Chromobacterium, Eikenella, Kingella, Neisseria, Simonsiella

Total Page:16

File Type:pdf, Size:1020Kb

Chromobacterium, Eikenella, Kingella, Neisseria, Simonsiella INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1989, p. 258-266 Vol. 39, No. 3 0020-7713/89/030258-09$02.00/0 Copyright 0 1989, International Union of Microbiological Societies Chromobacterium, Eikenella, Kingella, Neisseria, Simonsiella, and Vitreoscilla Species Comprise a Major Branch of the Beta Group Proteobacteria by 16s Ribosomal Ribonucleic Acid Sequence Comparison: Transfer of Eikenella and Simonsiella to the Family Neisseriaceae (emend .) FLOYD E. DEWHIRST,’” BRUCE J. PASTER,’ AND PATRICIA L. BRIGHT’ Departments of Pharmacology’ and Microbiology,‘ Forsyth Dental Center, Boston, Massachusetts 021 15 The 16s ribosomal ribonucleic acid sequences of the type strain and three other strains of Eikenella corrodens, the type strains of Alcaligenes faecalis, Alcaligenes xylosoxydans subsp. denitrificans, Chromobac- terium fluviatile, Chromobacterium violaceum, Kingella denitrificans, Kingella kingae, and Pseudomonas cepacia, and a strain of Vitreoscilla stercoraria were determined by direct sequencing of bacterial ribosomal ribonucleic acid by a modified Sanger method. These sequences were compared with previously published sequences of Neisseria gonorrhoeae and Pseudomonas testosteroni and unpublished sequences of Nitrosolobus sp., Nitrosomonas europaea, Rhodocyclus gelatinosus, Rhodocyclus purpura, Simonsiella muelleri, and Spirillum volutans. All of the bacteria sequenced in this study were members of the beta group of the class Proteobacteria, formerly called “purple bacteria and their relatives.” A phylogenetic tree was constructed based upon the sequence homologies. One of the findings of this study is that Eikenella corrodens is related, as indicated by percentage of sequence homology, to the following organisms: Kingella denitrificans (97.7 %), Simonsiella muelleri (95.7%), Kingella kingae (96.2 %), Neisseria gonorrhoeae (95.1 %), Vitreoscilla stercoraria (94.4%), Chromobacterium violaceum (91.7 %), and Chromobacterium fluviatile (89.8 %). These bacteria constitute a newly recognized branch of the beta group Proteobacteria. The remaining species, including Pseudomonas cepacia, Alcaligenes faecalis, and Alcaligenes xylosoxydans subsp. denitrificans, are members of the major cluster of the beta group Proteobacteria. On the basis of our data we propose that the genera Eikenella and Simonsiella be placed in the family Neisseriaceae. The initial goal of this research was to determine the corrodens was most closely related to Chromobacterium phylogenetic position of Eikenella corrodens, a gram-nega- violaceum, with a level of sequence homology of 92%. As we tive, facultatively anaerobic, rod-shaped bacterium that has were completing the sequences for these organisms, the been implicated as a potential pathogen in periodontal dis- sequence for the 16s rRNA gene of IVeisseria gonorrhoene ease (14, 59). The lack of knowledge regarding the relation- was published (45). A sequence comparison indicated that ship of Eikenella corrodens to species in other genera is Neisseria gonorrhoeae and Eikenella corrodens had a level reflected by its placement in the “other genera” group of of sequence homology of 95%. This information prompted us facultatively anaerobic gram-negative rods in Bergey ’s Man- to examine three additional organisms, Kingella denitrifi- idof Systematic Bacteriology, vol. 1 (18). Sequencing of cans, Kingella kingae, and Vitreoscilla stercoraria, which ribosomal ribonucleic acid (rRNA) subunits has proven to be we believed would be closely related based upon the results an extremely powerful tool for determining the phylogeny of of 16s cataloging studies (66) and rKNA-deoxyribonucleic both procaryotes and eucaryotes (64). Rapid sequencing acid (DNA) hybridization studies (9-13, 46, 47). Thus, the methods now make it possible to determine the 16s rRNA expanded goal of this research was to examine the phylog- sequence for a bacterial strain in less than 1week (28). Using eny of the beta group Proteobacteriu. these methods, we obtained the sequence for the type strain Many of the bacterial species examined in this study are of Eikenella corrodens. By comparing the Eikenella corro- not commonly encountered and may be as unfamiliar to dens sequence with 125 eubacterial sequences in our data readers as they were to us prior to these studies. Therefore, base, we found that this organism is a member of the beta a brief description of these organisms is given below. These group of the class formerly called “purple Proteobacteria, bacteria have been isolated from a variety of habitats and are bacteria and their relatives” (52; Dewhirst and Paster, J. quite diverse in their phenotypic traits. Most of the organ- Dent. Res. 67[Special Issue]:395, abstract no. 2261, 1988). isms, even those normally found in soil and water, are The beta group of the Proteobacteria corresponds to rRNA superfamily III of De Ley (8). Because few beta group occasionally pathogenic for humans. Alcaligenes faecalis and subsp. (previ- Proteobacteria 16s rRNA sequences were available for Alcaligenes xylosoxydans denitrificans comparison to determine the position of Eikenella corrodens ously Alcaligenes denitrificans) occur in water and soil and within this group, sequences were obtained for Alcaligenes are saprophytic inhabitants of the intestinal tracts of verte- faecalis, Alcaligenes xylosoxydans subsp. denitrificans, brates (21, 22, 49). Strains have been isolated from clinical Chromobacteriirm jhviatile, Chromobacterium violaceum, samples of blood, urine, and purulent discharges (21,23,35). and Pseudomonas cepacia. Of these species, Eikenella Alcaligenes faecalis has received recent attention as the etiological agent of turkey coryza ( 31). Chromohacterium violacetun and Chromobacterium fluviatile are violet-pig- * Corresponding author mented organisms whose normal habitat is soil and water 258 VOL. 39. 1989 PHYLOGENY OF BETA GROUP PROTEOBACTERZA 259 TABLE 1. Sources and accession numbers of bacteria were harvested during the late logarithmic growth the strains sequenced phase. GenBank Isolation and purification of rRNA. rRNAs were isolated Organism Strain“ accession no.b and partially purified by a modification of the procedure of Pace et al. (38), as previously described (40). Alcaligenes faecalis ATCC 8750T M22508 16s rRNA sequencing. rRNA was sequenced by using a Alcaligenes xylosoxidans ATCC 15173T M22509 modified Sanger dideoxy chain termination technique in subsp. denitr$cans Chromobacterium violaceum ATCC 12472T M22510 which primers complementary to conserved regions were Chromo ha ct erium fluvia tile ATCC 33051T M22511 elongated by using reverse transcriptase (28). The details of Eikenella corrodens ATCC 23834T M22512 our protocol have been described previously (40). In these FDC 373 M22513 studies, four additional primers were used to obtain the FDC 558 M22514 complete 16s rRNA sequence except for about 50 bases at FDC 1073 M22515 the 3’-terminal end. The sequences for the additional primers Kingella denitrijkans ATCC 33394T M225 16 and the positions which they complement are as follows: Kingella kingae ATCC 23330T M22517 5’-ACTGCTGCCTCCCGT-3’, positions 344 to 358; 5’-CTA Pseudomonas cepacia ATCC 25416T M22518 CCAGGGTATCTAATC-3’, positions 786 to 803; 5’-GG Vitreoscilla stercoraria VT1 M22.519 TTGCGCTCGTTGCGGG-3’, positions 1,096 to 1,113; and ATCC, American Type Culture Collection; FDC, Forsyth Dental Center. positions 1,493 to Strain VTl was obtained from W. R. Strohl. 5’-TACGGYTACCTTGTTACGACT-3’,1,513 (Y indicates the presence of either cytosine or thymine The GenBank accession number for all 12 sequences is M22467. at a position; numbering is relative to the Escherichia coli sequence). All primers used in this study were purchased (36, 37, 50). There are isolated reports of fatal septicemia from the Microchemistry Department, Harvard Biolabs, caused by Chromobacterium violaceum (20). Eikenella cor- Harvard University, Cambridge, Mass. rodens is routinely isolated from human oral cavities. It has Data analysis. A program set for data entry, editing, been recovered from Bartholin’s gland, uterine, thyroid, sequence alignment, secondary structure comparison, ho- head and neck, and other abscesses as well as from cases of mology matrix generation, and dendrogram construction for endocarditis, meningitis, and osteomyelitis (3, 25, 41, 61; 0. 16s rRNA data was written in Microsoft QuickBASIC for Riche, V. Vernet, and P. Megier, Letter, Lancet ii:1089, use with an IBM PC-AT computer and other compatible 1987). Eikenella corrodens has been detected in elevated computers (40). Ribonucleic acid sequences were entered numbers from sites of periodontal tissue destruction and and aligned as previously described (40). Our sequence may be involved in periodontal disease (14, 59). Kingella database contains approximately 125 sequences comprised denitrijicans and Kingella kingae are occasional members of of sequences determined in our laboratory, previously pub- the rhinopharyngeal flora in humans (51). Kingella kingae lished sequences, and unpublished sequences provided to us has been recovered from cases of osteoarthritis, osteomyeli- by other scientists. In the beta group Proteobacteria, the tis, spondylitis, endocarditis, meningitis, and septicemia (5, sequences for Neisseria gonorrhoeae NCTC 8375T (T = 6,42). Pseudomonas cepacia (previously named Pseudomo- type strain) and Pseudomonas testosteroni ATCC 11996T nus multivorans and “Pseudomonas kingae” is both a (67) were obtained from the literature. Unpublished se- phytopathogen and,
Recommended publications
  • Comparison of Fatty Acid Content and DNA Homology of the Filamentous Gliding Bacteria Vitreoscilla, Flexibacter, Filibacter
    Archives of Arch Microbiol (1986) 146 : 1 - 6 Hicrebiology Springer-Verlag ~986 Original papers Comparison of fatty acid content and DNA homology of the filamentous gliding bacteria Vitreoscilla, Flexibacter, Filibacter Peter Nichols ~, *, Benne K. Stulp ~, J. Gwynfryn Jones 2, and David C. White ~ 1 Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA 2 Freshwater Biological Association, The Ferry House, Ambleside, Cumbria, LA22 0LP, UK Abstract. DNA hybridization experiments showed that there Measurement of DNA homology and analysis of cell was a high degree of homology among Vitreoscilla strains fatty acid profiles have become standard tools in but not with DNA from Filibacter limicola. Flexibacter spp chemotaxonomy (Goodfellow and Minnikin 1985). Bac- were much more heterogeneous indicating a low genetic terial fatty acids are also used as biomarkers in microbial similarity. These results were also reflected in the membrane ecology and often provide valuable information on the fatty acids of the bacteria. The VitreosciIla strains were very structure of the microbial community when other methods similar with the 16:1~07c fatty acid being dominant. The fail (White 1983). Finally, fatty acids provide the geochemist membrane fatty acids of F. limicola were dominated by with an historical record of the sediment biota (Cranwell a15:0 and a17:0 components which provided additional 1982). Filamentous bacteria present a challenge to both support for its relatedness to the genus Bacillus. There was ecologists and taxonomists. Their role in aquatic sediments much greater diversity in the fatty acid patterns of the and their taxonomic relationships are imperfectly under- Flexibacter spp. F.
    [Show full text]
  • Pdfs/ Ommended That Initial Cultures Focus on Common Pathogens, Pscmanual/9Pscssicurrent.Pdf)
    Clinical Infectious Diseases IDSA GUIDELINE A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2018 Update by the Infectious Diseases Society of America and the American Society for Microbiologya J. Michael Miller,1 Matthew J. Binnicker,2 Sheldon Campbell,3 Karen C. Carroll,4 Kimberle C. Chapin,5 Peter H. Gilligan,6 Mark D. Gonzalez,7 Robert C. Jerris,7 Sue C. Kehl,8 Robin Patel,2 Bobbi S. Pritt,2 Sandra S. Richter,9 Barbara Robinson-Dunn,10 Joseph D. Schwartzman,11 James W. Snyder,12 Sam Telford III,13 Elitza S. Theel,2 Richard B. Thomson Jr,14 Melvin P. Weinstein,15 and Joseph D. Yao2 1Microbiology Technical Services, LLC, Dunwoody, Georgia; 2Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota; 3Yale University School of Medicine, New Haven, Connecticut; 4Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland; 5Department of Pathology, Rhode Island Hospital, Providence; 6Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill; 7Department of Pathology, Children’s Healthcare of Atlanta, Georgia; 8Medical College of Wisconsin, Milwaukee; 9Department of Laboratory Medicine, Cleveland Clinic, Ohio; 10Department of Pathology and Laboratory Medicine, Beaumont Health, Royal Oak, Michigan; 11Dartmouth- Hitchcock Medical Center, Lebanon, New Hampshire; 12Department of Pathology and Laboratory Medicine, University of Louisville, Kentucky; 13Department of Infectious Disease and Global Health, Tufts University, North Grafton, Massachusetts; 14Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, Illinois; and 15Departments of Medicine and Pathology & Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey Contents Introduction and Executive Summary I.
    [Show full text]
  • HACEK Endocarditis: State-Of-The-Art Matthieu Revest, Gérald Egmann, Vincent Cattoir, Pierre Tattevin
    HACEK endocarditis: state-of-the-art Matthieu Revest, Gérald Egmann, Vincent Cattoir, Pierre Tattevin To cite this version: Matthieu Revest, Gérald Egmann, Vincent Cattoir, Pierre Tattevin. HACEK endocarditis: state- of-the-art. Expert Review of Anti-infective Therapy, Expert Reviews, 2016, 14 (5), pp.523-530. 10.1586/14787210.2016.1164032. hal-01296779 HAL Id: hal-01296779 https://hal-univ-rennes1.archives-ouvertes.fr/hal-01296779 Submitted on 10 Jun 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. HACEK endocarditis: state-of-the-art Matthieu Revest1, Gérald Egmann2, Vincent Cattoir3, and Pierre Tattevin†1 ¹Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, Rennes; ²Department of Emergency Medicine, SAMU 97.3, Centre Hospitalier Andrée Rosemon, Cayenne; 3Bacteriology, Pontchaillou University Hospital, Rennes, France †Author for correspondence: Prof. Pierre Tattevin, Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, 2, rue Henri Le Guilloux, 35033 Rennes Cedex 9, France Tel.: +33 299289564 Fax.: + 33 299282452 [email protected] Abstract The HACEK group of bacteria – Haemophilus parainfluenzae, Aggregatibacter spp. (A. actinomycetemcomitans, A. aphrophilus, A. paraphrophilus, and A. segnis), Cardiobacterium spp. (C. hominis, C. valvarum), Eikenella corrodens, and Kingella spp.
    [Show full text]
  • Vitreoscilla Hemoglobin in Escherichia Coli ROGER A
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, JUlY 1994, p. 2431-2437 Vol. 60, No. 7 0099-2240/94/$04.00+0 Copyright C) 1994, American Society for Microbiology Effect of Biosynthetic Manipulation of Heme on Insolubility of Vitreoscilla Hemoglobin in Escherichia coli ROGER A. HART,t PAULI T. KALLIO,t AND JAMES E. BAILEY* Division of Chemistry and Chemical Engineering, Califomia Institute of Technology, Pasadena, Califomia 91125 Received 15 December 1993/Accepted 10 May 1994 Vitreoscilla hemoglobin (VHb) is accumulated at high levels in both soluble and insoluble forms when expressed from its native promoter on a pUC19-derived plasmid in Escherichia coli. Examination by atomic absorption spectroscopy and electron paramagnetic resonance spectroscopy revealed that the insoluble form uniformly lacks the heme prosthetic group (apoVHb). The purified, soluble form contains heme (holoVHb) and is spectroscopically indistinguishable from holoVHb produced by VitreosciMla cells. This observation suggested that a relationship may exist between the insolubility of apoVHb and biosynthesis of heme. To examine this possibility, a series of experiments were conducted to chemically and genetically manipulate the formation and conversion of 5-aminolevulinic acid (ALA), a key intermediate in heme biosynthesis. Chemical perturbations involved supplementing the growth medium with the intermediate ALA and the competitive inhibitor levulinic acid which freely cross the cell barrier. Genetic manipulations involved amplifying the gene dosage for the enzymes ALA synthase and ALA dehydratase. Results from both levulinic acid and ALA supplementations indicate that the level of soluble holoVHb correlates with the heme level but that the level of insoluble apoVHb does not. The ratio of soluble to insoluble VHb also does not correlate with the level of total VHb accumulated.
    [Show full text]
  • New Discoveries in Bacterial N-Glycosylation to Expand The
    Available online at www.sciencedirect.com ScienceDirect New discoveries in bacterial N-glycosylation to expand the synthetic biology toolbox 1 1,2 Harald Nothaft and Christine M Szymanski Historically, protein glycosylation was believed to be restricted recent studies have shown N-glycosylation of C. jejuni to eukaryotes, but now is abundantly represented in all three proteins also affects nitrate reductase activity, chemotaxis, domains of life. The first bacterial N-linked glycosylation nutrient transport, stress and antimicrobial resistance system was discovered in the Gram-negative pathogen, [1,8,9]. These pgl operons are found in all Campylobacter Campylobacter jejuni, and subsequently transferred into the species [10] and other epsilon and delta proteobacteria [5], heterologous Escherichia coli host beginning a new era of and require a membrane-bound oligosaccharyltransferase synthetic bacterial glycoengineering. Since then, additional (OTase), PglB, related to the eukaryotic STT3 OTase [11]. N-glycosylation pathways have been characterized The classicalN-glycosylationpathway involvesassemblyof resembling the classical C. jejuni system and unconventional an oligosaccharide precursor on a lipid carrier that is subse- new approaches for N-glycosylation have been uncovered. quently flipped across the inner membrane and the sugars These include cytoplasmic protein modification, direct glycan are transferred en bloc by PglB to the asparagine residue of transfer to proteins, and use of alternate amino acid acceptors, the D/E-X1-N-X2-S/T consensus sequon where X1, X2 deepening our understanding of the vast mechanisms bacteria cannot be proline (Figure 1a, for review [4]). It is worth possess for protein modification and providing opportunities to mentioning that although this sequon is optimal for the expand the glycoengineering toolbox for designing novel addition of the N-glycan, it is not absolutely required since vaccine formulations and protein therapeutics.
    [Show full text]
  • A New Symbiotic Lineage Related to Neisseria and Snodgrassella Arises from the Dynamic and Diverse Microbiomes in Sucking Lice
    bioRxiv preprint doi: https://doi.org/10.1101/867275; this version posted December 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A new symbiotic lineage related to Neisseria and Snodgrassella arises from the dynamic and diverse microbiomes in sucking lice Jana Říhová1, Giampiero Batani1, Sonia M. Rodríguez-Ruano1, Jana Martinů1,2, Eva Nováková1,2 and Václav Hypša1,2 1 Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic 2 Institute of Parasitology, Biology Centre, ASCR, v.v.i., České Budějovice, Czech Republic Author for correspondence: Václav Hypša, Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic, +42 387 776 276, [email protected] Abstract Phylogenetic diversity of symbiotic bacteria in sucking lice suggests that lice have experienced a complex history of symbiont acquisition, loss, and replacement during their evolution. By combining metagenomics and amplicon screening across several populations of two louse genera (Polyplax and Hoplopleura) we describe a novel louse symbiont lineage related to Neisseria and Snodgrassella, and show its' independent origin within dynamic lice microbiomes. While the genomes of these symbionts are highly similar in both lice genera, their respective distributions and status within lice microbiomes indicate that they have different functions and history. In Hoplopleura acanthopus, the Neisseria-related bacterium is a dominant obligate symbiont universally present across several host’s populations, and seems to be replacing a presumably older and more degenerated obligate symbiont.
    [Show full text]
  • Use of the Diagnostic Bacteriology Laboratory: a Practical Review for the Clinician
    148 Postgrad Med J 2001;77:148–156 REVIEWS Postgrad Med J: first published as 10.1136/pmj.77.905.148 on 1 March 2001. Downloaded from Use of the diagnostic bacteriology laboratory: a practical review for the clinician W J Steinbach, A K Shetty Lucile Salter Packard Children’s Hospital at EVective utilisation and understanding of the Stanford, Stanford Box 1: Gram stain technique University School of clinical bacteriology laboratory can greatly aid Medicine, 725 Welch in the diagnosis of infectious diseases. Al- (1) Air dry specimen and fix with Road, Palo Alto, though described more than a century ago, the methanol or heat. California, USA 94304, Gram stain remains the most frequently used (2) Add crystal violet stain. USA rapid diagnostic test, and in conjunction with W J Steinbach various biochemical tests is the cornerstone of (3) Rinse with water to wash unbound A K Shetty the clinical laboratory. First described by Dan- dye, add mordant (for example, iodine: 12 potassium iodide). Correspondence to: ish pathologist Christian Gram in 1884 and Dr Steinbach later slightly modified, the Gram stain easily (4) After waiting 30–60 seconds, rinse with [email protected] divides bacteria into two groups, Gram positive water. Submitted 27 March 2000 and Gram negative, on the basis of their cell (5) Add decolorising solvent (ethanol or Accepted 5 June 2000 wall and cell membrane permeability to acetone) to remove unbound dye. Growth on artificial medium Obligate intracellular (6) Counterstain with safranin. Chlamydia Legionella Gram positive bacteria stain blue Coxiella Ehrlichia Rickettsia (retained crystal violet).
    [Show full text]
  • Studies on the Filamentous Gliding Bacteria Laura Frances Biggs
    University of Plymouth PEARL https://pearl.plymouth.ac.uk 04 University of Plymouth Research Theses 01 Research Theses Main Collection 2003 Studies on the filamentous gliding bacteria Vitreoscilla stercoraria Biggs, Laura Frances http://hdl.handle.net/10026.1/2513 University of Plymouth All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. Studies on the filamentous gliding bacteria Vitreoscilla stercoraria By Laura Frances Biggs A thesis submitted to the University of Plymouth in partial fulfilment for the degree of Doctor of Philosophy School of Biological Sciences Faculty of Science December 2003 Ill Abstract Strains of Vitreoscil/a stercoraria were isolated from the environment and characterised. Cell width, motility and requirement of each strain for sodium chloride were investigated. Two strains were selected for further study and the effect of monensin and FCCP on growth of the strains was investigated. One strain of Vitreoscil/a (l813) was chosen for further study, cells from strain LB 13 were found to be 1.38 J..lm ± 0.041 (± 1 SEM, n=1 0) wide, were motile by gliding and had an optimum requirement for sodium chloride for growth of 43 mM. The organism was grown in batch culture and respiratory membranes were isolated. Cytochrome bo was extracted from the respiratory membranes and further purification was achieved using column chromatography.
    [Show full text]
  • Review on Chromobacterium Violaceum, a Rare but Fatal Bacteria Needs Special Clinical Attention
    REVIEW ARTICLE Review on Chromobacterium Violaceum, a Rare but Fatal Bacteria Needs Special Clinical Attention *S Sharmin1, SMM Kamal2 ABSTRACT Chromobacterium violaceum is isolated from soil and water in tropical and subtropical areas. This Gram negative, capsulated, motile bacillus is considered as a saprophyte but occasionally it can act as an opportunistic pathogen for animals and human. It causes skin lesion with liver and lung abscesses, pneumonia, gastrointestinal tract infections, urinary tract infections, osteomyelitis, meningitis, peritonitis, endocarditis, respiratory distress syndrome and septic shock. Increasing reported cases with Chrombacterium violaceum infection has been noticed in recent decades. It should be considered for its difficult-to-treat entity characterized by a high frequency of sepsis, distantant metastasis, multidrug- resistance and relapse. High mortality rate associated with this infection necessitate prompt diagnosis and appropriate antimicrobial therapy. Key Words: Chromobacterium Violaceum, saprophyte, opportunistic, multidrug-resistance. Introduction Chromobacterium violaceum belongs to the family Although non-pigmented strains have also been Neisseriacea of β-Proteobacteria and was first reported.8 Though not essential for growth and described by Bergonzini in 1880.1 It is a Gram survival, violacein has been suggested to be a negative, heterotrophic, flagellated bacilli which respiratory pigment, having antiparasitic, antibiotic, lives in a variety of ecosystems in tropical and antiviral, immunomodulatory, analgesic, antipyretic subtropical regions.2 C. violaceum is a facultative and anticancer effects. It has no association with anaerobe which is oxidase and catalase positive. It pathogenesis.9, 10 grows optimally at 30-350C. It is a saprophyte found Although C. violaceum has been recognized as the mainly in soil and water.
    [Show full text]
  • Exoplanet Biosignatures: a Review of Remotely Detectable Signs of Life
    ASTROBIOLOGY Volume 18, Number 6, 2018 Mary Ann Liebert, Inc. DOI: 10.1089/ast.2017.1729 Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life Edward W. Schwieterman,1–5 Nancy Y. Kiang,3,6 Mary N. Parenteau,3,7 Chester E. Harman,3,6,8 Shiladitya DasSarma,9,10 Theresa M. Fisher,11 Giada N. Arney,3,12 Hilairy E. Hartnett,11,13 Christopher T. Reinhard,4,14 Stephanie L. Olson,1,4 Victoria S. Meadows,3,15 Charles S. Cockell,16,17 Sara I. Walker,5,11,18,19 John Lee Grenfell,20 Siddharth Hegde,21,22 Sarah Rugheimer,23 Renyu Hu,24,25 and Timothy W. Lyons1,4 Abstract In the coming years and decades, advanced space- and ground-based observatories will allow an unprecedented opportunity to probe the atmospheres and surfaces of potentially habitable exoplanets for signatures of life. Life on Earth, through its gaseous products and reflectance and scattering properties, has left its fingerprint on the spectrum of our planet. Aided by the universality of the laws of physics and chemistry, we turn to Earth’s biosphere, both in the present and through geologic time, for analog signatures that will aid in the search for life elsewhere. Considering the insights gained from modern and ancient Earth, and the broader array of hypothetical exoplanet possibilities, we have compiled a comprehensive overview of our current understanding of potential exoplanet biosignatures, including gaseous, surface, and temporal biosignatures. We additionally survey biogenic spectral features that are well known in the specialist literature but have not yet been robustly vetted in the context of exoplanet biosignatures.
    [Show full text]
  • Expression of Vitreoscilla Hemoglobin in Gordonia Amarae Enhances Biosurfactant Production
    J Ind Microbiol Biotechnol (2006) 33: 693–700 DOI 10.1007/s10295-006-0097-0 ORIGINAL PAPER Ilhan Dogan Æ Krishna R. Pagilla Æ Dale A. Webster Benjamin C. Stark Expression of Vitreoscilla hemoglobin in Gordonia amarae enhances biosurfactant production Received: 22 June 2005 / Accepted: 29 January 2006 / Published online: 21 February 2006 Ó Society for Industrial Microbiology 2006 Abstract The gene (vgb) encoding Vitreoscilla (bacterial) Introduction hemoglobin (VHb) was electroporated into Gordonia amarae, where it was stably maintained, and expressed 1 Release of organic contaminants into the environment at about 4 nmol VHb gÀ of cells. The maximum cell can be problematic because of their toxicity and their mass (OD )ofvgb-bearing G. amarae was greater than 600 stability. Bioremediation by microorganisms, however, that of untransformed G. amarae for a variety of media can often be an effective method to clean up contami- and aeration conditions (2.8-fold under normal aeration nated sites [29]. and 3.4-fold under limited aeration in rich medium, and Use of biologically produced surfactants as a tool in 3.5-fold under normal aeration and 3.2-fold under lim- bioremediation has become a subject of increasing ited aeration in mineral salts medium). The maximum study, as they can dramatically increase the apparent level of trehalose lipid from cultures grown in rich solubility of insoluble and sparingly soluble compounds medium plus hexadecane was also increased for the re- so that they can be taken up by cells and metabolized combinant strain, by 4.0-fold in broth and 1.8-fold in [19].
    [Show full text]
  • Numerical Taxonomy of Violet-Pigmented, Gram-Negative Bacteria and Description of Iodobacter Fluviatile Gen
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Oct. 1989, p. 450-456 Vol. 39, No. 4 0020-77 13/89/040450-07$02.00/0 Copyright 0 1989, International Union of Microbiological Societies Numerical Taxonomy of Violet-Pigmented, Gram-Negative Bacteria and Description of Iodobacter fluviatile gen. nov. comb. nov. NIALL A. LOGAN Department of Biological Sciences, Glasgow College of Technology, Cowcaddens Road, Glasgow G4 OBA, Scotland Received 17 January 19891Accepted 31 July 1989 A total of 113 violet chromogens, 45 of which produced spreading colonies characteristic of Chromobacterium fluviatile, were isolated from fresh water. These isolates and 27 other chromobacteria, 9 duplicates, and 11 reference strains were subjected to 95 characterization tests, and similarities were computed by using the coefficient of Gower. Cluster and principal coordinate analyses showed Janthinobacterium lividurn to be a heterogeneous species but Chromobacterium violaceum and C.fluvitatile to be well-separated and homogeneous phenons. The new, monospecific genus Zodobacter is proposed to accommodate C. fluviatiZe, which was originally placed in the genus Chromobacterium, despite its low guanine-plus-cytosine content (50 to 52 mol%, but 65 to 68 mol% for C. violaceum), pending the study of further isolates. The type strain of Zodobacter fluvhtiZe comb. nov. is NCTC 11159. Chromobacterium, a genus of violet-pigmented, gram- NCTC 9371, NCTC 9372, NCTC 9373, NCTC 9376, and negative rods, was taxonomically unsatisfactory for many NCTC 9695, respectively. Strains COO3 and COO4 were years, as it contained the two species C. violaceum, a Janthinobacterium lividum NCTC 9796T and F1308 Univer- fermentative mesophile, and C. lividurn, a nonfermentative sity of Surrey, respectively. Strains COO5 to COlO were C.
    [Show full text]