Comparison of Immediate Hypersensitivity Reaction Rate According to the Type of Radiocontrast Media

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of Immediate Hypersensitivity Reaction Rate According to the Type of Radiocontrast Media ORIGINAL ARTICLE Asian Pacific Journal of Allergy and Immunology Comparison of immediate hypersensitivity reaction rate according to the type of radiocontrast media Hye Jung Park,1* Hye Sun Lee,2 Sinae Kim,2 Chul Hwan Park3 Abstract Background: Various types of radiocontrast media (RCM), which can be substituted for each other, are used in clinical settings. However, data on comparisons of hypersensitivity reactions (HSR) based on types of RCM are lacking. Objectives: We aimed to compare HSR rates to facilitate the choice of appropriate RCM types. Methods: From January 2011 to December 2015, we retrospectively reviewed 209,027 clinical events involving seven different RCM in Gangnam Severance Hospital. We analyzed immediate HSR events using an internally developed adverse drug reaction reporting system. Furthermore, we defined risk factors for HSR, including RCM type. Results: During the 5-year study period, 209,027 RCM usage occurred in 97,374 patients. During that period, 108 HSR happened in 88 patients (0.05% events). The HSR rate for iodixanol (0.16%) was the highest, followed by that for iopamidol (0.08%), iopromide (0.04%), iobitridol (0.04%), ioversol (0.02%), ioxitalamic acid (0.01%), and iohexol (0.01%). Multivariate generalized estimating equation analysis showed age (odds ratio [OR], 0.980; 95% confidence interval [CI], 0.969-0.990; P < 0.001), urticaria (OR, 1.936; 95% CI, 1.003-3.737; P = 0.049), drug allergy (OR, 9.212; 95% CI, 5.353- 15.853; P < 0.001), iopamidol use (OR, 8.327; 95% CI, 1.129-61.401; P = 0.038, compared to iohexol), iodixanol use (OR, 18.780; 95% CI, 2.564-137.560; P = 0.004, compared to iohexol), and use in 2014-2015 (OR, 2.704; 95% CI, 1.780-4.108; P < 0.001) were significant HSR-associated risk factors. Conclusion: Among the RCMs, iodixanol (iso-osmolar RCM) and iopamidol (low-osmolar RCM) showed a significantly higher risk for immediate HSR than did other agents. Key words: contrast media, hypersensitivity, iodixanol, iopamidol, iopramide From: * Corresponding author: 1 Department of Internal Medicine, Gangnam Severance Hospital, Hye Jung Park Yonsei University College of Medicine, Seoul, Korea Department of Internal Medicine, Gangnam Severance Hospital, 2 Biostatistics Collaboration Unit, Yonsei University College of Medicine Yonsei University College of Medicine, 211 Eonju-ro Gangnam-gu, 3 Department of Radiology, Gangnam Severance Hospital, Seoul 06273 Yonsei University College of Medicine, Seoul, Korea E-mail: [email protected] Introduction The use of radiocontrast media (RCM) has increased along iso- and low-osmolar RCM, which can be easily substituted with the increase in the use of imaging modalities, especially each other, have been used. computed tomography (CT).1 The hypersensitivity reaction However, recent large-scale studies have revealed that ad- (HSR) rate associated with RCM is known to be fairly high;2,3 verse drug reaction (ADR) rates differ significantly according therefore efforts to reduce the HSR rate has been the focus of to the type of RCM. Gomi et al.14 compared the incidence of numerous studies. Non-ionic RCM were introduced to replace acute ADRs among five low-osmolar RCM including iomeprol, ionic RCM, which reduced the HSR rate.4,5 Moreover, the HSR iopamidol, iohexol, iopromide, and ioversol. They discovered rate reduced consderably after high-osmolar RCM were re- that the use of iopamidol, iohexol, and ioversol significantly placed by iso- and low-osmolar types.6-8 Further, there have reduced the incidence of ADRs. Kim et al.15 reviewed 286,087 been reports that HSR rates among iso- and low-osmolar RCM cases of low-osmolar RCM use and found that compared to were not significantly different.9-13 To date, various types of iohexol, iopamidol, and iopromide, iobitridol significantly Asian Pac J Allergy Immunol DOI 10.12932/AP-191017-0182 reduced immediate HSR. Morales-Cabeza et al.16 showed im- skin-mucosal tissue, respiratory compromise, reduced BP or mediate reaction was significantly lower in iopamidol and io- associated symptoms, or persistent gastrointestinal symptoms) versol rather than iomeprol. To date, data on the comparison that occur rapidly after exposure to a likely allergen; reduced BP of HSR rates based on the type of RCM are lacking. Therefore, after exposure to known allergen.20 we aimed to compare the HSR rate to facilitate the selection of appropriate and safe RCM in clinical practice. Statistical analysis We used the Student’s t-test with an analysis of variance Methods (ANOVA) and chi-square tests to identify any differences in Data collection continuous and categorized variables between groups, respec- We retrospectively reviewed 215,135 incidences of tively. Univariate and multivariate analyses were used to deter- RCM use that occurred at Gangnam Severance Hospital from mine significant factors associated with HSR using a logistic January 2011 to December 2015. Gangnam Severance Hospi- regression analysis and generalized estimating equation (GEE) tal, which is a branch of Severance Hospital, implemented a analysis. The Statistical Package for the Social Sciences (SPSS) previously described spontaneous reporting program at Sever- v18.0 (IBM Corp, Armonk, NY, USA) was used, and a P < 0.05 ance Hospital to report ADRs from 2005.15,17 Doctors, nurses, was considered statistically significant. and paramedics have spontaneously reported ADRs using this program. We analyzed HSR events among ADRs in patients in Ethics whom RCM were used, by using this internally developed ADR This study was exempted from requiring an approval by the reporting system. Institutional Review Board of the Gangnam Severance Hospi- tal, Yonsei University Health System (approval number: 3-2016 RCM analyzed in this study -0207) The RCM investigated in this study were iohexol (Bonorex® 300, GE Healthcare, Amersham, UK), ioxitalamic acid (Tele- Results brix® 30, Guerbet, Sulzbach, Germany), ioversol (Optiray® 320, Clinical characteristics Guerbet, Sulzbach, Germany), iobitridol (Xenetix® 300, Guerbet, During the 5-year study period, 209,027 incidences of RCM Sulzbach, Germany), iopromide (Ultravist® 300, Bayer, Leverku- use occurred in 97,374 patients. During that period, 108 HSR sen, Germany), iopamidol (Pamiray® 300, Bracco, Milan, Italy), events occurred in 88 patients (0.05% events). We divided the and iodixanol (Visipaque®, GE Healthcare, Amersham, UK). patients into subjects without and with HSR (n = 97,286 and 88, Among them, ioxitalamic acid is an ionic RCM and iodixanol is respectively). Age, sex, and the prevalence of asthma, allergic a non-ionic iso-osmolar RCM. Except for these two, the others rhinitis, atopic dermatitis, hypertension, diabetes mellitus, liver are non-ionic low-osmolar RCM. disease, and chronic renal disease were not significantly differ- ent between the two groups. However, prevalence of urticaria Definition of HSR and severity of HSR (10.2%) was significantly higher in subjects with HSR than that HSR was defined as a particular condition causes the im- in subjects without HSR (3.3%, P = 0.003). The prevalence of mune system to overreact and included all allergic reactions food allergy (3.4%) and drug allergy (19.3%) was also signifi- (which is defined as one type of HSR when immune system cantly higher in subjects with HSR than that in subjects without overreacts to harmless substances) and various non-allergic re- HSR (0.6 and 1.2%), respectively (Table 1). actions according to American Academy of Allergy Asthma & Immunology definition.18 Immediate HSR was defined as a HSR Clinical manifestations of HSR occurring within 1 hour after administration of a RCM. Among the 108 HSR events, cutaneous symptoms including The HSR severity was classified as follows: mild (itching, rash, pruritus, and urticaria were the most frequent manifes- urticaria, flushing, nausea, mild vomiting, and/or chills, i.e. tations (88.9%). Nausea/vomiting (13.0%), angioedema (5.6%), symptoms that are self-limited, without evidence of progres- and dyspnea (3.7%) were also frequently observed. Chest pain, sion), moderate (severe vomiting, systemic urticaria, mild unconsciousness, and shock were rarely observed (0.9%, Table bronchospasm, face and/or larynx angioedema, throat tight- 2). ness, tachycardia, bradycardia, mild dyspnea, hypoxia, and/or temporary hypotension, i.e. symptoms that are more pro- HSR rates according to time nounced and commonly require medical management), and The HSR rates in 2014 and 2015 (0.09% and 0.07%) were severe (shock, pulmonary edema, prolonged hypoxia, cardio- significantly higher than those in 2011-2013 (0.03%, P < 0.001). pulmonary arrest, and/or convulsions, i.e. symptoms that are Further, upon categorizing them into 2011-2013 and 2014- often life-threatening and can result in permanent morbidity or 2015, the differences were still significant (Table 3). death if not managed appropriately).19 In addition, we defined anaphylaxis as a serious allergic reaction that is rapid in onset HSR rates according to the type of RCM and may cause death , when any one of the following 3 criteria The HSR rate for iodixanol (0.16%) was the highest, followed are fulfilled: acute onset of an illness with involvement of the by that for iopamidol (0.08%), iopromide (0.04%), and iobitri- skin, mucosal tissues, or both and other sympotms (respisratory dol (0.04%). Ioversol (0.02%), ioxitalamic acid (0.01%), and compromise or reduced BP or associated symptoms of end-or- iohexol (0.01%) were associated with relatively low incidences gan dysfunction); two or more
Recommended publications
  • In Cooperation with Proficiency Test 8/18 TW S6 – X-Ray- and MRT-Contrast Media in Drinking Water Dear Madam Or Sir, In
    Institute for Sanitary Engineering, Water Quality and Solid Waste Management AQS Baden-Württemberg Universit y of Stuttgart ● ISWA ● Bandtäle 2 ● 70569 Stuttgart Contact person AQS Baden-Württemberg Dr. Frank Baumeister, Dr. Michael Koch, Mandy Wünsche To the participants of AQS Baden-Württemberg Contact details Bandtäle 2 70569 Stuttgart GERMANY T +49 711 685-65446 F +49 711 685-63769 [email protected] www.aqsbw.de Proficiency test 8/18 TW S6 – X-ray- and MRT-contrast media in drinking water 2018-06-22 Dear Madam or Sir, in September 2018 the execution of the above mentioned proficiency test (PT) round „X-ray- and MRT-contrast media in drinking water” is planned. The PT is carried out under the umbrella of the NORMAN Network of Reference Laboratories for Monitoring of Emerging Environmental Pollutants (http://www.norman-network.net) in cooperation with IWW Water Centre. Details about the PT round are enclosed. Please read them with care. If you are interested in participation, please register online via our website http://www.iswa.uni-stuttgart.de/ch/aqs/rv/anm_rv.en.php?id=181. You will receive a confirmation of receipt by e-mail. With a second e- mail we will bindingly confirm your application to the PT. You are not registered if you do not receive any e-mail. Application deadline: 24 July 2018 Please consider our general terms and conditions of business for the execution of the PT, which can be downloaded from http://www.aqsbw.de/pdf/agb_en.pdf. Bank Baden-Württembergische If we receive your application after the deadline we cannot guarantee Bank Stuttgart – BW-Bank that participation will be possible.
    [Show full text]
  • Published Version
    Chapter 12 Water quality analysis: Detection, fate, and behaviour, of selected trace organic pollutants at managed aquifer recharge sites Mathias Ernst, Arne Hein, Josef Asmin, Martin Krauss, Guido Fink, Juliane Hollender, Thomas Ternes, Claus Jørgensen, Martin Jekel and Christa S. McArdell 12.1 INTRODUCTION In treated municipal wastewater, residual organic compounds are of high relevance especially if water recycling and potable water reuse is envisaged. After biological treatment, such as the activated sludge process, some organic compounds remain that are either non-biodegradable, or are minimally biodegradable. If these chemicals are polar, they are commonly poorly absorbable, and are therefore identified as persistent polar organic compounds (also persistent polar pollutants, PPPs). In the last decade, there have been important analytical improvements in detecting trace levels of pollutants, and within the water reuse community, new “hazardous” compounds are frequently discussed. This includes consideration of which organic residuals are really of health concern, which transformation products can be generated, and what is their human and environmental impact? Within the present chapter relevant PPPs and their fate during (advanced) wastewater treatment and managed aquifer recharge are identified and discussed as results of measuring campaigns at technologically different demonstration sites within the European research project RECLAIM WATER. Such PPPs mainly belong in the group of pharmaceuticals but also industrial chemicals. Here antibiotics such as the macrolides and sulfonamides are of particular concern, because of the eco-toxicological potential of these parent micropollutants, and the potential threat posed by the build-up of antibiotic resistance genes. In addition to known multi-resistant bacteria such as Staphylococci, multi-resistant genes have recently been identified in the intestinal bacteria Citrobacter, Enterobacteriaceae and Escherichia coli (Patoli et al.
    [Show full text]
  • List of Union Reference Dates A
    Active substance name (INN) EU DLP BfArM / BAH DLP yearly PSUR 6-month-PSUR yearly PSUR bis DLP (List of Union PSUR Submission Reference Dates and Frequency (List of Union Frequency of Reference Dates and submission of Periodic Frequency of submission of Safety Update Reports, Periodic Safety Update 30 Nov. 2012) Reports, 30 Nov.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • 3258 N:O 1179
    3258 N:o 1179 LIITE 1 BILAGA 1 LÄÄKELUETTELON AINEET ÄMNENA I LÄKEMEDELSFÖRTECKNINGEN Latinankielinen nimi Suomenkielinen nimi Ruotsinkielinen nimi Englanninkielinen nimi Latinskt namn Finskt namn Svenskt namn Engelskt namn Abacavirum Abakaviiri Abakavir Abacavir Abciximabum Absiksimabi Absiximab Abciximab Acamprosatum Akamprosaatti Acamprosat Acamprosate Acarbosum Akarboosi Akarbos Acarbose Acebutololum Asebutololi Acebutolol Acebutolol Aceclofenacum Aseklofenaakki Aceklofenak Aceclofenac Acediasulfonum natricum Asediasulfoninatrium Acediasulfonnatrium Acediasulfone sodium Acepromazinum Asepromatsiini Acepromazin Acepromazine Acetarsolum Asetarsoli Acetarsol Acetarsol Acetazolamidum Asetatsoliamidi Acetazolamid Acetazolamide Acetohexamidum Asetoheksamidi Acetohexamid Acetohexamide Acetophenazinum Asetofenatsiini Acetofenazin Acetophenazine Acetphenolisatinum Asetofenoli-isatiini Acetfenolisatin Acetphenolisatin Acetylcholini chloridum Asetyylikoliinikloridi Acetylkolinklorid Acetylcholine chloride Acetylcholinum Asetyylikoliini Acetylkolin Acetylcholini Acetylcysteinum Asetyylikysteiini Acetylcystein Acetylcysteine Acetyldigitoxinum Asetyylidigitoksiini Acetyldigitoxin Acetyldigitoxin Acetyldigoxinum Asetyylidigoksiini Acetyldigoxin Acetyldigoxin Acetylisovaleryltylosini Asetyyli-isovaleryyli- Acetylisovaleryl- Acetylisovaleryltylosine tartras tylosiinitartraatti tylosintartrat tartrate Aciclovirum Asikloviiri Aciklovir Aciclovir Acidum acetylsalicylicum Asetyylisalisyylihappo Acetylsalicylsyra Acetylsalicylic acid Acidum alendronicum
    [Show full text]
  • Verg(H)Ulde Pillen – Casestudie Lumc, Leiden Verg(H)Ulde Pillen
    STICHTING TOEGEPAST ONDERZOEK WATERBEHEER VERG(H)ULDE PILLEN – CASESTUDIE LUMC, LEIDEN VERG(H)ULDE PILLEN [email protected] WWW.stowa.nl TEL 030 232 11 99 FAX 030 232 17 66 CASESTUDIE LUMC, LEIDEN Arthur van Schendelstraat 816 POSTBUS 8090 35 03 RB UTRECHT 2009 RAPPORT W02 2009 W02 VERG(H)ULDE PILLEN CASESTUDIE LUMC TE LEIDEN 2009 RAPPORT W02 ISBN 978.90.5773.428.1 [email protected] WWW.stowa.nl Publicaties van de STOWA kunt u bestellen op www.stowa.nl. TEL 030 232 11 99 FAX 030 231 79 80 Deze publicatie is ook digitaal beschikbaar. Arthur van Schendelstraat 816 POSTBUS 8090 3503 RB UTRECHT STOWA 2009-W02 VERG(H)ULDE PILLEN – DEEL B LUMC – LEIDEN COLOFON Utrecht, 2009 Uitgave STOWA 2009 Arthur van Schendelstraat 816 Postbus 8090 3503 RB Utrecht Tel 030 2321199 Fax: 030 2321766 e-mail: [email protected] http://www.stowa.nl Auteur(s) dr. S.A.E. Kools dr. ir. M.W. Kuiper dr. ir. J.H. Roorda ir. J.G.M. Derksen De begeleidingscommissie was opgebouwd uit vertegenwoordigers vanuit de waterwereld en vertegenwoordigers vanuit de ziekenhuizen. Deze bestond uit de volgende personen: Harm Baten (Hoogheemraadschap van Rijnland) Pieter de Bekker (Hoogheemraadschap de Stichtse Rijnlanden) Marja Bogaards (Reinier de Graaf Gasthuis) Bart Hellings (Ministerie van VROM) Desiree Hoefnagel (Ministerie van VWS) Bert Palsma (STOWA) Ellen Parma (Milieuplatform Zorg; de helft van alle Nederlandse ziekenhuizen is hierbij aangesloten ) Percival Stubbs (Nederlandse Vereniging van Ziekenhuizen; alle Nederlandse ziekenhuizen zijn hierbij aangesloten) Ferdinand Kiestra (Waterschap Aa en Maas) Erica Mosch (Waterschap Hunze en Aa’s) Gerard Rijs (Waterdienst – Rijkswaterstaat) Esther Willems (MPZ) Peter van Zundert (Ministerie Verkeer en Waterstaat) Deze publicatie is ook digitaal beschikbaar Prepress/druk Van de Garde | Jémé STOWA Rapportnummer 2009-W02 STOWA 2009-W02 VERG(H)ULDE PILLEN – DEEL B LUMC – LEIDEN SAMENVATTING In Nederland worden 12.000 verschillende geneesmiddelen met ongeveer 850 verschillende actieve stoffen gebruikt, waarbij het geneesmiddelengebruik per inwoner jaarlijks stijgt.
    [Show full text]
  • Customs Tariff - Schedule
    CUSTOMS TARIFF - SCHEDULE 99 - i Chapter 99 SPECIAL CLASSIFICATION PROVISIONS - COMMERCIAL Notes. 1. The provisions of this Chapter are not subject to the rule of specificity in General Interpretative Rule 3 (a). 2. Goods which may be classified under the provisions of Chapter 99, if also eligible for classification under the provisions of Chapter 98, shall be classified in Chapter 98. 3. Goods may be classified under a tariff item in this Chapter and be entitled to the Most-Favoured-Nation Tariff or a preferential tariff rate of customs duty under this Chapter that applies to those goods according to the tariff treatment applicable to their country of origin only after classification under a tariff item in Chapters 1 to 97 has been determined and the conditions of any Chapter 99 provision and any applicable regulations or orders in relation thereto have been met. 4. The words and expressions used in this Chapter have the same meaning as in Chapters 1 to 97. Issued January 1, 2019 99 - 1 CUSTOMS TARIFF - SCHEDULE Tariff Unit of MFN Applicable SS Description of Goods Item Meas. Tariff Preferential Tariffs 9901.00.00 Articles and materials for use in the manufacture or repair of the Free CCCT, LDCT, GPT, UST, following to be employed in commercial fishing or the commercial MT, MUST, CIAT, CT, harvesting of marine plants: CRT, IT, NT, SLT, PT, COLT, JT, PAT, HNT, Artificial bait; KRT, CEUT, UAT, CPTPT: Free Carapace measures; Cordage, fishing lines (including marlines), rope and twine, of a circumference not exceeding 38 mm; Devices for keeping nets open; Fish hooks; Fishing nets and netting; Jiggers; Line floats; Lobster traps; Lures; Marker buoys of any material excluding wood; Net floats; Scallop drag nets; Spat collectors and collector holders; Swivels.
    [Show full text]
  • Alphabetical Listing of ATC Drugs & Codes
    Alphabetical Listing of ATC drugs & codes. Introduction This file is an alphabetical listing of ATC codes as supplied to us in November 1999. It is supplied free as a service to those who care about good medicine use by mSupply support. To get an overview of the ATC system, use the “ATC categories.pdf” document also alvailable from www.msupply.org.nz Thanks to the WHO collaborating centre for Drug Statistics & Methodology, Norway, for supplying the raw data. I have intentionally supplied these files as PDFs so that they are not quite so easily manipulated and redistributed. I am told there is no copyright on the files, but it still seems polite to ask before using other people’s work, so please contact <[email protected]> for permission before asking us for text files. mSupply support also distributes mSupply software for inventory control, which has an inbuilt system for reporting on medicine usage using the ATC system You can download a full working version from www.msupply.org.nz Craig Drown, mSupply Support <[email protected]> April 2000 A (2-benzhydryloxyethyl)diethyl-methylammonium iodide A03AB16 0.3 g O 2-(4-chlorphenoxy)-ethanol D01AE06 4-dimethylaminophenol V03AB27 Abciximab B01AC13 25 mg P Absorbable gelatin sponge B02BC01 Acadesine C01EB13 Acamprosate V03AA03 2 g O Acarbose A10BF01 0.3 g O Acebutolol C07AB04 0.4 g O,P Acebutolol and thiazides C07BB04 Aceclidine S01EB08 Aceclidine, combinations S01EB58 Aceclofenac M01AB16 0.2 g O Acefylline piperazine R03DA09 Acemetacin M01AB11 Acenocoumarol B01AA07 5 mg O Acepromazine N05AA04
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • United States Patent 19 11 Patent Number: 5,665,331 Bagchi Et Al
    |||| US005665331A United States Patent 19 11 Patent Number: 5,665,331 Bagchi et al. (45) Date of Patent: *Sep. 9, 1997 54 CO-MICROPRECIPITATION OF OTHER PUBLICATIONS NANOPARTICULATE PHARMACEUTICAL J. Phys. Chem. 1994, 98,3215-3221. AGENTS WITH CRYSTAL GROWTH J. Am. Chem. Soc. 1985, 107, 311-3122. MOD FERS - Radiology, Jan. 1982, vol. 142, pp. 115-118. Lachman, et al., “The Theory and Practice of Industrial 75 Inventors: Pranab Bagchi, Webster; Raymond P. Pharmacy”, Chapter 2, Milling, p. 45, (1986). Scaringe, Rochester, both of N.Y.; H. Handbook of experimental Pharmacology, pp. 56-73, 1984. William Bosch, Bryn Mawr, Pa. International Journal of Pharmaceutics, 52(1989) 101-108. 73 Assignee: NanoSystems L.L.C., Collegeville, Pa. Primary Examiner Gary E. Hollinden Assistant Examiner-Michael G. Hartley * Notice: The portion of the term of this patent Attorney, Agent, or Firm-Rudman & Balosh subsequent to Oct. 1, 2013, has been disclaimed. 57 ABSTRACT This invention describes the coprecipitation of nanoparticu 21 Appl. No.: 370,998 late pharmaceutical agent dispersion via a process that comprises the dissolution of the said pharmaceutical agentin 22 Filed: Jan. 10, 1995 combination with a crystal growth modifier (CGM) in an (51] Int. Cl. ... A61K 49/04; A61K 9/14 alkaline solution and then neutralizing the said solution with an acid in the presence of suitable surface-modifying 52 U.S. Cl. ........................ 424/945; 424/9.4; 424/489; surface-active agent or agents to form a fine particle disper 424/490; 424/488; 424/1.29 sion of the said pharmaceutical agent, followed by steps of 58) Field of Search ...................................
    [Show full text]
  • United States Patent 19 11 Patent Number: 5,346,688 Bacon Et Al
    USOO534.6688A United States Patent 19 11 Patent Number: 5,346,688 Bacon et al. 45 Date of Patent: Sep. 13, 1994 54) IODINATED WETTINGAGENTS OTHER PUBLICATIONS 75 Inventors: Edward R. Bacon, East Greenbush, Chemical Abstract 57: 4604a Search Report (STN); N.Y.; Gregory L. McIntire, West 1962. Chester, Pa. Primary Examiner-José G. Dees Assistant Examiner-Samuel Barts 73 Assignee: Sterling Winthrop Inc., New York, Attorney, Agent, or Firm-William J. Davis N.Y. 57 ABSTRACT 21 Appl. No.: 991,640 Compounds having the structure 22) Fied: Dec. 16, 1992 (Z--COO-L-CO2M 51 Int. Cl............................................... A61K 49/04 : - 424/5; 560/47 wherein (Z)-COO is the residue of an iodinated aro 58 Field of Search ............................. 560/25, 47,77; matic acid; 58 Fi 514/533, 424/5 M is H, a cation, -e-CH2CH2O)-H, and G-CH2C s H(OH)OH; 56) References Cited m is an integer from 1 to 150; p is an integer from 1 to 50; and U.S. PATENT DOCUMENTS L is one or more divalent linking groups selected 3,144,479 8/1964 Obendorf. from alkylene, cycloalkylene, arylene, arylenealky lene, and alkylenearylene are particularly useful as FOREIGN PATENT DOCUMENTS wetting agents in X-ray imaging compositions. 1082368 5/1960 Fed. Rep. of Germany . 866184 4/1958 United Kingdom . 5 Claims, No Drawings 5,346,688 1. 2 as wetting agents for therapeutic agents and in various ODINATED WETTING AGENTS other applications. In structural formula I above, (Z)-COO is the resi FIELD OF THE INVENTION due of an iodinated aromatic acid.
    [Show full text]
  • Lääkeluettelon Aineet, Liite 1. Ämnena I
    LÄÄKELUETTELON AINEET, LIITE 1. 1 ÄMNENA I LÄKEMEDELSFÖRTECKNINGEN, BILAGA 1. Latinankielinen nimi, Latinskt Suomenkielinen nimi, Ruotsinkielinen nimi, Englanninkielinen nimi, namn Finskt namn Svenskt namn Engelskt namn (N)-Hydroxy-aethylprometazinum (N)-Hydroksietyyli-prometatsiini (N)-Hydroxietyl-prometazin (N)-Hydroxyethyl- promethazine 2,4-Dichlorbenzyl-alcoholum 2,4-Diklooribentsyyli-alkoholi 2,4-Diklorbensylalkohol 2,4-Dichlorobenzyl alcohol 2-Isopropoxyphenyl-N- 2-Isopropoksifenyyli-N- 2-Isopropoxifenyl-N- 2-Isopropoxyphenyl-N- methylcarbamas metyylikarbamaatti metylkarbamat methylcarbamate 4-Dimethyl- aminophenolum 4-Dimetyyliaminofenoli 4-Dimetylaminofenol 4-Dimethylaminophenol Abacavirum Abakaviiri Abakavir Abacavir Abarelixum Abareliksi Abarelix Abarelix Abataceptum Abatasepti Abatacept Abatacept Abciximabum Absiksimabi Absiximab Abciximab Abirateronum Abirateroni Abirateron Abiraterone Acamprosatum Akamprosaatti Acamprosat Acamprosate Acarbosum Akarboosi Akarbos Acarbose Acebutololum Asebutololi Acebutolol Acebutolol Aceclofenacum Aseklofenaakki Aceklofenak Aceclofenac Acediasulfonum natricum Asediasulfoni natrium Acediasulfon natrium Acediasulfone sodium Acenocoumarolum Asenokumaroli Acenokumarol Acenocumarol Acepromazinum Asepromatsiini Acepromazin Acepromazine Acetarsolum Asetarsoli Acetarsol Acetarsol Acetazolamidum Asetatsoliamidi Acetazolamid Acetazolamide Acetohexamidum Asetoheksamidi Acetohexamid Acetohexamide Acetophenazinum Asetofenatsiini Acetofenazin Acetophenazine Acetphenolisatinum Asetofenoli-isatiini Acetfenolisatin
    [Show full text]