A General Small Cancellation Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Filling Functions Notes for an Advanced Course on the Geometry of the Word Problem for Finitely Generated Groups Centre De Recer
Filling Functions Notes for an advanced course on The Geometry of the Word Problem for Finitely Generated Groups Centre de Recerca Mathematica` Barcelona T.R.Riley July 2005 Revised February 2006 Contents Notation vi 1Introduction 1 2Fillingfunctions 5 2.1 Van Kampen diagrams . 5 2.2 Filling functions via van Kampen diagrams . .... 6 2.3 Example: combable groups . 10 2.4 Filling functions interpreted algebraically . ......... 15 2.5 Filling functions interpreted computationally . ......... 16 2.6 Filling functions for Riemannian manifolds . ...... 21 2.7 Quasi-isometry invariance . .22 3Relationshipsbetweenfillingfunctions 25 3.1 The Double Exponential Theorem . 26 3.2 Filling length and duality of spanning trees in planar graphs . 31 3.3 Extrinsic diameter versus intrinsic diameter . ........ 35 3.4 Free filling length . 35 4Example:nilpotentgroups 39 4.1 The Dehn and filling length functions . .. 39 4.2 Open questions . 42 5Asymptoticcones 45 5.1 The definition . 45 5.2 Hyperbolic groups . 47 5.3 Groups with simply connected asymptotic cones . ...... 53 5.4 Higher dimensions . 57 Bibliography 68 v Notation f, g :[0, ∞) → [0, ∞)satisfy f ≼ g when there exists C > 0 such that f (n) ≤ Cg(Cn+ C) + Cn+ C for all n,satisfy f ≽ g ≼, ≽, ≃ when g ≼ f ,andsatisfy f ≃ g when f ≼ g and g ≼ f .These relations are extended to functions f : N → N by considering such f to be constant on the intervals [n, n + 1). ab, a−b,[a, b] b−1ab, b−1a−1b, a−1b−1ab Cay1(G, X) the Cayley graph of G with respect to a generating set X Cay2(P) the Cayley 2-complex of a -
Lectures on Quasi-Isometric Rigidity Michael Kapovich 1 Lectures on Quasi-Isometric Rigidity 3 Introduction: What Is Geometric Group Theory? 3 Lecture 1
Contents Lectures on quasi-isometric rigidity Michael Kapovich 1 Lectures on quasi-isometric rigidity 3 Introduction: What is Geometric Group Theory? 3 Lecture 1. Groups and Spaces 5 1. Cayley graphs and other metric spaces 5 2. Quasi-isometries 6 3. Virtual isomorphisms and QI rigidity problem 9 4. Examples and non-examples of QI rigidity 10 Lecture 2. Ultralimits and Morse Lemma 13 1. Ultralimits of sequences in topological spaces. 13 2. Ultralimits of sequences of metric spaces 14 3. Ultralimits and CAT(0) metric spaces 14 4. Asymptotic Cones 15 5. Quasi-isometries and asymptotic cones 15 6. Morse Lemma 16 Lecture 3. Boundary extension and quasi-conformal maps 19 1. Boundary extension of QI maps of hyperbolic spaces 19 2. Quasi-actions 20 3. Conical limit points of quasi-actions 21 4. Quasiconformality of the boundary extension 21 Lecture 4. Quasiconformal groups and Tukia's rigidity theorem 27 1. Quasiconformal groups 27 2. Invariant measurable conformal structure for qc groups 28 3. Proof of Tukia's theorem 29 4. QI rigidity for surface groups 31 Lecture 5. Appendix 33 1. Appendix 1: Hyperbolic space 33 2. Appendix 2: Least volume ellipsoids 35 3. Appendix 3: Different measures of quasiconformality 35 Bibliography 37 i Lectures on quasi-isometric rigidity Michael Kapovich IAS/Park City Mathematics Series Volume XX, XXXX Lectures on quasi-isometric rigidity Michael Kapovich Introduction: What is Geometric Group Theory? Historically (in the 19th century), groups appeared as automorphism groups of some structures: • Polynomials (field extensions) | Galois groups. • Vector spaces, possibly equipped with a bilinear form| Matrix groups. -
3-Manifold Groups
3-Manifold Groups Matthias Aschenbrenner Stefan Friedl Henry Wilton University of California, Los Angeles, California, USA E-mail address: [email protected] Fakultat¨ fur¨ Mathematik, Universitat¨ Regensburg, Germany E-mail address: [email protected] Department of Pure Mathematics and Mathematical Statistics, Cam- bridge University, United Kingdom E-mail address: [email protected] Abstract. We summarize properties of 3-manifold groups, with a particular focus on the consequences of the recent results of Ian Agol, Jeremy Kahn, Vladimir Markovic and Dani Wise. Contents Introduction 1 Chapter 1. Decomposition Theorems 7 1.1. Topological and smooth 3-manifolds 7 1.2. The Prime Decomposition Theorem 8 1.3. The Loop Theorem and the Sphere Theorem 9 1.4. Preliminary observations about 3-manifold groups 10 1.5. Seifert fibered manifolds 11 1.6. The JSJ-Decomposition Theorem 14 1.7. The Geometrization Theorem 16 1.8. Geometric 3-manifolds 20 1.9. The Geometric Decomposition Theorem 21 1.10. The Geometrization Theorem for fibered 3-manifolds 24 1.11. 3-manifolds with (virtually) solvable fundamental group 26 Chapter 2. The Classification of 3-Manifolds by their Fundamental Groups 29 2.1. Closed 3-manifolds and fundamental groups 29 2.2. Peripheral structures and 3-manifolds with boundary 31 2.3. Submanifolds and subgroups 32 2.4. Properties of 3-manifolds and their fundamental groups 32 2.5. Centralizers 35 Chapter 3. 3-manifold groups after Geometrization 41 3.1. Definitions and conventions 42 3.2. Justifications 45 3.3. Additional results and implications 59 Chapter 4. The Work of Agol, Kahn{Markovic, and Wise 63 4.1. -
Hyperbolic Geometry
Flavors of Geometry MSRI Publications Volume 31,1997 Hyperbolic Geometry JAMES W. CANNON, WILLIAM J. FLOYD, RICHARD KENYON, AND WALTER R. PARRY Contents 1. Introduction 59 2. The Origins of Hyperbolic Geometry 60 3. Why Call it Hyperbolic Geometry? 63 4. Understanding the One-Dimensional Case 65 5. Generalizing to Higher Dimensions 67 6. Rudiments of Riemannian Geometry 68 7. Five Models of Hyperbolic Space 69 8. Stereographic Projection 72 9. Geodesics 77 10. Isometries and Distances in the Hyperboloid Model 80 11. The Space at Infinity 84 12. The Geometric Classification of Isometries 84 13. Curious Facts about Hyperbolic Space 86 14. The Sixth Model 95 15. Why Study Hyperbolic Geometry? 98 16. When Does a Manifold Have a Hyperbolic Structure? 103 17. How to Get Analytic Coordinates at Infinity? 106 References 108 Index 110 1. Introduction Hyperbolic geometry was created in the first half of the nineteenth century in the midst of attempts to understand Euclid’s axiomatic basis for geometry. It is one type of non-Euclidean geometry, that is, a geometry that discards one of Euclid’s axioms. Einstein and Minkowski found in non-Euclidean geometry a This work was supported in part by The Geometry Center, University of Minnesota, an STC funded by NSF, DOE, and Minnesota Technology, Inc., by the Mathematical Sciences Research Institute, and by NSF research grants. 59 60 J. W. CANNON, W. J. FLOYD, R. KENYON, AND W. R. PARRY geometric basis for the understanding of physical time and space. In the early part of the twentieth century every serious student of mathematics and physics studied non-Euclidean geometry. -
Generic Properties of Whitehead's Algorithmand Isomorphism Rigidity
Pacific Journal of Mathematics GENERIC PROPERTIES OF WHITEHEAD’S ALGORITHM AND ISOMORPHISM RIGIDITY OF RANDOM ONE-RELATOR GROUPS ILYA KAPOVICH,PAUL SCHUPP AND VLADIMIR SHPILRAIN Volume 223 No. 1 January 2006 PACIFIC JOURNAL OF MATHEMATICS Vol. 223, No. 1, 2006 GENERIC PROPERTIES OF WHITEHEAD’S ALGORITHM AND ISOMORPHISM RIGIDITY OF RANDOM ONE-RELATOR GROUPS ILYA KAPOVICH,PAUL SCHUPP AND VLADIMIR SHPILRAIN We prove that Whitehead’s algorithm for solving the automorphism prob- lem in a fixed free group Fk has strongly linear time generic-case complexity. This is done by showing that the “hard” part of the algorithm terminates in linear time on an exponentially generic set of input pairs. We then apply these results to one-relator groups. We obtain a Mostow-type isomorphism rigidity result for random one-relator groups: If two such groups are iso- morphic then their Cayley graphs on the given generating sets are isomet- ric. Although no nontrivial examples were previously known, we prove that one-relator groups are generically complete groups, that is, they have triv- ial center and trivial outer automorphism group. We also prove that the stabilizers of generic elements of Fk in Aut(Fk) are cyclic groups generated by inner automorphisms and that Aut(Fk)-orbits are uniformly small in the sense of their growth entropy. We further prove that the number Ik(n) of isomorphism types of k-generator one-relator groups with defining relators of length n satisfies c c 1 (2k − 1)n ≤ I (n) ≤ 2 (2k − 1)n, n k n where c1, c2 are positive constants depending on k but not on n. -
On Dehn Functions and Products of Groups
TRANSACTIONSof the AMERICANMATHEMATICAL SOCIETY Volume 335, Number 1, January 1993 ON DEHN FUNCTIONS AND PRODUCTS OF GROUPS STEPHEN G. BRICK Abstract. If G is a finitely presented group then its Dehn function—or its isoperimetric inequality—is of interest. For example, G satisfies a linear isoperi- metric inequality iff G is negatively curved (or hyperbolic in the sense of Gro- mov). Also, if G possesses an automatic structure then G satisfies a quadratic isoperimetric inequality. We investigate the effect of certain natural operations on the Dehn function. We consider direct products, taking subgroups of finite index, free products, amalgamations, and HNN extensions. 0. Introduction The study of isoperimetric inequalities for finitely presented groups can be approached in two different ways. There is the geometric approach (see [Gr]). Given a finitely presented group G, choose a compact Riemannian manifold M with fundamental group being G. Then consider embedded circles which bound disks in M, and search for a relationship between the length of the circle and the area of a minimal spanning disk. One can then triangulate M and take simplicial approximations, resulting in immersed disks. What was their area then becomes the number of two-cells in the image of the immersion counted with multiplicity. We are thus led to a combinatorial approach to the isoperimetric inequality (also see [Ge and CEHLPT]). We start by defining the Dehn function of a finite two-complex. Let K be a finite two-complex. If w is a circuit in K^, null-homotopic in K, then there is a Van Kampen diagram for w , i.e. -
Knot Theory and the Alexander Polynomial
Knot Theory and the Alexander Polynomial Reagin Taylor McNeill Submitted to the Department of Mathematics of Smith College in partial fulfillment of the requirements for the degree of Bachelor of Arts with Honors Elizabeth Denne, Faculty Advisor April 15, 2008 i Acknowledgments First and foremost I would like to thank Elizabeth Denne for her guidance through this project. Her endless help and high expectations brought this project to where it stands. I would Like to thank David Cohen for his support thoughout this project and through- out my mathematical career. His humor, skepticism and advice is surely worth the $.25 fee. I would also like to thank my professors, peers, housemates, and friends, particularly Kelsey Hattam and Katy Gerecht, for supporting me throughout the year, and especially for tolerating my temporary insanity during the final weeks of writing. Contents 1 Introduction 1 2 Defining Knots and Links 3 2.1 KnotDiagramsandKnotEquivalence . ... 3 2.2 Links, Orientation, and Connected Sum . ..... 8 3 Seifert Surfaces and Knot Genus 12 3.1 SeifertSurfaces ................................. 12 3.2 Surgery ...................................... 14 3.3 Knot Genus and Factorization . 16 3.4 Linkingnumber.................................. 17 3.5 Homology ..................................... 19 3.6 TheSeifertMatrix ................................ 21 3.7 TheAlexanderPolynomial. 27 4 Resolving Trees 31 4.1 Resolving Trees and the Conway Polynomial . ..... 31 4.2 TheAlexanderPolynomial. 34 5 Algebraic and Topological Tools 36 5.1 FreeGroupsandQuotients . 36 5.2 TheFundamentalGroup. .. .. .. .. .. .. .. .. 40 ii iii 6 Knot Groups 49 6.1 TwoPresentations ................................ 49 6.2 The Fundamental Group of the Knot Complement . 54 7 The Fox Calculus and Alexander Ideals 59 7.1 TheFreeCalculus ............................... -
Cubulating Random Groups at Density Less Than 1/6
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 363, Number 9, September 2011, Pages 4701–4733 S 0002-9947(2011)05197-4 Article electronically published on March 28, 2011 CUBULATING RANDOM GROUPS AT DENSITY LESS THAN 1/6 YANN OLLIVIER AND DANIEL T. WISE Abstract. 1 We prove that random groups at density less than 6 act freely and cocompactly on CAT(0) cube complexes, and that random groups at density 1 less than 5 have codimension-1 subgroups. In particular, Property (T ) fails 1 to hold at density less than 5 . Abstract. Nous prouvons que les groupes al´eatoires en densit´e strictement 1 inf´erieure `a 6 agissent librement et cocompactement sur un complexe cubique 1 CAT(0). De plus en densit´e strictement inf´erieure `a 5 , ils ont un sous-groupe de codimension 1; en particulier, la propri´et´e(T )n’estpasv´erifi´ee. Introduction Gromov introduced in [Gro93] the notion of a random finitely presented group on m 2 generators at density d ∈ (0; 1). The idea is to fix a set {g1,...,gm} of generators and to consider presentations with (2m − 1)d relations each of which is a random reduced word of length (Definition 1.1). The density d is a measure of the size of the number of relations as compared to the total number of available relations. See Section 1 for precise definitions and basic properties, and see [Oll05b, Gro93, Ghy04, Oll04] for a general discussion on random groups and the density model. One of the striking facts Gromov proved is that a random finitely presented 1 {± } 1 group is infinite, hyperbolic at density < 2 , and is trivial or 1 at density > 2 , with probability tending to 1 as →∞. -
On a Small Cancellation Theorem of Gromov
On a small cancellation theorem of Gromov Yann Ollivier Abstract We give a combinatorial proof of a theorem of Gromov, which extends the scope of small cancellation theory to group presentations arising from labelled graphs. In this paper we present a combinatorial proof of a small cancellation theorem stated by M. Gromov in [Gro03], which strongly generalizes the usual tool of small cancellation. Our aim is to complete the six-line-long proof given in [Gro03] (which invokes geometric arguments). Small cancellation theory is an easy-to-apply tool of combinatorial group theory (see [Sch73] for an old but nicely written introduction, or [GH90] and [LS77]). In one of its forms, it basically asserts that if we face a group presentation in which no two relators share a common subword of length greater than 1/6 of their length, then the group so defined is hyperbolic (in the sense of [Gro87], see also [GH90] or [Sho91] for basic properties), and infinite except for some trivial cases. The theorem extends these conclusions to much more general situations. Sup- pose that we are given a finite graph whose edges are labelled by generators of the free group Fm and their inverses (in a reduced way, see definition below). If no word of length greater than 1/6 times the length of the smallest loop of the graph appears twice on the graph, then the presentation obtained by taking as relations all the words read on all loops of the graph defines a hyperbolic group which (if the rank of the graph is at least m +1, to avoid trivial cases) is infinite. -
Case for Support
Solving word problems via generalisations of small cancellation ATrackRecord A.1 The Research Team Prof. Stephen Linton is a Professor of Computer Science at the University of St Andrews. He has worked in computational algebra since 1986 and has coordinated the development of the GAP system [6] since its transfer from Aachen in 1997 (more recently, in cooperation with threeothercentres).HehasbeenDirectoroftheCentre for Interdisciplinary Research in Computational Algebra (CIRCA) since its inception in 2000. His work includes new algorithms for algebraic problems, most relevantly workongeneralisationsoftheTodd-Coxeteralgorithm, novel techniques for combining these algorithms into the GAP system, and their application to research problems in mathematics and computer science. He is an editor of the international journal Applicable Algebra and Error Correcting Codes.HehasbeenprincipalinvestigatoronfivelargeEPSRCgrants, including EP/C523229 “Multidisciplinary Critical Mass in Computational AlgebraandApplications”(£1.1m) and EP/G055181 “High Performance Computational Algebra” (£1.5m across four sites). He is the Coordinator of the EU FP6 SCIEnce project (RII3-CT-026133, 3.2m Euros), developing symboliccomputationsoftwareasresearchinfrastructure. He won Best Paper award at the prestigious IEEE Visualisationconferencein2003forapaperapplying Computational Group Theory to the analysis of a family of algorithms in computer graphics. Dr. Max Neunh¨offer is currently a Senior Research Fellow in the School of Mathematics and Statistics at St Andrews, working on EP/C523229 “Multidisciplinary Critical Mass in Computational Algebra”, and will advance to a Lectureship in Mathematics in September 2010. HehasbeenatStAndrewssince2007,and before that worked for 10 years at Lehrstuhl D f¨ur MathematikatRWTHAachen,Germany.Hehasbeen involved in the development of GAP since the 1990s, both developing the core system and writing package code. -
Hyperbolic Geometry
Flavors of Geometry MSRI Publications Volume 31, 1997 Hyperbolic Geometry JAMES W. CANNON, WILLIAM J. FLOYD, RICHARD KENYON, AND WALTER R. PARRY Contents 1. Introduction 59 2. The Origins of Hyperbolic Geometry 60 3. Why Call it Hyperbolic Geometry? 63 4. Understanding the One-Dimensional Case 65 5. Generalizing to Higher Dimensions 67 6. Rudiments of Riemannian Geometry 68 7. Five Models of Hyperbolic Space 69 8. Stereographic Projection 72 9. Geodesics 77 10. Isometries and Distances in the Hyperboloid Model 80 11. The Space at Infinity 84 12. The Geometric Classification of Isometries 84 13. Curious Facts about Hyperbolic Space 86 14. The Sixth Model 95 15. Why Study Hyperbolic Geometry? 98 16. When Does a Manifold Have a Hyperbolic Structure? 103 17. How to Get Analytic Coordinates at Infinity? 106 References 108 Index 110 1. Introduction Hyperbolic geometry was created in the first half of the nineteenth century in the midst of attempts to understand Euclid’s axiomatic basis for geometry. It is one type of non-Euclidean geometry, that is, a geometry that discards one of Euclid’s axioms. Einstein and Minkowski found in non-Euclidean geometry a ThisworkwassupportedinpartbyTheGeometryCenter,UniversityofMinnesota,anSTC funded by NSF, DOE, and Minnesota Technology, Inc., by the Mathematical Sciences Research Institute, and by NSF research grants. 59 60 J. W. CANNON, W. J. FLOYD, R. KENYON, AND W. R. PARRY geometric basis for the understanding of physical time and space. In the early part of the twentieth century every serious student of mathematics and physics studied non-Euclidean geometry. This has not been true of the mathematicians and physicists of our generation. -
Arxiv:1911.02470V3 [Math.GT] 20 Apr 2021 Plicial Volume of Gr As Kgrk := Kαr,Rk1, the L -Semi-Norm of the Fundamental Class Αr (Section 3.1)
Simplicial volume of one-relator groups and stable commutator length Nicolaus Heuer, Clara L¨oh April 21, 2021 Abstract A one-relator group is a group Gr that admits a presentation hS j ri with a single relation r. One-relator groups form a rich classically studied class of groups in Geometric Group Theory. If r 2 F (S)0, we introduce a simplicial volume kGrk for one-relator groups. We relate this invariant to the stable commutator length sclS (r) of the element r 2 F (S). We show that often (though not always) the linear relationship kGrk = 4·sclS (r)−2 holds and that every rational number modulo 1 is the simplicial volume of a one-relator group. Moreover, we show that this relationship holds approximately for proper powers and for elements satisfying the small cancellation condition C0(1=N), with a multiplicative error of O(1=N). This allows us to prove for random 0 elements of F (S) of length n that kGrk is 2 log(2jSj − 1)=3 · n= log(n) + o(n= log(n)) with high probability, using an analogous result of Calegari{ Walker for stable commutator length. 1 Introduction A one-relator group is a group Gr that admits a presentation hS j ri with a single relation r 2 F (S). This rich and well studied class of groups in Geometric Group Theory generalises surface groups and shares many properties with them. A common theme is to relate the geometric properties of a classifying space of Gr to the algebraic properties of the relator r 2 F (S).