United States Patent 19 11 Patent Number: 5,346,688 Bacon Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent 19 11 Patent Number: 5,346,688 Bacon Et Al USOO534.6688A United States Patent 19 11 Patent Number: 5,346,688 Bacon et al. 45 Date of Patent: Sep. 13, 1994 54) IODINATED WETTINGAGENTS OTHER PUBLICATIONS 75 Inventors: Edward R. Bacon, East Greenbush, Chemical Abstract 57: 4604a Search Report (STN); N.Y.; Gregory L. McIntire, West 1962. Chester, Pa. Primary Examiner-José G. Dees Assistant Examiner-Samuel Barts 73 Assignee: Sterling Winthrop Inc., New York, Attorney, Agent, or Firm-William J. Davis N.Y. 57 ABSTRACT 21 Appl. No.: 991,640 Compounds having the structure 22) Fied: Dec. 16, 1992 (Z--COO-L-CO2M 51 Int. Cl............................................... A61K 49/04 : - 424/5; 560/47 wherein (Z)-COO is the residue of an iodinated aro 58 Field of Search ............................. 560/25, 47,77; matic acid; 58 Fi 514/533, 424/5 M is H, a cation, -e-CH2CH2O)-H, and G-CH2C s H(OH)OH; 56) References Cited m is an integer from 1 to 150; p is an integer from 1 to 50; and U.S. PATENT DOCUMENTS L is one or more divalent linking groups selected 3,144,479 8/1964 Obendorf. from alkylene, cycloalkylene, arylene, arylenealky lene, and alkylenearylene are particularly useful as FOREIGN PATENT DOCUMENTS wetting agents in X-ray imaging compositions. 1082368 5/1960 Fed. Rep. of Germany . 866184 4/1958 United Kingdom . 5 Claims, No Drawings 5,346,688 1. 2 as wetting agents for therapeutic agents and in various ODINATED WETTING AGENTS other applications. In structural formula I above, (Z)-COO is the resi FIELD OF THE INVENTION due of an iodinated aromatic acid. The iodinated aro This invention relates to iodinated aromatic com matic acid can comprise one, two, three or more iodine pounds which are particularly useful as wetting agents. atoms per molecule. Preferred species contain at least two, and more preferably, at least three iodine atoms BACKGROUND OF THE INVENTION per molecule. The iodinated compounds can contain X-ray imaging is a well known and extremely valu substituents which do not deleteriously effect the con able tool for the early detection and diagnosis of various O trast enhancing capability of the compound. disease states in the human body. The use of contrast Illustrative examples of suitable aromatic acids in agents for image enhancement in medical X-ray imaging clude procedures is widespread. An excellent background on iodinated and other contrast agents for medical imaging diatrizoic acid, is provided by D. P. Swanson et al, Pharmaceuticals in 15 metrizoic acid, Medical Imaging, 1990, MacMillan Publishing Com urokonic acid, pany. iothalamic acid, EP-A 498,482 describes nanoparticulate x-ray con trimesic acid, trast compositions which have proven to be extremely ioxaglic acid (hexabrix), useful in medical imaging. The particles consist of a 20 ioxitalamic acid, poorly soluble diagnostic agent having adsorbed tetraiodoterephthalic acid, thereon a non-crosslinked surface modifier, the particles iodipamide, and the like. having a mean particle size of less than about 400 (nm). The present invention is directed to novel iodinated 25 In preferred embodiments, (Z)-COO is the residue of surfactants which are particularly useful as surface a substituted triiodobenzoic acid such as an acyl, carba modifiers in nanoparticle formulations. myl, and/or acylamino substituted triiodobenzoic acid. SUMMARY OF THE INVENTION In a particularly preferred embodiment, Z represents We have discovered and prepared novel iodinated aromatic compounds which are particularly useful as wetting agents in x-ray contrast compositions. More specifically, in accordance with this invention, there are provided novel compounds having the struc In ture 35 R-OCN co-r (Z--COO-L-CO2M (I) k R2 wherein (Z)-COO is the residue of an iodinated aro wherein n = 1, 2 or 3, matic acid; each R independently is H, C1-C18 alkyl, or C1-C18 M is H, a cation -6-CH2CH2OS-mH, or -6-CH2C fluoroalkyl, and H(OH) O-e-H; R and R2 are independently H or C1-C1s alkyl. m is an integer from 1 to 150; M is H; a cation, such as an alkaline or alkaline earth p is an integer from 1 to 50; and cation such as Na+, K+, Li, Cat, Ba, or an L is one or more divalent linking groups selected 45 ammonium cation such as NH4, tetramethylam from alkylene, cycloalkylene, arylene, arylenealky monium, and the like; G-CH2CH2OG-H, or lene, and alkylenearylene. -G-CH2CH(OH)O-pH; wherein m=an integer It is an advantageous feature of this invention that from 1 to 150, and p=an integer from 1 to 50. iodinated wetting agents are provided for x-ray contrast L represents a divalent linking group preferably se compositions which agents contribute to contrast en lected from alkylene containing from 1 to 20, prefera hancement bly 1 to 8 carbon atoms such as methylene, ethylene, It is another advantageous feature that the wetting propylene, butylene, pentylene, hexylene, heptylene agents of this invention can be used in vivo to change and the like; cycloalkylene, preferably containing from the interaction of particles with the reticuloendothelial 3 to 12 carbon atoms such as cyclopropylene, cyclobu system, thus enabling the particles to be retained in the 55 tylene, cyclopentylene, cyclohexylene and the like; blood pool or targeted to specific organs. arylene, preferably containing from 6 to 10 carbon Still another advantageous feature is that the use of atoms such as phenylene and naphthylene; arylenealky the wetting agents of this invention can result in very lene, the alkylene and arylene portions of which are as small particles, e.g., less than about 100 nm in size, ex described above; and alkylenearylene, the alkylene and hibiting both unique biological distribution, i.e., passive arylene portions of which are as describe above. tumor targeting, and enhanced pharmaceutical stability. The alkylene, cycloalkylene, arylene, alkyleneary lene and arylenealkylene groups in Structure I above DESCRIPTION OF PREFERRED can be unsubstituted or substituted with various substit EMBODIMENTS uents which do not adversely affect the stability or The compounds of this invention are described herein 65 efficacy of the compounds. Suitable substituents include primarily in connection with their preferred utility, i.e., alkyl, fluoroalkyl, cycloalkyl, aryl, aralkyl, alkoxy, hy as wetting agents for particulate x-ray contrast agents. droxy, aryloxy, acyloxy, halogen, acylamino, carboalk However, the compounds are also expected to be useful oxy, carbamyl and the like. However, reactive substitu 5,346,688 3 4 ents are not preferred on the carbon atom adjacent to ticulate x-ray contrast compositions, preferably as sur the ester group. face modifiers in nanoparticulate X-ray contrast compo The compounds of this invention can be prepared by sitions, as described in commonly-owned EPO 498,482, reacting the carboxylate of an iodinated aromatic acid the disclosure of which is hereby incorporated by refer with a functionalized acid having the formula 5 ence in its entirety. Such nanoparticulate compositions X-L-CO2M wherein X is a leaving group and L and can be prepared by dispersing a poorly soluble x-ray Mare as defined above, in a suitable solvent. Suitable contrast agent in a liquid dispersion medium, and wet leaving groups include halogen, such as Br, I, and Cl grinding the agent in the presence of rigid grinding sulfonyloxy, such as methanesulfonyloxy and toluene media and a wetting agent of this invention to form the sulfonyloxy. The carboxylates of iodinated aromatic O nanoparticles. Alternatively, the wetting agent can be acids and functionalized acids useful as the starting contacted with the contrast agent after attrition. materials in the preparation of the compounds of this The relative amount of the particulate x-ray contrast invention are known compounds and/or can be pre agent and wetting agent can vary widely and the opti pared by techniques known in the art. For example, mal amount of the wetting agent can depend, for exam suitable acids include commercially available bromoa 15 ple, upon the particular contrast agent and wetting cids and chloroacids. A general reaction scheme is as agent selected, the hydrophilic lipophilic balance of the follows: wetting agent, its water solubility, the surface tension of water solutions of the wetting agent, etc. The wetting Z-COO-X-L-CO2M-I agent can be present in an amount of 0.1-90%, prefera The reaction can take place at various temperatures bly 1-75%, more preferably 2-50% and most preferably ranging between -78° C. and 100° C., and preferably 2-25% by weight based on the total combined dry -40 C. to 50 C. weight of the particulate contrast agent and wetting For convenience, the reaction can take place at ambi agent. ent pressure, however, higher and lower pressures are The x-ray contrast compositions of this invention contemplated. 25 comprise the above-described compounds, preferably Alternatively, the compounds of this invention, when as a wetting agent for a particulate contrast agent, and M=H or a cation, can be prepared in a two-step synthe a physiologically acceptable carrier therefor. For exam sis. First, the carboxylate of an iodinated aromatic acid ple, the particles can be dispersed in an aqueous liquid can be reacted with a functionalized ester as described which serves as the carrier for the x-ray contrast agent. by Bacon et al in commonly owned U.S. Pat. applica Other suitable carriers include liquid carriers such as tion Ser. No. 07/990,987, entitled Iodinated Aroyloxy mixed aqueous and nonaqueous solvents, such as alco Esters, filed on Dec. 16, 1992, or by Singh et al in com hol; gels; gases, such as air; and powders. monly owned U.S. Pat, application Ser. No. 07/990,306, The X-ray contrast composition can comprise from entitled Iodinated Aromatic Compounds, filed on Dec.
Recommended publications
  • In Cooperation with Proficiency Test 8/18 TW S6 – X-Ray- and MRT-Contrast Media in Drinking Water Dear Madam Or Sir, In
    Institute for Sanitary Engineering, Water Quality and Solid Waste Management AQS Baden-Württemberg Universit y of Stuttgart ● ISWA ● Bandtäle 2 ● 70569 Stuttgart Contact person AQS Baden-Württemberg Dr. Frank Baumeister, Dr. Michael Koch, Mandy Wünsche To the participants of AQS Baden-Württemberg Contact details Bandtäle 2 70569 Stuttgart GERMANY T +49 711 685-65446 F +49 711 685-63769 [email protected] www.aqsbw.de Proficiency test 8/18 TW S6 – X-ray- and MRT-contrast media in drinking water 2018-06-22 Dear Madam or Sir, in September 2018 the execution of the above mentioned proficiency test (PT) round „X-ray- and MRT-contrast media in drinking water” is planned. The PT is carried out under the umbrella of the NORMAN Network of Reference Laboratories for Monitoring of Emerging Environmental Pollutants (http://www.norman-network.net) in cooperation with IWW Water Centre. Details about the PT round are enclosed. Please read them with care. If you are interested in participation, please register online via our website http://www.iswa.uni-stuttgart.de/ch/aqs/rv/anm_rv.en.php?id=181. You will receive a confirmation of receipt by e-mail. With a second e- mail we will bindingly confirm your application to the PT. You are not registered if you do not receive any e-mail. Application deadline: 24 July 2018 Please consider our general terms and conditions of business for the execution of the PT, which can be downloaded from http://www.aqsbw.de/pdf/agb_en.pdf. Bank Baden-Württembergische If we receive your application after the deadline we cannot guarantee Bank Stuttgart – BW-Bank that participation will be possible.
    [Show full text]
  • Published Version
    Chapter 12 Water quality analysis: Detection, fate, and behaviour, of selected trace organic pollutants at managed aquifer recharge sites Mathias Ernst, Arne Hein, Josef Asmin, Martin Krauss, Guido Fink, Juliane Hollender, Thomas Ternes, Claus Jørgensen, Martin Jekel and Christa S. McArdell 12.1 INTRODUCTION In treated municipal wastewater, residual organic compounds are of high relevance especially if water recycling and potable water reuse is envisaged. After biological treatment, such as the activated sludge process, some organic compounds remain that are either non-biodegradable, or are minimally biodegradable. If these chemicals are polar, they are commonly poorly absorbable, and are therefore identified as persistent polar organic compounds (also persistent polar pollutants, PPPs). In the last decade, there have been important analytical improvements in detecting trace levels of pollutants, and within the water reuse community, new “hazardous” compounds are frequently discussed. This includes consideration of which organic residuals are really of health concern, which transformation products can be generated, and what is their human and environmental impact? Within the present chapter relevant PPPs and their fate during (advanced) wastewater treatment and managed aquifer recharge are identified and discussed as results of measuring campaigns at technologically different demonstration sites within the European research project RECLAIM WATER. Such PPPs mainly belong in the group of pharmaceuticals but also industrial chemicals. Here antibiotics such as the macrolides and sulfonamides are of particular concern, because of the eco-toxicological potential of these parent micropollutants, and the potential threat posed by the build-up of antibiotic resistance genes. In addition to known multi-resistant bacteria such as Staphylococci, multi-resistant genes have recently been identified in the intestinal bacteria Citrobacter, Enterobacteriaceae and Escherichia coli (Patoli et al.
    [Show full text]
  • List of Union Reference Dates A
    Active substance name (INN) EU DLP BfArM / BAH DLP yearly PSUR 6-month-PSUR yearly PSUR bis DLP (List of Union PSUR Submission Reference Dates and Frequency (List of Union Frequency of Reference Dates and submission of Periodic Frequency of submission of Safety Update Reports, Periodic Safety Update 30 Nov. 2012) Reports, 30 Nov.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • 3258 N:O 1179
    3258 N:o 1179 LIITE 1 BILAGA 1 LÄÄKELUETTELON AINEET ÄMNENA I LÄKEMEDELSFÖRTECKNINGEN Latinankielinen nimi Suomenkielinen nimi Ruotsinkielinen nimi Englanninkielinen nimi Latinskt namn Finskt namn Svenskt namn Engelskt namn Abacavirum Abakaviiri Abakavir Abacavir Abciximabum Absiksimabi Absiximab Abciximab Acamprosatum Akamprosaatti Acamprosat Acamprosate Acarbosum Akarboosi Akarbos Acarbose Acebutololum Asebutololi Acebutolol Acebutolol Aceclofenacum Aseklofenaakki Aceklofenak Aceclofenac Acediasulfonum natricum Asediasulfoninatrium Acediasulfonnatrium Acediasulfone sodium Acepromazinum Asepromatsiini Acepromazin Acepromazine Acetarsolum Asetarsoli Acetarsol Acetarsol Acetazolamidum Asetatsoliamidi Acetazolamid Acetazolamide Acetohexamidum Asetoheksamidi Acetohexamid Acetohexamide Acetophenazinum Asetofenatsiini Acetofenazin Acetophenazine Acetphenolisatinum Asetofenoli-isatiini Acetfenolisatin Acetphenolisatin Acetylcholini chloridum Asetyylikoliinikloridi Acetylkolinklorid Acetylcholine chloride Acetylcholinum Asetyylikoliini Acetylkolin Acetylcholini Acetylcysteinum Asetyylikysteiini Acetylcystein Acetylcysteine Acetyldigitoxinum Asetyylidigitoksiini Acetyldigitoxin Acetyldigitoxin Acetyldigoxinum Asetyylidigoksiini Acetyldigoxin Acetyldigoxin Acetylisovaleryltylosini Asetyyli-isovaleryyli- Acetylisovaleryl- Acetylisovaleryltylosine tartras tylosiinitartraatti tylosintartrat tartrate Aciclovirum Asikloviiri Aciklovir Aciclovir Acidum acetylsalicylicum Asetyylisalisyylihappo Acetylsalicylsyra Acetylsalicylic acid Acidum alendronicum
    [Show full text]
  • Verg(H)Ulde Pillen – Casestudie Lumc, Leiden Verg(H)Ulde Pillen
    STICHTING TOEGEPAST ONDERZOEK WATERBEHEER VERG(H)ULDE PILLEN – CASESTUDIE LUMC, LEIDEN VERG(H)ULDE PILLEN [email protected] WWW.stowa.nl TEL 030 232 11 99 FAX 030 232 17 66 CASESTUDIE LUMC, LEIDEN Arthur van Schendelstraat 816 POSTBUS 8090 35 03 RB UTRECHT 2009 RAPPORT W02 2009 W02 VERG(H)ULDE PILLEN CASESTUDIE LUMC TE LEIDEN 2009 RAPPORT W02 ISBN 978.90.5773.428.1 [email protected] WWW.stowa.nl Publicaties van de STOWA kunt u bestellen op www.stowa.nl. TEL 030 232 11 99 FAX 030 231 79 80 Deze publicatie is ook digitaal beschikbaar. Arthur van Schendelstraat 816 POSTBUS 8090 3503 RB UTRECHT STOWA 2009-W02 VERG(H)ULDE PILLEN – DEEL B LUMC – LEIDEN COLOFON Utrecht, 2009 Uitgave STOWA 2009 Arthur van Schendelstraat 816 Postbus 8090 3503 RB Utrecht Tel 030 2321199 Fax: 030 2321766 e-mail: [email protected] http://www.stowa.nl Auteur(s) dr. S.A.E. Kools dr. ir. M.W. Kuiper dr. ir. J.H. Roorda ir. J.G.M. Derksen De begeleidingscommissie was opgebouwd uit vertegenwoordigers vanuit de waterwereld en vertegenwoordigers vanuit de ziekenhuizen. Deze bestond uit de volgende personen: Harm Baten (Hoogheemraadschap van Rijnland) Pieter de Bekker (Hoogheemraadschap de Stichtse Rijnlanden) Marja Bogaards (Reinier de Graaf Gasthuis) Bart Hellings (Ministerie van VROM) Desiree Hoefnagel (Ministerie van VWS) Bert Palsma (STOWA) Ellen Parma (Milieuplatform Zorg; de helft van alle Nederlandse ziekenhuizen is hierbij aangesloten ) Percival Stubbs (Nederlandse Vereniging van Ziekenhuizen; alle Nederlandse ziekenhuizen zijn hierbij aangesloten) Ferdinand Kiestra (Waterschap Aa en Maas) Erica Mosch (Waterschap Hunze en Aa’s) Gerard Rijs (Waterdienst – Rijkswaterstaat) Esther Willems (MPZ) Peter van Zundert (Ministerie Verkeer en Waterstaat) Deze publicatie is ook digitaal beschikbaar Prepress/druk Van de Garde | Jémé STOWA Rapportnummer 2009-W02 STOWA 2009-W02 VERG(H)ULDE PILLEN – DEEL B LUMC – LEIDEN SAMENVATTING In Nederland worden 12.000 verschillende geneesmiddelen met ongeveer 850 verschillende actieve stoffen gebruikt, waarbij het geneesmiddelengebruik per inwoner jaarlijks stijgt.
    [Show full text]
  • Customs Tariff - Schedule
    CUSTOMS TARIFF - SCHEDULE 99 - i Chapter 99 SPECIAL CLASSIFICATION PROVISIONS - COMMERCIAL Notes. 1. The provisions of this Chapter are not subject to the rule of specificity in General Interpretative Rule 3 (a). 2. Goods which may be classified under the provisions of Chapter 99, if also eligible for classification under the provisions of Chapter 98, shall be classified in Chapter 98. 3. Goods may be classified under a tariff item in this Chapter and be entitled to the Most-Favoured-Nation Tariff or a preferential tariff rate of customs duty under this Chapter that applies to those goods according to the tariff treatment applicable to their country of origin only after classification under a tariff item in Chapters 1 to 97 has been determined and the conditions of any Chapter 99 provision and any applicable regulations or orders in relation thereto have been met. 4. The words and expressions used in this Chapter have the same meaning as in Chapters 1 to 97. Issued January 1, 2019 99 - 1 CUSTOMS TARIFF - SCHEDULE Tariff Unit of MFN Applicable SS Description of Goods Item Meas. Tariff Preferential Tariffs 9901.00.00 Articles and materials for use in the manufacture or repair of the Free CCCT, LDCT, GPT, UST, following to be employed in commercial fishing or the commercial MT, MUST, CIAT, CT, harvesting of marine plants: CRT, IT, NT, SLT, PT, COLT, JT, PAT, HNT, Artificial bait; KRT, CEUT, UAT, CPTPT: Free Carapace measures; Cordage, fishing lines (including marlines), rope and twine, of a circumference not exceeding 38 mm; Devices for keeping nets open; Fish hooks; Fishing nets and netting; Jiggers; Line floats; Lobster traps; Lures; Marker buoys of any material excluding wood; Net floats; Scallop drag nets; Spat collectors and collector holders; Swivels.
    [Show full text]
  • Alphabetical Listing of ATC Drugs & Codes
    Alphabetical Listing of ATC drugs & codes. Introduction This file is an alphabetical listing of ATC codes as supplied to us in November 1999. It is supplied free as a service to those who care about good medicine use by mSupply support. To get an overview of the ATC system, use the “ATC categories.pdf” document also alvailable from www.msupply.org.nz Thanks to the WHO collaborating centre for Drug Statistics & Methodology, Norway, for supplying the raw data. I have intentionally supplied these files as PDFs so that they are not quite so easily manipulated and redistributed. I am told there is no copyright on the files, but it still seems polite to ask before using other people’s work, so please contact <[email protected]> for permission before asking us for text files. mSupply support also distributes mSupply software for inventory control, which has an inbuilt system for reporting on medicine usage using the ATC system You can download a full working version from www.msupply.org.nz Craig Drown, mSupply Support <[email protected]> April 2000 A (2-benzhydryloxyethyl)diethyl-methylammonium iodide A03AB16 0.3 g O 2-(4-chlorphenoxy)-ethanol D01AE06 4-dimethylaminophenol V03AB27 Abciximab B01AC13 25 mg P Absorbable gelatin sponge B02BC01 Acadesine C01EB13 Acamprosate V03AA03 2 g O Acarbose A10BF01 0.3 g O Acebutolol C07AB04 0.4 g O,P Acebutolol and thiazides C07BB04 Aceclidine S01EB08 Aceclidine, combinations S01EB58 Aceclofenac M01AB16 0.2 g O Acefylline piperazine R03DA09 Acemetacin M01AB11 Acenocoumarol B01AA07 5 mg O Acepromazine N05AA04
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • United States Patent 19 11 Patent Number: 5,665,331 Bagchi Et Al
    |||| US005665331A United States Patent 19 11 Patent Number: 5,665,331 Bagchi et al. (45) Date of Patent: *Sep. 9, 1997 54 CO-MICROPRECIPITATION OF OTHER PUBLICATIONS NANOPARTICULATE PHARMACEUTICAL J. Phys. Chem. 1994, 98,3215-3221. AGENTS WITH CRYSTAL GROWTH J. Am. Chem. Soc. 1985, 107, 311-3122. MOD FERS - Radiology, Jan. 1982, vol. 142, pp. 115-118. Lachman, et al., “The Theory and Practice of Industrial 75 Inventors: Pranab Bagchi, Webster; Raymond P. Pharmacy”, Chapter 2, Milling, p. 45, (1986). Scaringe, Rochester, both of N.Y.; H. Handbook of experimental Pharmacology, pp. 56-73, 1984. William Bosch, Bryn Mawr, Pa. International Journal of Pharmaceutics, 52(1989) 101-108. 73 Assignee: NanoSystems L.L.C., Collegeville, Pa. Primary Examiner Gary E. Hollinden Assistant Examiner-Michael G. Hartley * Notice: The portion of the term of this patent Attorney, Agent, or Firm-Rudman & Balosh subsequent to Oct. 1, 2013, has been disclaimed. 57 ABSTRACT This invention describes the coprecipitation of nanoparticu 21 Appl. No.: 370,998 late pharmaceutical agent dispersion via a process that comprises the dissolution of the said pharmaceutical agentin 22 Filed: Jan. 10, 1995 combination with a crystal growth modifier (CGM) in an (51] Int. Cl. ... A61K 49/04; A61K 9/14 alkaline solution and then neutralizing the said solution with an acid in the presence of suitable surface-modifying 52 U.S. Cl. ........................ 424/945; 424/9.4; 424/489; surface-active agent or agents to form a fine particle disper 424/490; 424/488; 424/1.29 sion of the said pharmaceutical agent, followed by steps of 58) Field of Search ...................................
    [Show full text]
  • Lääkeluettelon Aineet, Liite 1. Ämnena I
    LÄÄKELUETTELON AINEET, LIITE 1. 1 ÄMNENA I LÄKEMEDELSFÖRTECKNINGEN, BILAGA 1. Latinankielinen nimi, Latinskt Suomenkielinen nimi, Ruotsinkielinen nimi, Englanninkielinen nimi, namn Finskt namn Svenskt namn Engelskt namn (N)-Hydroxy-aethylprometazinum (N)-Hydroksietyyli-prometatsiini (N)-Hydroxietyl-prometazin (N)-Hydroxyethyl- promethazine 2,4-Dichlorbenzyl-alcoholum 2,4-Diklooribentsyyli-alkoholi 2,4-Diklorbensylalkohol 2,4-Dichlorobenzyl alcohol 2-Isopropoxyphenyl-N- 2-Isopropoksifenyyli-N- 2-Isopropoxifenyl-N- 2-Isopropoxyphenyl-N- methylcarbamas metyylikarbamaatti metylkarbamat methylcarbamate 4-Dimethyl- aminophenolum 4-Dimetyyliaminofenoli 4-Dimetylaminofenol 4-Dimethylaminophenol Abacavirum Abakaviiri Abakavir Abacavir Abarelixum Abareliksi Abarelix Abarelix Abataceptum Abatasepti Abatacept Abatacept Abciximabum Absiksimabi Absiximab Abciximab Abirateronum Abirateroni Abirateron Abiraterone Acamprosatum Akamprosaatti Acamprosat Acamprosate Acarbosum Akarboosi Akarbos Acarbose Acebutololum Asebutololi Acebutolol Acebutolol Aceclofenacum Aseklofenaakki Aceklofenak Aceclofenac Acediasulfonum natricum Asediasulfoni natrium Acediasulfon natrium Acediasulfone sodium Acenocoumarolum Asenokumaroli Acenokumarol Acenocumarol Acepromazinum Asepromatsiini Acepromazin Acepromazine Acetarsolum Asetarsoli Acetarsol Acetarsol Acetazolamidum Asetatsoliamidi Acetazolamid Acetazolamide Acetohexamidum Asetoheksamidi Acetohexamid Acetohexamide Acetophenazinum Asetofenatsiini Acetofenazin Acetophenazine Acetphenolisatinum Asetofenoli-isatiini Acetfenolisatin
    [Show full text]
  • Pharmaceutical Residues in Waters in the Netherlands
    Pharmaceutical Residues in Waters in the Netherlands Results of a monitoring programme for RIWA Dr. Frank Sacher, DVGW-Technologiezentrum Wasser (TZW), Karlsruhe Dr. Peter G Stoks, RIWA, Nieuwegein November 2003 Association of River Waterworks Summary As part of the monitoring program of the Association of River Waterworks in the Dutch part of the Rhine catchment area (RIWA) a total of 78 pharmaceuticals including, among others, analgesics, antiepileptics, antibiotica and X-ray contrast media (XRF) were analysed in five different locations during the year 2002. Four of these sampling locations were intake points for drinking water, the fifth location was a site on the Rhine river on the Dutch-German border. In all three locations directly influenced by the Rhine river itself a number of pharmaceuticals could be detected in each sample. In contrast, at the other two locations pharmaceuticals were detected only occasionally. The highest values were found on the German border and at the intake point some 50 miles downstream (up to several hundred nanograms per liter for certain XRF and analgetics) and were markedly lower in the other locations. 2 Introduction Several reports have been published during the last few years indicating the presence of pharmaceuticals in surface water, and even in drinking water. These findings triggered the Association of River Waterworks in the Dutch part of the Rhine river, RIWA, to conduct a literature survey (Derksen J.G.M., G.M. van Eijnatten, J. Lahr, P. van der Linde en A.G.M. Kroon, 2000 - Milieu-effecten van humane geneesmiddelen. Aanwezigheid en risico’s. RIWA/RIZA-rapport 2000.051, Amsterdam/Lelystad) together with the national Water authority in the Netherlands, RIZA.
    [Show full text]