. From an environmen- tal perspective, PSCs already compares favorably to other solar cell technologies in terms of fewer emissions of greenhouse gases during production. The cost- competitiveness of PSCs is envisioned achievable by the use of inexpensive materials and high throughput roll-to-roll (R2R) printing and coating techniques. The state-of- the-art of the laboratory PSCs is, however, far removed from the vision of the widely disseminated low-cost solar cells as the laboratory solar cells are mostly focused on in- creasing the power conversion efficiency through materials design with little emphasis on the choice of materials, operational stability and large-scale processing. Indium-tin- oxide (ITO), the commonly used transparent conductor, represents majority of the share of cost and energy footprint in terms of materials and processing in a conven- tional PSC module. Furthermore, the scarcity of indium is feared to create bottleneck in the dawning PSC industry and its brittle nature is an obstacle for fast processing of PSCs on flexible substrates as well as for applications in flexible end products. Thus, the replacement of ITO with low-cost alternatives is crucial for the commercial feasibility of PSCs. Encompassing these concerns, my PhD study has contributed to the development and evaluation of alternatives to ITO in laboratory cells, upscaling of ITO-free concepts from laboratory cells to R2R produced large-area modules, and integration of these module in demonstrator consumer applications. Accordingly, this dissertation is orga- nized into nine chapters. Chapter 1 is aimed at contextualizing PSCs on the world ener- gy map. It aims to address the question: why should PSCs be pursued? Chapter 2 at- tempts to provide a concise yet encompassing introduction to PSCs; and the problem with ITO and possible solutions. It also lays out specific targets that were set before the beginning of PhD study which provides a frame-of-reference for the later chapters. A holistic evaluation of several ITO-free concepts was carried out to determine low-cost upscaling compatibility of these concepts (Chapter 3). The results highlighted three ar- iii chitectures that represented different competencies with regards to photovoltaic per- formance, stability, and low-cost processing. These three architectures were upscaled (Chapter 5-7) using R2R techniques described in detail in Chapter 4. One of the three upscaled architecture (Chapter 7) represented an efficient alternative to ITO in terms of photovoltaic performance and were further investigated for stability and flexibility. These modules were then integrated in a credit-card size laser pointer for demonstra- tion purposes. A colleague, Nieves Espinosa, has conducted life-cycle analyses (LCA) on all the three upscaled ITO-free architectures. Drawing upon the data from her pub- lished work, Chapter 8 provides concise and comparative LCA of the three upscaled ITO-free architectures in order to determine which technology can be pursued further among the three architectures. LCA results of the ITO-free architectures are also com- pared against ITO-based upscaled PSCs as well as against other photovoltaic technolo- gies. Finally, the last chapter (Chapter 9) puts everything in the nutshell and identifies future challenges. iv Resumé Plastsolceller (PSC) har til formål at producere ren energi, der er prismæssigt konkurren- cedygtig sammenlignet med energi produceret af konventionelle fossile brændsler. Fra et miljømæssigt perspektiv sammenlignes PSC allerede positivt til andre solcelle-teknologier i form af færre emissioner af drivhusgasser under produktionen. Konkurrenceevnen for prisen på PSC opnås ved brug af billige materialer og høj hastigheds rulle-til-rulle (R2R) trykning samt coating teknikker. De bedste PSC produceret i laboratorieforhold er langt fra visionen om den meget udbredte billige solcelle, da disse mest er fokuseret på at øget effektiviteten gennem design med lille vægt på valget af materialer, driftsstabilitet og om- fattende behandling. Indium-tin-oxid (ITO), den mest almindeligt anvendte transparente leder, repræsenterer størstedelen af omkostningerne og energi fodaftrykket i form af ma- terialer og forarbejdning i et konventionelt PSC modul. Desuden vil manglen på indium skabe en flaskehals i PSC industrien og samtidig er ITOs struktur en hindring for hurtig be- handling af PSC på fleksible substrater, samt for fleksibiliteten af slutproduktet. Udskift- ning af ITO med billige alternativer er således afgørende for den kommercielle succes for PSC.
Recommended publications
  • Understanding of the Mechanism for Laser Ablation-Assisted Patterning of Graphene/ITO Double Layers: Role of Effective Thermal Energy Transfer
    micromachines Article Understanding of the Mechanism for Laser Ablation-Assisted Patterning of Graphene/ITO Double Layers: Role of Effective Thermal Energy Transfer 1, 2, 3, 4 4 Hyung Seok Ryu y, Hong-Seok Kim y, Daeyoon Kim y, Sang Jun Lee , Wonjoon Choi , Sang Jik Kwon 1, Jae-Hee Han 2,* and Eou-Sik Cho 1,* 1 Department of Electronic Engineering, Gachon University, Gyeonggi-do 13120, Korea; [email protected] (H.S.R.); [email protected] (S.J.K.) 2 Department of Materials Science and Engineering, Gachon University, Gyeonggi-do 13120, Korea; [email protected] 3 Department of Energy IT, Gachon University, Gyeonggi-do 13120, Korea; [email protected] 4 School of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; [email protected] (S.J.L.); [email protected] (W.C.) * Correspondence: [email protected] (J.-H.H.); [email protected] (E.-S.C.); Tel.: +82-31-750-8689 (J.-H.H.); +82-31-750-5297 (E.-S.C.) These authors contributed equally to this work. y Received: 3 August 2020; Accepted: 28 August 2020; Published: 29 August 2020 Abstract: Demand for the fabrication of high-performance, transparent electronic devices with improved electronic and mechanical properties is significantly increasing for various applications. In this context, it is essential to develop highly transparent and conductive electrodes for the realization of such devices. To this end, in this work, a chemical vapor deposition (CVD)-grown graphene was transferred to both glass and polyethylene terephthalate (PET) substrates that had been pre-coated with an indium tin oxide (ITO) layer and then subsequently patterned by using a laser-ablation method for a low-cost, simple, and high-throughput process.
    [Show full text]
  • Synthesis and Characterization of Indium Tin Oxide Nanoparticles Via Reflux Method
    Materials Science-Poland, 35(4), 2017, pp. 799-805 http://www.materialsscience.pwr.wroc.pl/ DOI: 10.1515/msp-2018-0008 Synthesis and characterization of indium tin oxide nanoparticles via reflux method SAHEBALI MANAFI˚,SIMIN TAZIKEH,SEDIGHEH JOUGHEHDOUST Department of Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran Synthesis of indium tin oxide (ITO) nanoparticles by reflux method without chlorine contamination at different pHs, tem- peratures, solvents and concentrations has been studied. Indium chloride, tin chloride, water, ethanol and Triton X-100 were used as starting materials. Structure, size, surface morphology and transparency of indium tin oxide nanoparticles were stud- ied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and UV-Vis spectrophotometry. XRD patterns showed that 400 °C is the lowest temperature for synthesis of ITO nanoparticles because metal hydroxide does not transform to metal oxide in lower temperature. FT-IR results showed the transformation of hydroxyl groups to oxide. SEM images showed that pH is the most important factor affecting the nanoparticles size. The smallest nanoparticles (40 nm) were obtained at pH “ 8.8. The size of crystallites was decreased by lowering of concentration (0.025 M). Keywords: reflux method; indium tin oxide; resistivity; transparency 1. Introduction containing hydrogen of 1 % demonstrated almost flat temperature dependent resistivity and the low- ´4 Transparent conductive oxides (TCO) have at- est resistivity of « 1.5 × 10 W¨cm at room tracted attention for the past few years [1–4]. TCOs temperature [16]. have been used widely in different industries, re- Delacy et al. [17] reported the synthesis of cently.
    [Show full text]
  • Transparent Conducting Oxides for Electro-Optical Plasmonic Modulators
    Nanophotonics 2015; 4:165–185 Review Article Open Access Viktoriia E. Babicheva*, Alexandra Boltasseva, and Andrei V. Lavrinenko Transparent conducting oxides for electro-optical plasmonic modulators DOI 10.1515/nanoph-2015-0004 1 Introduction Received January 21, 2015; accepted February 3, 2015 Abstract: The ongoing quest for ultra-compact optical The advent of broadband optical signals in telecommuni- devices has reached a bottleneck due to the diffraction cation systems led to unprecedented high bit rates that limit in conventional photonics. New approaches that pro- were unachievable in the electronic domain. Later on, vide subwavelength optical elements, and therefore lead photonics presented a new platform for high-speed data to miniaturization of the entire photonic circuit, are ur- transfer by implementing hybrid electronic-photonic cir- gently required. Plasmonics, which combines nanoscale cuits, where data transmission using light instead of elec- light confinement and optical-speed processing of signals, tric signals significantly boosted the data exchange rates has the potential to enable the next generation of hy- on such photonic/electronic chips [1–3]. Different silicon- brid information-processing devices, which are superior based photonic passive waveguides have recently been to the current photonic dielectric components in terms of proposed and realized as possible optical interconnects speed and compactness. New plasmonic materials (other for electronic chip communications [4]. Nevertheless, the than metals), or optical materials with metal-like behav- main building block in the next generation networks ar- ior, have recently attracted a lot of attention due to the chitecture is an effective electro-optical modulator. promise they hold to enable low-loss, tunable, CMOS- There are several different physical effects for light compatible devices for photonic technologies.
    [Show full text]
  • Indium Tin Oxide (ITO) for Evaporation Indium Tin Oxide (ITO) for Evaporation
    Indium Tin Oxide (ITO) for Evaporation Indium Tin Oxide (ITO) for Evaporation Umicore Thin Film Products Umicore Thin Film Products, a globally active business unit within the Umicore Group, is one of the leading producers of coating materials for physical vapour deposition, with more than 50 years of experience in this field. Its product portfolio covers a wide range of highly effective sputtering targets and evaporations materials. Indium Tin Oxide can be used in Evaporation Systems for depositing thin conductive transparent layers for a variety of applications such as LED, sensors, and antistatic coatings. The desired combination of electrical conductivity and optical properties is achieved by varying In/Sn mixing ratio and process conditions. Selection of ITO Products for Evaporation Indium Tin Oxide (ITO) for Evaporation Indium Tin Oxide (ITO) for Evaporation Production Process Material Properties Evaporation Characteristics Our ITO evaporation materials are produced from › Chemical formula: In-Sn-oxide ITO fully sublimes. ITO is deposited by reactive or engineered powders by state-of-the-art blending non-reactive electron beam (e-beam) evapora- › Relative density: low density grade: and consolidation techniques. This ensures well tion using Cu-crucibles with Mo-liners (e.g. fitting typical 55 – 70% defined physical properties and uniformity within the tablet size) as well as thermal evaporation the product. The products are designed to be high density grade: > 99% using Mo-boats with cover. applicable in E-beam and thermal evaporation. › Theoretical density: 7.14 g/cm³ (90/10 wt%) The refractory index of ITO films, the degree of transmittance in the visible spectral range, › Appearance: yellowish green the on-set of metallic-like reflectance in the IR Composition (low density) to bluish spectral range and the electrical conductivity can black (high density) Typical composition ratios In/Sn are 95/5, 90/10, be tuned using the composition of the starting 83/7 wt%; other compositions upon request.
    [Show full text]
  • Indium Tin Oxide 97550
    PRODUCT DATA SHEET Indium-Tin Oxide (ITO) In2O3: SnO2 Standard ITO Introduction • Primary particles are regularly shaped ranging in size from Indium-tin oxide (ITO, or tin-doped indium oxide) is a 0.4 to 1.0µm mixture of indium(III) oxide (In O ) and tin(IV) oxide (SnO ), 2 3 2 • Agglomerates in size up to approximately 31µm typically 90% In2O3, 10% SnO2 by weight. In powder form it is yellow-green in color, but it is transparent and colorless when deposited as a thin film at thicknesses of 50–300nm. When deposited as a thin film on glass or clear plastic, it functions as a transparent electrical conductor. ITO is normally deposited by a physical vapor deposition process such as D.C. magnetron sputtering or electron beam deposition. Less frequently, ITO can be incorporated in inks using an appropriate film-forming polymer resin and solvent system, and deposited by screen printing albeit with lower transparency and conductivity compared to a physical deposition process. Of the various transparent conductive oxides (TCOs), ITO is considered the premium TCO, having superior conductivity and transparency, stability, and ease of patterning to form transparent circuitry. ITO is used in both LCDs and OLED displays, as well as in plasma, electroluminescent, and electrochromatic displays. It is also utilized in touch panels, antistatic coatings, EMI Fine ITO shielding, aircraft windshields, freezer-case glass for • Primary particles are regularly shaped ranging in size from demisting, and photovoltaic solar cells. A further use is as 0.1 to 1.0µm an IR-coating to reflect heat energy, such as in low-E glass and in low-pressure sodium lamps.
    [Show full text]
  • Organic Solar Cells on Indium Tin Oxide and Aluminum Doped Zinc
    Organic solar cells on indium tin oxide and aluminum doped zinc oxide anodes Kerstin Schulze, Bert Maennig, Karl Leo, Yuto Tomita, Christian May, Jürgen Hüpkes, Eduard Brier, Egon Reinold, and Peter Bäuerle Citation: Appl. Phys. Lett. 91, 073521 (2007); View online: https://doi.org/10.1063/1.2771050 View Table of Contents: http://aip.scitation.org/toc/apl/91/7 Published by the American Institute of Physics Articles you may be interested in Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices Applied Physics Letters 83, 1875 (2003); 10.1063/1.1605805 Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices Applied Physics Letters 76, 259 (2000); 10.1063/1.125740 Tin doped indium oxide thin films: Electrical properties Journal of Applied Physics 83, 2631 (1998); 10.1063/1.367025 Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode Applied Physics Letters 94, 243302 (2009); 10.1063/1.3154556 Aluminum doped zinc oxide for organic photovoltaics Applied Physics Letters 94, 213301 (2009); 10.1063/1.3142423 Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices Journal of Applied Physics 86, 6451 (1999); 10.1063/1.371708 APPLIED PHYSICS LETTERS 91, 073521 ͑2007͒ Organic solar cells on indium tin oxide and aluminum doped zinc oxide anodes ͒ Kerstin Schulze,a Bert Maennig, and Karl Leo Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße
    [Show full text]
  • Ultra-Low Thermal Conductivity of Nanogranular Indium Tin Oxide Films Deposited by Spray Pyrolysis
    Ultra-low Thermal Conductivity of Nanogranular Indium Tin Oxide Films Deposited by Spray Pyrolysis Vladimir I. Brinzari1, Alexandr I. Cocemasov1, Denis L. Nika1,*, Ghenadii S. Korotcenkov2 1E. Pokatilov Laboratory of Physics and Engineering of Nanomaterials, Department of Theoretical Physics, Moldova State University, Chisinau, MD-2009, Republic of Moldova 2Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea Abstract The authors have shown that nanogranular indium tin oxide (ITO) films, deposited by spray pyrolysis on silicon substrate, demonstrate ultralow thermal conductivity ~ 0.84±0.12 Wm- 1K-1 at room temperature. This value is approximately by one order of magnitude lower than that in bulk ITO. The strong drop of thermal conductivity is explained by nanogranular structure and porosity of ITO films, resulting in enhanced phonon scattering on grain boundaries. The experimental results were interpreted theoretically, employing Boltzmann transport equation approach for phonon transport and filtering model for electronic transport. The calculated values of thermal conductivity are in a reasonable agreement with the experimental findings. Our results show that ITO films with optimal nanogranular structure may be prospective for thermoelectric applications. _____________________________ Corresponding author: [email protected] (D.L. Nika) . 1. Introduction Thermoelectric materials are described by a figure of merit ZT, which reveals how well a material converts heat into electrical energy: S 2T ZT (1) where σ, S, κ, and T are the electrical conductivity, Seebeck coefficient or thermopower, thermal conductivity and absolute temperature, respectively. Electrical part of the heat conversion is usually characterized by a power factor PF S 2 . ZT is directly related to the efficiency of thermoelectric energy conversion - the higher ZT means the better efficiency.
    [Show full text]
  • Analyzing the Influences of Work Function Anode on the Performance of OLED
    IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-ISSN: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 5 Ver. II (Sep – Oct. 2015), PP 131-135 www.iosrjournals.org Analyzing the influences of work function Anode on the Performance of OLED 1 1 1 Iman Farjamtalab , Alireza Kashaniniya , Reza Sabbaghi-Nadooshan 1(Department of Electrical Engineering/ Central Tehran Branch, Islamic Azad University, Tehran, Iran) Abstract: In this work, we investigate the effect of increasing the work function of the anode on luminancepower and recombination rate. For this purpose, we choose a high-work function anode, and a low- work function anode. Then, we investigate their influences on luminance power and recombination rate. Therefore, two organic light-emitting diodes are designed by utilizing the indium tin oxide (ITO) anode and zinc oxide (ZnO) anode, and then we compare their performance. We utilize Langevin model and Poole-Frenkel model to analyze the OLEDs. The results indicate that increasing work function anode affects increasing luminance power, anode current and recombination rate. Keywords: OLED; work function anode; ITO; ZnO; work function I. Introduction By studying the different reports, we understand that there are various factors that influence on performance such as band gap, conductance, and work function. Transparent indium tin oxide (ITO) is commonly used as the anode in the organic electronic devices such as organic light-emitting diodes (OLEDs) and organic photovoltaic devices (OPVs) according to its high conductivity and excellent transmission of light [1–2]. However, ITO is toxic, expensive, and inflexible [3–4]. In addition, the graphene is suitable for the future portable electronics because it has high transparency in visible wavelength and better flexibility than the existing transparent conductive electrodes (TCEs) such as ITO, aluminum zinc oxide (AZO), and indium zinc oxide (IZO) [5].
    [Show full text]
  • Investigation of Indium Tin Oxide-Titanium Dioxide Interconnection Layers for Perovskite-Silicon Tandem Solar Cells
    Alma Mater Studiorum · Università di Bologna Scuola di Scienze Dipartimento di Fisica e Astronomia Corso di Laurea Magistrale in Fisica Investigation of indium tin oxide-titanium dioxide interconnection layers for perovskite-silicon tandem solar cells Relatore: Presentata da: Prof. Daniela Cavalcoli Jacopo Gasparetto Correlatore: Dott. Jan Christoph Goldschmidt Dott. Armin Richter M.Sc. Alexander Bett Anno Accademico 2016/2017 Abstract In questo lavoro è stato studiato ed investigato in dettaglio una nuova tipologia di stack di layer per interconnettere una cella solare a perovskite (PSC) e una cella solare etero- giunzione al silicio (SHJ) con lo scopo di realizzare in futuro una cella tandem monolitica a due terminali, ove la PSC veste il ruolo di top-cell mentre la cella SHJ quello di bottom-cell. Lo stack consiste in un layer di 20 nm di indium tin oxide (ITO), depositato tramite sputtering, e un film sottile di titanium dioxide (TiO2) depositato tramite differenti tecniche. In una cella SHJ, il layer di ITO costituisce il contatto frontale (top contact) e nel caso di una cella tandem completa svolge la funzione di recombination layer per i portatori di carica generati dalla due singole celle. Il layer di TiO2 è invece il contatto posteriore della PSC e svolge la funzione di electron transport layer (ETL), andando a migliorare l’estrazione degli elettroni foto-generati e quindi l’efficienza della stessa. La presente tesi si focalizza sullo studio di un sandwich ITO/TiO2/ITO, dove il film di TiO2 è stato depositato tramite Thermal Atomic Layer Deposition (T–ALD), Pla- sma Enhanced Atomic Layer Deposition (PE–ALD) ed Electron Beam Physical Vapour Deposition (EBPVD).
    [Show full text]
  • Effect of Silver Nanoparticles with Indium Tin Oxide Thin Layers on Silicon Solar Cells
    Appl. Sci. Converg. Technol. 26(4): 91-94 (2017) http://dx.doi.org/10.5757/ASCT.2017.26.4.91 Research Paper Effect of Silver Nanoparticles with Indium Tin Oxide Thin Layers on Silicon Solar Cells Gyujin Oh and Eun Kyu Kim* Department of Physics and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea Received June 16, 2017; revised July 29, 2017; accepted July 30, 2017 Abstract AThe effect of localized surface plasmon on silicon substrates was studied using silver nanoparticles. The nanoparticles were formed by self-arrangement through the surface energy using rapid thermal annealing (RTA) technique after the thin nanolayer of silver was deposited by thermal evaporation. By the theoretical calculation based on Mie scattering and dielectric function of air, indium tin oxide (ITO), and silver, the strong peak of scattering cross section of silver nanoparticles was found at 358 nm for air, and 460 nm for ITO, respectively. Accordingly, the strong suppression of reflectance under the condition of induced light of 30o occurred at the specific wavelength which is almost in accordance with peak of scattering cross section. When the external quantum efficiency was measured using silicon solar cells with silver nanoparticles, there was small enhancement peak near the 460 nm wavelength in which the light was resonated between silver nanoparticles and ITO. Keywords: Ag nanoparticle, Localized surface plasmon resonance, Application to solar cells I. Introduction In this paper, silver nanoparticles with ITO on the silicon substrates was examined. Indium tin oxides (ITO) has been The effect of localized surface plasmon is localized extensively used on various kinds of solar cells regardless effect of surface plasmon resonance in the tiny metal of organic and inorganic devices.
    [Show full text]
  • Indium Tin Oxide
    INDIUM TIN OXIDE 1. Exposure Data Melting point: volatilizes at 850 °C (In2O3) (Weast, 1970); 1630 °C (SnO2) (HSDB, 2017); 1.1 Identification volatilizes at 1910 °C (commercial formula) (Indium Corporation, 2008) Chem. Abstr. Serv. Reg. No.: 50926-11-9 Boiling point: volatilizes at 850 °C (In2O3) (Weast, 1970); sublimes at 1800–1900 °C Chem. Abstr. Serv. Name: indium tin oxide (SnO2) (HSDB, 2017); sublimes at 982 °C IUPAC systematic name: indium tin oxide (commercial formula) (Indium Corporation, Other common names: ITO, tin indium oxide, 2008) tin doped indium oxide Solubility in water: insoluble (In2O3; SnO2; Molecular formula: In2O3; SnO2 ITO) (HSDB, 2017) Indium tin oxide (ITO) is a yellow-green solid One manufacturer reported that ITO particle mixture of indium oxide (In2O3, CAS No. size varies over the range 0.1–1.0 µm depend- 1312-43-2) and stannic (or tin) oxide (SnO2, ing on grade, with agglomerates varying over CAS No. 18-282-10-5) (Indium Corporation, the range 7–31 µm (Indium Corporation, 2014). The proportion of indium oxide is typi- 2014). cally 90% (Hines et al., 2013), but can vary ITO may contain impurities in small quan- over the range 80–95% (NTP, 2009). As the tities. In the commercial product line of one physicochemical properties of ITO depend ITO fabricator, the total concentration of on the relative proportions of indium and tin impurities (aluminium, antimony, bismuth, oxides, they are presented below separately chromium, copper, iron, lead, magnesium, for both compounds. As an illustration, the nickel, potassium, sodium, titanium, zinc) properties for one commercial formula (exact does not exceed 100 ppm (UMICORE, 2013).
    [Show full text]
  • Transparent Conductive Oxide Thin Films
    TECHNICAL PAPER Transparent Conductive Oxide Thin Films ABSTRACT Transparent conductive oxides (TCO) have high optical transmission at visible wavelengths and electrical conductivity close to that of metals. They also reflect near infrared and infrared (i.e., heat) wavelengths, and are used in products ranging from energy efficient low-e windows to photovoltaics. One of their most important uses is for transparent electrical contacts. Virtually all applications involve thin films. TCO’s range from simple binary compounds to exotic ternary and quaternary compounds. Examples of TCO’s are indium tin oxide (ITO), zinc oxide (ZnO), tin oxide, aluminum doped zinc oxide (AZO), indium oxide and cadmium oxide. Cost savings using TCO’s is enormous because material usage is low, they are used in a wide range of energy efficiency products and they increase the efficiency of these products. TCO’s are generally n-type wide bandgap semiconductors (although p-type materials are now being developed) with a relatively high concentration of free electrons in the conduction band. The wide bandgap is responsible for high optical transmittance and free electrons increase electrical conductivity. This article will provide a basic understanding of TCO optical and electrical properties, survey TCO applications and types of TCO’s and deposition processes. INTRODUCTION Transparent conductive oxides (TCO) are used in a wide range of applications, including low-e windows, transparent contacts for solar cells, optoelectronic devices, flat panel displays, liquid crystal devices, touch screens, EMI shielding and automobile window deicing and defogging. These materials have been intensely developed since the late 1970’s but have actually been around for a century.
    [Show full text]