The Interaction of Talin with the Cell Membrane Is Essential for Integrin Activation and Focal Adhesion Formation

Total Page:16

File Type:pdf, Size:1020Kb

The Interaction of Talin with the Cell Membrane Is Essential for Integrin Activation and Focal Adhesion Formation The interaction of talin with the cell membrane is essential for integrin activation and focal adhesion formation Krishna Chinthalapudia, Erumbi S. Rangarajana, and Tina Izarda,1 aCell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458 Edited by Barry Honig, Howard Hughes Medical Institute and Columbia University, New York, NY, and approved August 23, 2018 (received for review April 11, 2018) Multicellular organisms have well-defined, tightly regulated mech- major phosphorylation sites, T144 and T150) (3), and the talin anisms for cell adhesion. Heterodimeric αβ integrin receptors play preceding F0 subdomain has a ubiquitin-like fold. The talin F3 central roles in this function and regulate processes for normal cell subdomain harbors the primary β-integrin–binding site (4, 5). The functions, including signaling, cell migration, and development, talin rod domain consists of 13 domains, R1–R13, composed of 62 binding to the extracellular matrix, and senescence. They are in- amphipathic α-helices arranged into four-helix (R2, R3, R4, and volved in hemostasis and the immune response, participate in leu- R8) and five-helix (R1, R5, R6, R7, R9, R10, R11, R12, and R13) kocyte function, and have biological implications in angiogenesis bundle domains (6, 7) and a C-terminal dimerization domain (6). and cancer. Proper control of integrin activation for cellular commu- Each domain has unique properties, including binding to other nication with the external environment requires several physiolog- talin domains, to integrin, and to vinculin (8, 9). A secondary ical processes. Perturbation of these equilibria may lead to constitutive integrin-binding site in the rod domain (residues 1,974–2,293) of integrin activation that results in bleeding disorders. Furthermore, uncertain function has also been identified (10). There are three integrins play key roles in cancer progression and metastasis in which actin-binding sites located on the head domain and R4–R8 and certain tumor types exhibit higher levels of various integrins. Thus, the R13 subdomains (6, 11, 12), and 13 vinculin-binding sites that are integrin-associated signaling complex is important for cancer therapy α – single amphipathic -helices (7, 13 20). BIOPHYSICS AND development. During inside-out signaling, the cytoskeletal protein talin The role of lipids in integrin activation remains unclear despite plays a key role in regulating integrin affinity whereby the talin head a large body of literature and the known functional importance of COMPUTATIONAL BIOLOGY domain activates integrin by binding to the cytoplasmic tail of talin attachment to the membrane (8). In the first stages of cell β-integrin and acidic membrane phospholipids. To understand the attachment, the talin F3 FERM domain binds to the NPxY motif mechanism of integrin activation by talin, we determined the crystal of the integrin cytoplasmic β tail, thereby inducing reorganization structure of the talin head domain bound to the acidic phospholipid of the integrin heterodimer and activating integrin (5, 21–24). phosphatidylinositol 4,5-bisphosphate (PIP2), allowing us to design a Talin attachment to the plasma membrane is enhanced by phos- – talin lipid-binding deficient talin mutant. Our confocal microscopy with phatidylinositol 4,5-bisphosphate (PIP2), which induces a confor- knockout cells suggests that the talin–cell membrane interaction seems mational change in talin to expose the integrin-binding site (22, essential for focal adhesion formation and stabilization. Basal integrin 25–28). The role of PIP2 in integrin activation is particularly in- activation in Chinese hamster ovary cells suggests that the lipid- teresting since PIP2 is a major phosphoinositide of the inner binding–deficient talin mutant inhibits integrin activation. Thus, mem- brane attachment of talin seems necessary for integrin activation and Significance focal adhesion formation. Vertebrate cell growth, division, locomotion, morphogenesis, angiogenesis | cell adhesion | integrin activation | phospholipids | and development rely on the dynamic interactions of cells with talin activation extracellular matrix components via cell surface complexes termed focal adhesions that are composed of heterodimeric αβ alin is a key player in integrin activation. Vertebrates express integrin receptors, associated signaling molecules, and the large Ttwo isoforms in which talin1 is ubiquitously expressed, while cytoskeletal protein talin. While it is known that talin activation talin2 is found primarily in striated muscle and in the brain. As a and binding to β-integrin requires interactions with lipids, little multidomain cytoskeletal protein, talin contains discrete binding is known regarding the structure and function of inactive vs. sites for acidic phospholipids, β-integrin, actin, and vinculin, as activated talin, and what is known is often disputed. Here we well as layilin, PIPK1γ90, and synemin. Talin links microfilaments report that talin binding to the cell membrane seems necessary to the cytoplasmic membrane at cell-extracellular matrix adhesion for integrin activation and focal adhesion formation, a finding sites. This process depends critically on talin. Talin consists of a that significantly advances our understanding of integrin acti- polypeptide chain of 2,541 amino acids and is often described as vation and might aid the development of novel integrin having an N-terminal FERM (four-point-one, ezrin, radixin, therapeutic agents. moesin) domain connected by a linker (residues 401–482) that harbors a calpain-II cleavage site to a large “rod” domain (resi- Author contributions: K.C., E.S.R., and T.I. designed research; K.C. and E.S.R. performed dues 483–2,541). The talin head domain is different from all other research; K.C., E.S.R., and T.I. analyzed data; and K.C., E.S.R., and T.I. wrote the paper. FERM domain-containing proteins in that it has four subdomains, The authors declare no conflict of interest. F0–F3 (instead of the typical three, F1–F3), and they adopt an This article is a PNAS Direct Submission. extended structure (1) instead of the canonical cloverleaf con- Published under the PNAS license. formation seen in the ERM family of proteins (2). As seen in Data deposition: The atomic coordinates and structure factors have been deposited in the other FERM domain-containing proteins, the talin FERM sub- Protein Data Bank, www.wwpdb.org (PDB ID code 6mfs). domains contain a ubiquitin-like F1, acyl-CoA–binding protein- 1To whom correspondence should be addressed. Email: [email protected]. like F2 and phosphotyrosine-binding–like F3 subdomain. Unlike This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. all other F1 FERM subdomains, the talin F1 subdomain has an 1073/pnas.1806275115/-/DCSupplemental. unstructured insert (F1 loop, residues 133–165, harboring two www.pnas.org/cgi/doi/10.1073/pnas.1806275115 PNAS Latest Articles | 1of6 Downloaded by guest on September 28, 2021 membrane (29, 30), and because talin regulates the local PIP2 concentration in the membrane by binding and activating PIPK1γ (31, 32). PIP2 regulates important processes, such as vesicular trafficking, platelet activation, cytoskeleton organization (33–35), and focal adhesion turnover (25, 26, 36). This process evolves by targeting proteins to the membrane, often through induction of a conformational change or oligomerization (36, 37). In mammals, the heterodimeric integrin transmembrane re- ceptors are composed of 18 distinct α and β chains (38, 39). By responding to extracellular and intracellular stimuli, integrins connect the extracellular matrix to the cytoskeleton, and trans- duce signals across the plasma membrane in both directions, termed outside-in and inside-out signaling, respectively (39). Integrin activation is important in platelets and leukocytes as well as many tissues in which extracellular matrix remodeling, angiogenesis, and cell migration are involved. These processes require tightly controlled integrin activation mechanisms that involve conformational changes of these receptors. Thus, un- derstanding the molecular mechanisms of how talin activates integrin is fundamental for gaining insight into important path- ological states and recognizing how integrin activation might aid the development of novel integrin antagonists. Here we report the talin1 head/PIP2 complex crystal structure together with biochemical and functional data that answer im- portant questions, including how PIP2 activates talin. Our data provide several surprises and answers to longstanding mecha- nistic questions and suggest a mechanism in which on re- cruitment of cytosolic talin by PIPK1γ to the plasma membrane (32), PIP2 activates talin by severing the head–tail interaction, thereby exposing the integrin-binding site. Remarkably, our in vivo data suggest that the talin–PIP2 interaction is crucial for talin localization to the cell membrane, affects the scaffolding of cells, and thus is likely key for cell spreading and adhesion. We further find that disrupting talin binding to the membrane affects integrin activation, and that this talin–PIP2 interaction seems necessary for focal adhesion formation. Collectively, our study provides a major advance in our understanding of the dynamic control of focal adhesions by talin. Results PIP2 Binding to Talin Allosterically Blocks the Integrin and Talin Tail- Binding Sites. We determined the crystal structures of
Recommended publications
  • Myosin Myth4-FERM Structures Highlight Important Principles of Convergent Evolution
    Myosin MyTH4-FERM structures highlight important principles of convergent evolution Vicente José Planelles-Herreroa,b, Florian Blanca,c, Serena Sirigua, Helena Sirkiaa, Jeffrey Clausea, Yannick Souriguesa, Daniel O. Johnsrudd, Beatrice Amiguesa, Marco Cecchinic, Susan P. Gilberte, Anne Houdussea,1,2, and Margaret A. Titusd,1,2 aStructural Motility, Institut Curie, CNRS, UMR 144, PSL Research University, F-75005 Paris, France; bUPMC Université de Paris 6, Institut de Formation Doctorale, Sorbonne Universités, 75252 Paris Cedex 05, France; cLaboratoire d’Ingénierie des Fonctions Moléculaires, Institut de Science et d’Ingénierie Supramoléculaires, UMR 7006 CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France; dDepartment of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455; and eDepartment of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 Edited by James A. Spudich, Stanford University School of Medicine, Stanford, CA, and approved March 31, 2016 (received for review January 15, 2016) Myosins containing MyTH4-FERM (myosin tail homology 4-band (Fig. 1). These MF myosins are widespread and likely quite an- 4.1, ezrin, radixin, moesin, or MF) domains in their tails are found cient because they are found in many different branches of the in a wide range of phylogenetically divergent organisms, such as phylogenetic tree (5, 6), including Opisthokonts (which includes humans and the social amoeba Dictyostelium (Dd). Interestingly, Metazoa, unicellular Holozoa, and Fungi), Amoebozoa, and the evolutionarily distant MF myosins have similar roles in the exten- SAR (Stramenopiles, Alveolates, and Rhizaria) (Fig. 1 A and B). sion of actin-filled membrane protrusions such as filopodia and Over the course of hundreds of millions years of parallel evolution bind to microtubules (MT), suggesting that the core functions of the MF myosins have acquired or maintained roles in the formation these MF myosins have been highly conserved over evolution.
    [Show full text]
  • Myth4 and FERM Have Overlapping and Distinct Roles in the Function of Myo1, a Class XIV Myosin in Tetrahymena Thermophila
    City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 2011 MyTH4 and FERM Have Overlapping and Distinct Roles in the Function of Myo1, a Class XIV Myosin in Tetrahymena thermophila Michael Gotesman Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/1643 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] MyTH4 and FERM Have Overlapping and Distinct Roles in the Function of Myo1, a Class XIV Myosin in Tetrahymena thermophila By Michael Gotesman A dissertation submitted to the Graduate Faculty in Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2011 This manuscript has been read and accepted for the Graduate Faculty in Biology in satisfaction of the dissertation requirements for the degree of Doctor of Philosophy. _____________ ________________________________________________ Date Chair of Examining Committee Dr. Ray H. Gavin, Brooklyn College _____________ ________________________________________________ Date Executive Officer Dr. Laurel A. Eckhardt ________________________________________________ Dr. Shaneen M. Singh, Brooklyn College ________________________________________________ Dr. Theodore R. Muth, Brooklyn College ________________________________________________ Dr. Chang-Hui Shen, College of Staten Island ________________________________________________ Dr. Selwyn A. Williams, New York City of Technology ________________________________________________ Dr. Christina King-Smith, Saint Joseph’s University Supervising Committee The City University of New York ii Abstract MyTH4 and FERM Have Overlapping and Distinct Roles in the Function of Myo1, a Class XIV Myosin in Tetrahymena thermophila By Michael Gotesman Adviser: Dr.
    [Show full text]
  • How Microtubules Control Focal Adhesion Dynamics
    JCB: Review Targeting and transport: How microtubules control focal adhesion dynamics Samantha Stehbens and Torsten Wittmann Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143 Directional cell migration requires force generation that of integrin-mediated, nascent adhesions near the cell’s leading relies on the coordinated remodeling of interactions with edge, which either rapidly turn over or connect to the actin cytoskeleton (Parsons et al., 2010). Actomyosin-mediated the extracellular matrix (ECM), which is mediated by pulling forces allow a subset of these nascent FAs to grow integrin-based focal adhesions (FAs). Normal FA turn- and mature, and provide forward traction forces. However, in over requires dynamic microtubules, and three members order for cells to productively move forward, FAs also have to of the diverse group of microtubule plus-end-tracking release and disassemble underneath the cell body and in the proteins are principally involved in mediating micro- rear of the cell. Spatial and temporal control of turnover of tubule interactions with FAs. Microtubules also alter these mature FAs is important, as they provide a counterbalance to forward traction forces, and regulated FA disassembly is the assembly state of FAs by modulating Rho GTPase required for forward translocation of the cell body. An important signaling, and recent evidence suggests that microtubule- question that we are only beginning to understand is how FA mediated clathrin-dependent and -independent endo­ turnover is spatially and temporally regulated to allow cells cytosis regulates FA dynamics. In addition, FA-associated to appropriately respond to extracellular signals, allowing for microtubules may provide a polarized microtubule track for coordinated and productive movement.
    [Show full text]
  • Catenin Controls Vinculin Binding
    ARTICLE Received 4 Feb 2014 | Accepted 25 Jun 2014 | Published 31 Jul 2014 DOI: 10.1038/ncomms5525 Force-dependent conformational switch of a-catenin controls vinculin binding Mingxi Yao1,*, Wu Qiu2,3,*, Ruchuan Liu2,3, Artem K. Efremov1, Peiwen Cong1,4, Rima Seddiki5, Manon Payre5, Chwee Teck Lim1,6, Benoit Ladoux1,5,Rene´-Marc Me`ge5 & Jie Yan1,3,6,7 Force sensing at cadherin-mediated adhesions is critical for their proper function. a-Catenin, which links cadherins to actomyosin, has a crucial role in this mechanosensing process. It has been hypothesized that force promotes vinculin binding, although this has never been demonstrated. X-ray structure further suggests that a-catenin adopts a stable auto-inhibitory conformation that makes the vinculin-binding site inaccessible. Here, by stretching single a- catenin molecules using magnetic tweezers, we show that the subdomains MI vinculin- binding domain (VBD) to MIII unfold in three characteristic steps: a reversible step at B5pN and two non-equilibrium steps at 10–15 pN. 5 pN unfolding forces trigger vinculin binding to the MI domain in a 1:1 ratio with nanomolar affinity, preventing MI domain refolding after force is released. Our findings demonstrate that physiologically relevant forces reversibly unfurl a- catenin, activating vinculin binding, which then stabilizes a-catenin in its open conformation, transforming force into a sustainable biochemical signal. 1 Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore. 2 Department of Physics, National University of Singapore, Singapore 117542, Singapore. 3 College of Physics, Chongqing University, No. 55 Daxuecheng South Road, Chongqing 401331, China. 4 Singapore-MIT Alliance for Research and Technology, National University of Singapore, Singapore 117543, Singapore.
    [Show full text]
  • Vinculin Regulates Cell-Surface E-Cadherin Expression by Binding to -Catenin
    Research Article 567 Vinculin regulates cell-surface E-cadherin expression by binding to -catenin Xiao Peng, Laura E. Cuff, Cort D. Lawton and Kris A. DeMali* Department of Biochemistry, University of Iowa Roy J. Carver College of Medicine, Iowa City, IA 52242, USA *Author for correspondence ([email protected]) Accepted 23 November 2009 Journal of Cell Science 123, 567-577 © 2010. Published by The Company of Biologists Ltd doi:10.1242/jcs.056432 Summary Vinculin was identified as a component of adherens junctions 30 years ago, yet its function there remains elusive. Deletion studies are consistent with the idea that vinculin is important for the organization of cell-cell junctions. However, this approach removes vinculin from both cell-matrix and cell-cell adhesions, making it impossible to distinguish its contribution at each site. To define the role of vinculin in cell-cell junctions, we established a powerful short hairpin-RNA-based knockdown/substitution model system that perturbs vinculin preferentially at sites of cell-cell adhesion. When this system was applied to epithelial cells, cell morphology was altered, and cadherin-dependent adhesion was reduced. These defects resulted from impaired E-cadherin cell-surface expression. We have investigated the mechanism for the effects of vinculin and found that the reduced surface E-cadherin expression could be rescued by introduction of vinculin, but not of a vinculin A50I substitution mutant that is defective for -catenin binding. These findings suggest that an interaction between -catenin and vinculin is crucial for stabilizing E-cadherin at the cell surface. This was confirmed by analyzing a -catenin mutant that fails to bind vinculin.
    [Show full text]
  • FRNK Regulatory Complex Formation with FAK Is Regulated by ERK Mediated Serine 217 Phosphorylation
    Loyola University Chicago Loyola eCommons Dissertations Theses and Dissertations 2017 FRNK Regulatory Complex Formation with FAK Is Regulated by ERK Mediated Serine 217 Phosphorylation Taylor J. Zak Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_diss Part of the Biochemistry, Biophysics, and Structural Biology Commons Recommended Citation Zak, Taylor J., "FRNK Regulatory Complex Formation with FAK Is Regulated by ERK Mediated Serine 217 Phosphorylation" (2017). Dissertations. 2604. https://ecommons.luc.edu/luc_diss/2604 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 2017 Taylor J. Zak LOYOLA UNIVERSITY CHICAGO FRNK REGULATORY COMPLEX FORMATION WITH FAK IS REGUALTED BY ERK MEDIATED SERINE 217 PHOSPHORYLATION A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY PROGRAM IN CELL AND MOLECULAR PHYSIOLOGY BY TAYLOR J. ZAK CHICAGO, ILLINOIS MAY 2017 Copyright by Taylor J. Zak, 2017 All rights reserved. Dedicated to my wife Stacey ACKNOWLEDGEMENTS This dissertation would not be possible without the day to day guidance of doctors Seth Robia and Allen Samarel. Dr. Samarel’s guidance was missed during the final year of my dissertation as he transitioned to an emeritus professor and I am forever grateful to Dr. Robia for taking on some of Dr. Samarel’s role.
    [Show full text]
  • Talin-1 Is the Principal Platelet Rap1 Effector of Integrin Activation
    Regular Article PLATELETS AND THROMBOPOIESIS Talin-1 is the principal platelet Rap1 effector of integrin activation 1,2, 3,4, 1, 1 1 1 1 Frederic Lagarrigue, * David S. Paul, * Alexandre R. Gingras, * Andrew J. Valadez, Hao Sun, Jenny Lin, Monica N. Cuevas, Downloaded from http://ashpublications.org/blood/article-pdf/136/10/1180/1756644/bloodbld2020005348.pdf by UNIV OF NC/ACQ SRVCS user on 20 October 2020 Jailal N. Ablack,1 Miguel Alejandro Lopez-Ramirez,1,5 Wolfgang Bergmeier,3,4 and Mark H. Ginsberg1 1Department of Medicine, University of California, San Diego, La Jolla, CA; 2Institut de Pharmacologie et de Biologie Structurale (IPBS), Centre National de la Recherche Scientifique (CNRS), Universite´ Paul Sabatier (UPS), Universite´ de Toulouse, Toulouse, France; 3UNC Blood Research Center and 4Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC; and 5Department of Pharmacology, University of California, San Diego, La Jolla, CA KEY POINTS Ras-related protein 1 (Rap1) is a major convergence point of the platelet-signaling path- ways that result in talin-1 binding to the integrin b cytoplasmic domain and consequent l Blockade of Rap1 binding to talin-1 F0 integrin activation, platelet aggregation, and effective hemostasis. The nature of the and F1 domains connection between Rap1 and talin-1 in integrin activation is an important remaining gap in phenocopies the our understanding of this process. Previous work identified a low-affinity Rap1-binding site defects in integrin in the talin-1 F0 domain that makes a small contribution to integrin activation in platelets. activation observed in platelets lacking We recently identified an additional Rap1-binding site in the talin-1 F1 domain that makes a Rap1a/b.
    [Show full text]
  • ERM Protein Family
    Cell Biology 2018; 6(2): 20-32 http://www.sciencepublishinggroup.com/j/cb doi: 10.11648/j.cb.20180602.11 ISSN: 2330-0175 (Print); ISSN: 2330-0183 (Online) Structure and Functions: ERM Protein Family Divine Mensah Sedzro 1, †, Sm Faysal Bellah 1, 2, †, *, Hameed Akbar 1, Sardar Mohammad Saker Billah 3 1Laboratory of Cellular Dynamics, School of Life Science, University of Science and Technology of China, Hefei, China 2Department of Pharmacy, Manarat International University, Dhaka, Bangladesh 3Department of Chemistry, Govt. M. M. University College, Jessore, Bangladesh Email address: *Corresponding author † These authors contributed equally to this work To cite this article: Divine Mensah Sedzro, Sm Faysal Bellah, Hameed Akbar, Sardar Mohammad Saker Billah. Structure and Functions: ERM Protein Family. Cell Biology . Vol. 6, No. 2, 2018, pp. 20-32. doi: 10.11648/j.cb.20180602.11 Received : September 15, 2018; Accepted : October 6, 2018; Published : October 29, 2018 Abstract: Preservation of the structural integrity of the cell depends on the plasma membrane in eukaryotic cells. Interaction between plasma membrane, cytoskeleton and proper anchorage influence regular cellular processes. The needed regulated connection between the membrane and the underlying actin cytoskeleton is therefore made available by the ERM (Ezrin, Radixin, and Moesin) family of proteins. ERM proteins also afford the required environment for the diffusion of signals in reactions to extracellular signals. Other studies have confirmed the importance of ERM proteins in different mode organisms and in cultured cells to emphasize the generation and maintenance of specific domains of the plasma membrane. An essential attribute of almost all cells are the specialized membrane domains.
    [Show full text]
  • Force-Independent Interactions of Talin and Vinculin Govern Integrin-Mediated Mechanotransduction
    bioRxiv preprint doi: https://doi.org/10.1101/629683; this version posted May 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Force-independent interactions of talin and vinculin govern integrin-mediated mechanotransduction Paul Atherton1, Franziska Lausecker1, Alexandre Carisey1, Andrew Gilmore1, David Critchley2, Igor Barsukov3, and Christoph Ballestrem1, 1Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK. 2Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK. 3Institute of Integrative Biology, University of Liverpool, BioSciences Building, Crown Street, Liverpool L69 7ZB, UK. Talin, vinculin and paxillin are core components of the dy- C-terminal D5 tail domain (Vt) that masks the talin binding namic link between integrins and actomyosin. Here we study site in the D1 domain (Cohen et al., 2005). Furthermore, a the mechanisms that mediate their activation and association FRET conformation sensor has shown that vinculin is in an using a mitochondrial-targeting assay, structure-based mutants, open conformation within FAs (Chen et al., 2005). For talin, and advanced microscopy. As expected, full-length vinculin and the primary auto-inhibitory interaction is between the F3 do- talin are auto-inhibited and do not interact with each other in main of the N-terminal FERM domain and R9, one of the this state. Contrary to previous models that propose a critical 13 -helical bundles (R1-R13) in the flexible C-terminal rod role for forces driving talin-vinculin association, our data show a that force-independent relief of auto-inhibition is sufficient to (Calderwood et al., 2013).
    [Show full text]
  • A Novel FERM Domain Including Guanine Nucleotide Exchange Factor Is Involved in Rac Signaling and Regulates Neurite Remodeling
    The Journal of Neuroscience, October 1, 2002, 22(19):8504–8513 A Novel FERM Domain Including Guanine Nucleotide Exchange Factor Is Involved in Rac Signaling and Regulates Neurite Remodeling Tateki Kubo,1,2,3 Toshihide Yamashita,1,3 Atsushi Yamaguchi,1,3 Hideki Sumimoto,4 Ko Hosokawa,2 and Masaya Tohyama1,3 Departments of 1Anatomy and Neuroscience and 2Plastic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan, 3Core Research for Evolutional Science and Technology of Japan Science and Technology Corporation, Kawaguchi, Saitama, 332-0012, Japan, and 4Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan The Rho family of small GTPases, key regulators of the actin testis, as well as embryonic hippocampal and cortical neurons. cytoskeleton in eukaryotic cells from yeast to human, is impli- FIR was found to activate the biochemical pathway specific for cated in the control of neuronal morphology. Guanine nucleo- Rac1 but not for RhoA or Cdc42. Ectopic expression of FIR in tide exchange factors (GEFs) are upstream positive regulators the cortical neurons resulted in significantly shortened neurites of Rho GTPases and integrate extracellular signaling for appro- and excessive growth cones, presumably mediated by Rac1. priate activation of Rho GTPases at specific subcellular re- These results suggest that FIR may regulate neurite remodeling gions. Here we describe the identification of a novel Dbl family by mediating the signaling pathways from membrane proteins GEF for Rho GTPases in Homo sapiens and Mus musculus.It to Rac. contains a tandem Dbl homology–pleckstrin homology domain and FERM domain, characteristic of the plasma membrane Key words: Rac1; Rho guanine nucleotide exchange factor; proteins linker.
    [Show full text]
  • Chromokinesin KIF4A Teams up with Stathmin 1 to Regulate Abscission in a SUMO-Dependent Manner Sabine A
    © 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2020) 133, jcs248591. doi:10.1242/jcs.248591 RESEARCH ARTICLE Chromokinesin KIF4A teams up with stathmin 1 to regulate abscission in a SUMO-dependent manner Sabine A. G. Cuijpers1,*, Edwin Willemstein1, Jan G. Ruppert2,‡, Daphne M. van Elsland1, William C. Earnshaw2 and Alfred C. O. Vertegaal1,§ ABSTRACT 2008). Although spastin knockdown results in a delay in MT Cell division ends when two daughter cells physically separate via disassembly, the process is not abolished, indicating the existence of abscission, the cleavage of the intercellular bridge. It is not clear how additional abscission pathway components. the anti-parallel microtubule bundles bridging daughter cells are Post-translational modifications play a major role in mitotic severed. Here, we present a novel abscission mechanism. We regulation. Important modifications include phosphorylation and identified chromokinesin KIF4A, which is adjacent to the midbody modification by small proteins including ubiquitin and small during cytokinesis, as being required for efficient abscission. KIF4A is ubiquitin-like modifier (SUMO) (Barr et al., 2004; Cubeñas-Potts regulated by post-translational modifications. We evaluated et al., 2015; Dasso, 2008; Deribe et al., 2010; Eifler and Vertegaal, modification of KIF4A by the ubiquitin-like protein SUMO. We 2015; Flotho and Melchior, 2013; Gareau and Lima, 2010; Glotzer mapped lysine 460 in KIF4A as the SUMO acceptor site and et al., 1991; Gurley et al., 1973; King et al., 1994, 1996; Li and employed CRISPR-Cas9-mediated genome editing to block SUMO Hochstrasser, 1999; Peters, 2002; Ribet et al., 2017; Pohl and conjugation of endogenous KIF4A.
    [Show full text]
  • FAK in Cancer: Mechanistic Findings and Clinical Applications
    REVIEWS FAK in cancer: mechanistic findings and clinical applications Florian J. Sulzmaier, Christine Jean and David D. Schlaepfer Abstract | Focal adhesion kinase (FAK) is a cytoplasmic protein tyrosine kinase that is overexpressed and activated in several advanced-stage solid cancers. FAK promotes tumour progression and metastasis through effects on cancer cells, as well as stromal cells of the tumour microenvironment. The kinase-dependent and kinase-independent functions of FAK control cell movement, invasion, survival, gene expression and cancer stem cell self-renewal. Small molecule FAK inhibitors decrease tumour growth and metastasis in several preclinical models and have initial clinical activity in patients with limited adverse events. In this Review, we discuss FAK signalling effects on both tumour and stromal cell biology that provide rationale and support for future therapeutic opportunities. Focal Adhesion Kinase (FAK) is a multifunctional regu- models that have been used to elucidate new roles for lator of cell signalling within the tumour microenviron- FAK in endothelial cells (ECs) and discuss how stromal ment1–3. During development and in various tumours, FAK signalling contributes to tumour progression. FAK promotes cell motility, survival and proliferation Finally, we summarize new translational developments through kinase-dependent and kinase-independent using small molecule FAK inhibitors. mechanisms. In the past few years, Phase I and II clinical trials have been initiated with FAK inhibitors; however, FAK regulation some of the functions of FAK in tumorigenesis remain Control of FAK expression. Nuclear factor-κB (NF‑κB) under investigation. and p53 are well-characterized transcription factors that Chromosomal region 8q24.3, which encompasses activate and repress the PTK2 promoter, respectively10,11.
    [Show full text]